1
|
Sweeney MJ, Dobson AD. Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int J Food Microbiol 1998; 43:141-58. [PMID: 9801191 DOI: 10.1016/s0168-1605(98)00112-3] [Citation(s) in RCA: 370] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
Review |
27 |
370 |
2
|
Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L, Hoiby N, Givskov M. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology (Reading) 2005; 151:1325-1340. [PMID: 15870443 DOI: 10.1099/mic.0.27715-0] [Citation(s) in RCA: 291] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Quorum sensing (QS) communication systems are thought to afford bacteria with a mechanism to strategically cause disease. One example is Pseudomonas aeruginosa, which infects immunocompromised individuals such as cystic fibrosis patients. The authors have previously documented that blockage of the QS systems not only attenuates Ps. aeruginosa but also renders biofilms highly susceptible to treatment with conventional antibiotics. Filamentous fungi produce a battery of secondary metabolites, some of which are already in clinical use as antimicrobial drugs. Fungi coexist with bacteria but lack active immune systems, so instead rely on chemical defence mechanisms. It was speculated that some of these secondary metabolites could interfere with bacterial QS communication. During a screening of 100 extracts from 50 Penicillium species, 33 were found to produce QS inhibitory (QSI) compounds. In two cases, patulin and penicillic acid were identified as being biologically active QSI compounds. Their effect on QS-controlled gene expression in Ps. aeruginosa was verified by DNA microarray transcriptomics. Similar to previously investigated QSI compounds, patulin was found to enhance biofilm susceptibility to tobramycin treatment. Ps. aeruginosa has developed QS-dependent mechanisms that block development of the oxidative burst in PMN neutrophils. Accordingly, when the bacteria were treated with either patulin or penicillic acid, the neutrophils became activated. In a mouse pulmonary infection model, Ps. aeruginosa was more rapidly cleared from the mice that were treated with patulin compared with the placebo group.
Collapse
|
|
20 |
291 |
3
|
Mahfoud R, Maresca M, Garmy N, Fantini J. The mycotoxin patulin alters the barrier function of the intestinal epithelium: mechanism of action of the toxin and protective effects of glutathione. Toxicol Appl Pharmacol 2002; 181:209-18. [PMID: 12079430 DOI: 10.1006/taap.2002.9417] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Patulin is a mycotoxin mainly found in apple and apple products. In addition to being toxic for animals, mutagenic, carcinogenic and teratogenic, patulin induces intestinal injuries, including epithelial cell degeneration, inflammation, ulceration, and hemorrhages. In a study of the cellular mechanisms associated with the intestinal toxicity of patulin, two human epithelial intestinal cell lines (HT-29-D4 and Caco-2-14) were exposed to the mycotoxin. Micromolar concentrations of patulin were found to induce a rapid and dramatic decrease of transepithelial resistance (TER) in both cell lines without major signs of toxicity as assessed by the LDH release assay. Since TER reflects the organization of tight junctions, these data indicate that patulin affected the barrier function of the intestinal epithelium. The inhibitory effect of patulin on TER was closely associated with its reactivity for SH groups: (i) cysteine and glutathione prevented the cells from patulin injury; (ii) patulin toxicity was potentiated by buthionine sulfoximine, a specific glutathione-depleting agent; (iii) treatment of the cells with N-ethylmaleimide, a compound known to react with SH groups, resulted in a marked decrease of TER. Moreover, the inhibitory effect of patulin on TER was mimicked and potentiated by phenylarsine oxide, a specific inhibitor of protein tyrosine phosphatase (PTP). This cellular enzyme is a key regulator of intestinal epithelial barrier function. The active site of PTP contains a cysteine residue (Cys215) that is essential for phosphatase activity. Sulfhydryl-reacting compounds such as acetaldehyde decrease TER through covalent modification of Cys215 of PTP. We propose that the toxicity of patulin for intestinal cells involves, among other potential mechanisms, an inactivation of the active site of PTP.
Collapse
|
|
23 |
141 |
4
|
Wichmann G, Herbarth O, Lehmann I. The mycotoxins citrinin, gliotoxin, and patulin affect interferon-gamma rather than interleukin-4 production in human blood cells. ENVIRONMENTAL TOXICOLOGY 2002; 17:211-218. [PMID: 12112629 DOI: 10.1002/tox.10050] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Exposure to molds diminishes the numbers of T-helper type 1 (Th1) cells in the peripheral blood of children and is a risk factor for the development of allergic diseases (results of LARS: Leipzig Allergy Risk Children Study, Mueller et al. 2002). We hypothesized that mycotoxins are responsible for this effect and therefore investigated the influence of citrinin, gliotoxin, and patulin on human peripheral blood mononuclear cells (PBMC). CD3/CD28-stimulated PBMC of healthy donors were incubated for 24 h with the mycotoxins in serial dilutions and triplicates. Vitality and proliferation were tested using the MTT assay and T-cell function by the expression of cytokines (ELISA, intracellular cytokine staining, and real-time polymerase chain reaction (RT-PCR) for interferon-gamma (IFN-gamma) and interleukin-4 (IL-4). The cytokine secretion was inhibited at concentrations 2-130 times lower compared to vitality (ELISA versus MTT assay). The strongest inhibition of cytokine expression was found for IFN-gamma: 8.3 microg/mL citrinin, 34.2 ng/mL gliotoxin, and 64.8 ng/mL patulin caused a 50% inhibition of the IFN-gamma release (50% inhibitory dose, ID(50)). For IL-4 release the corresponding ID(50) values were 21.6 microg/mL citrinin, 82.8 ng/mL gliotoxin, and 243.2 ng/mL patulin. Furthermore, 3 ng/mL patulin caused a significant increase of IL-4 but a significant suppression of IFN-gamma. On the mRNA level, after 24 h an unaltered or enhanced IL-4 was observed compared to a reduced IFN-gamma expression. Using a method of intracellular cytokine staining, we were able to show that the described effects are caused by a reduction of the number of IFN-gamma-producing T lymphocytes rather than by a reduced functional capacity of the single cell. We suggest that mycotoxins primarily cause stronger inhibition of IFN-gamma-producing Th1 cells, which may lead to T-cell polarization toward the Th2 phenotype and may raise the risk for the development of allergies.
Collapse
|
|
23 |
105 |
5
|
Moss MO, Long MT. Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. FOOD ADDITIVES AND CONTAMINANTS 2002; 19:387-99. [PMID: 11962697 DOI: 10.1080/02652030110091163] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Patulin is known to become analytically non-detectable during the production of cider from contaminated apple juice. The fate of [14C]-labelled patulin during the alcoholic fermentation of apple juice was studied. Three commercial cider strains of Saccharomyces cerevisiae degraded patulin during active fermentative growth, but not when growing aerobically. The products of patulin degradation were more polar than patulin itself and remained in the clarified fermented cider. Patulin did not appear to bind to yeast cells or apple juice sediment in these model experiments. HPLC analysis of patulin-spiked fermentations showed the appearance of two major metabolites, one of which corresponded by both TLC and HPLC to E-ascladiol prepared by the chemical reduction of patulin using sodium borohydride. Using a diode array detector, both metabolites had a lambda(max) = 271 nm, identical to that of ascladiol. The nmr spectrum of a crude preparation of these metabolites showed signals corresponding to those of the E-ascladiol prepared chemically and a weaker set of signals corresponding to those reported in the literature for Z-ascladiol.
Collapse
|
|
23 |
104 |
6
|
Snini SP, Tannous J, Heuillard P, Bailly S, Lippi Y, Zehraoui E, Barreau C, Oswald IP, Puel O. Patulin is a cultivar-dependent aggressiveness factor favouring the colonization of apples by Penicillium expansum. MOLECULAR PLANT PATHOLOGY 2016; 17:920-30. [PMID: 26582186 PMCID: PMC6638343 DOI: 10.1111/mpp.12338] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The blue mould decay of apples is caused by Penicillium expansum and is associated with contamination by patulin, a worldwide regulated mycotoxin. Recently, a cluster of 15 genes (patA-patO) involved in patulin biosynthesis was identified in P. expansum. blast analysis revealed that patL encodes a Cys6 zinc finger regulatory factor. The deletion of patL caused a drastic decrease in the expression of all pat genes, leading to an absence of patulin production. Pathogenicity studies performed on 13 apple varieties indicated that the PeΔpatL strain could still infect apples, but the intensity of symptoms was weaker compared with the wild-type strain. A lower growth rate was observed in the PeΔpatL strain when this strain was grown on nine of the 13 apple varieties tested. In the complemented PeΔpatL:patL strain, the ability to grow normally in apple and the production of patulin were restored. Our results clearly demonstrate that patulin is not indispensable in the initiation of the disease, but acts as a cultivar-dependent aggressiveness factor for P. expansum. This conclusion was strengthened by the fact that the addition of patulin to apple infected by the PeΔpatL mutant restored the normal fungal colonization in apple.
Collapse
|
research-article |
9 |
63 |
7
|
Ianiri G, Idnurm A, Wright SAI, Durán-Patrón R, Mannina L, Ferracane R, Ritieni A, Castoria R. Searching for genes responsible for patulin degradation in a biocontrol yeast provides insight into the basis for resistance to this mycotoxin. Appl Environ Microbiol 2013; 79:3101-15. [PMID: 23455346 PMCID: PMC3623128 DOI: 10.1128/aem.03851-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/25/2013] [Indexed: 11/20/2022] Open
Abstract
Patulin is a mycotoxin that contaminates pome fruits and derived products worldwide. Basidiomycete yeasts belonging to the subphylum Pucciniomycotina have been identified to have the ability to degrade this molecule efficiently and have been explored through different approaches to understand this degradation process. In this study, Sporobolomyces sp. strain IAM 13481 was found to be able to degrade patulin to form two different breakdown products, desoxypatulinic acid and (Z)-ascladiol. To gain insight into the genetic basis of tolerance and degradation of patulin, more than 3,000 transfer DNA (T-DNA) insertional mutants were generated in strain IAM 13481 and screened for the inability to degrade patulin using a bioassay based on the sensitivity of Escherichia coli to patulin. Thirteen mutants showing reduced growth in the presence of patulin were isolated and further characterized. Genes disrupted in patulin-sensitive mutants included homologs of Saccharomyces cerevisiae YCK2, PAC2, DAL5, and VPS8. The patulin-sensitive mutants also exhibited hypersensitivity to reactive oxygen species as well as genotoxic and cell wall-destabilizing agents, suggesting that the inactivated genes are essential for tolerating and overcoming the initial toxicity of patulin. These results support a model whereby patulin degradation occurs through a multistep process that includes an initial tolerance to patulin that utilizes processes common to other external stresses, followed by two separate pathways for degradation.
Collapse
|
research-article |
12 |
60 |
8
|
Kusnezow W, Banzon V, Schröder C, Schaal R, Hoheisel JD, Rüffer S, Luft P, Duschl A, Syagailo YV. Antibody microarray-based profiling of complex specimens: systematic evaluation of labeling strategies. Proteomics 2007; 7:1786-99. [PMID: 17474144 DOI: 10.1002/pmic.200600762] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Antibody microarrays have often had limited success in detection of low abundant proteins in complex specimens. Signal amplification systems improve this situation, but still are quite laborious and expensive. However, the issue of sensitivity is more likely a matter of kinetically appropriate microarray design as demonstrated previously. Hence, we re-examined in this study the suitability of simple and inexpensive detection approaches for highly sensitive antibody microarray analysis. N-hydroxysuccinimidyl ester (NHS)- and Universal Linkage System (ULS)-based fluorescein and biotin labels used as tags for subsequent detection with anti-fluorescein and extravidin, respectively, as well as fluorescent dyes were applied for analysis of blood plasma. Parameters modifying strongly the performance of microarray detection such as labeling conditions, incubation time, concentrations of anti-fluorescein and extravidin and extent of protein labeling were analyzed and optimized in this study. Indirect detection strategies whether based on NHS- or ULS-chemistries strongly outperformed direct fluorescent labeling and enabled detection of low abundant cytokines with many dozen-fold signal-to-noise ratios. Finally, particularly sensitive detection chemistry was applied to monitoring cytokine production of stimulated peripheral T cells. Microarray data were in accord with quantitative cytokine levels measured by ELISA and Luminex, demonstrating comparable reliability and femtomolar range sensitivity of the established microarray approach.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
58 |
9
|
Kwon O, Soung NK, Thimmegowda NR, Jeong SJ, Jang JH, Moon DO, Chung JK, Lee KS, Kwon YT, Erikson RL, Ahn JS, Kim BY. Patulin induces colorectal cancer cells apoptosis through EGR-1 dependent ATF3 up-regulation. Cell Signal 2011; 24:943-50. [PMID: 22230687 DOI: 10.1016/j.cellsig.2011.12.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/30/2011] [Accepted: 12/21/2011] [Indexed: 11/16/2022]
Abstract
Patulin is a fungal mycotoxin of Aspergilus and Penicillium that is commonly found in rotting fruits and exerts its potential toxic effect mainly by reactive oxygen species (ROS) generation. However, the effect of patulin on cancer cells as well as its intracellular mechanism has been controversial and not clearly defined yet. In this study, patulin was found to induce G1/S accumulation and cell growth arrest accompanied by caspase-3 activation, PARP cleavage and ATF3 expression in human colon cancer cell line HCT116. Ser/Thr phosphorylation of a transcription factor, EGR-1, was increased while its expression did not change upon patulin treatment to the cells. Knockdown of ATF3 and EGR-1 using their respective siRNAs showed EGR-1 dependent ATF3 expression. Moreover, treatment of the cells with antioxidants N-acetylcysteine (NAC) and glutathione (GSH) revealed that patulin induced ATF3 expression and apoptosis were dependent on ROS generation. ATF3 expression was also increased by patulin in other colorectal cancer cell types, Caco2 and SW620. Collectively, our data present a new anti-cancer molecular mechanism of patulin, suggesting EGR-1 and ATF3 as critical targets for the development of anti-cancer chemotherapeutics. In this regard, patulin could be a candidate for the treatment of colorectal cancers.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
54 |
10
|
Phillips TD, Hayes AW. Effects of patulin on adenosine triphosphatase activities in the mouse. Toxicol Appl Pharmacol 1977; 42:175-87. [PMID: 145040 DOI: 10.1016/0041-008x(77)90208-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
|
48 |
49 |
11
|
Steiman R, Seigle-Murandi F, Sage L, Krivobok S. Production of patulin by Micromycetes. Mycopathologia 1989; 105:129-33. [PMID: 2761607 DOI: 10.1007/bf00437244] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the context of the screening for antifungal and antibacterial molecules among the Micromycetes, we investigated the ability of 850 strains grown in liquid medium to produce patulin. The compound was produced by 58 fungi, most of which had not been mentioned in the literature, especially Mucorales and Fungi Imperfecti. Biological tests showed that dermatophytes are the most sensitive to this molecule. It also appears that the origin of the producing strains influences their toxin producing activity.
Collapse
|
|
36 |
48 |
12
|
Guo X, Dong Y, Yin S, Zhao C, Huo Y, Fan L, Hu H. Patulin induces pro-survival functions via autophagy inhibition and p62 accumulation. Cell Death Dis 2013; 4:e822. [PMID: 24091665 PMCID: PMC3824659 DOI: 10.1038/cddis.2013.349] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/07/2013] [Accepted: 08/27/2013] [Indexed: 11/08/2022]
Abstract
Patulin (PAT) is one of the most common mycotoxins found in moldy fruits. Skin contact is one of the most likely exposure routes of PAT. Investigation of dermal toxicity of PAT is clearly needed and has been highlighted by WHO. In the present study, using human keratinocyte HaCaT cells as a model, we found that treatment with PAT caused an increased autophagosome accumulation. Measurements of autophagic flux demonstrated that the accumulation of autophagosomes by PAT was not directly due to enhanced autophagosome formation but due to inhibition of autophagosome degradation. Reductions in the activities of the lysosomal enzymes cathepsin B and cathepsin D by PAT might contribute to this inhibitory effect. Consistent with this, inhibition of autophagosome degradation by PAT resulted in accumulation of p62 that functioned as a pro-survival signal. The pro-survival function of p62 was found to be attributed to reactive oxygen species-mediated cytoprotective endoplasmic reticulum (ER) stress response. ER stress exerted cytoprotective effect via extracellular signal-regulated kinase1/2-dependent B-cell CLL/lymphoma 2-associated agonist of cell death inhibitory phosphorylation. Given the critical role of autophagy and its substrate p62 in carcinogenesis, our findings may have important implications in PAT-induced skin carcinogenesis.
Collapse
|
research-article |
12 |
41 |
13
|
Abstract
At a concentration of 10 micrograms/ml, patulin caused single-strand DNA breaks in living cells of Escherichia coli. At 50 micrograms/ml, double-strand breaks were observed also. Single-strand breaks were repaired in the presence of 10 micrograms of patulin per ml within 90 min when the cells were incubated at 37 degrees C in M9-salts solution without a carbon source. The same concentration also induced temperature-sensitive lambda prophage and a prophage of Bacillus megaterium. When an in vitro system with permeabilized Escherichia coli cells was used, patulin at 10 micrograms/ml induced DNA repair synthesis and inhibited DNA replication. The in vivo occurrence of DNA strand breaks and DNA repair correlated with the in vitro induction of repair synthesis. In vitro the RNA synthesis was less affected, and overall protein synthesis was not inhibited at 10 micrograms/ml. Only at higher concentrations (250 to 500 micrograms/ml) was inhibition of in vitro protein synthesis observed. Thus, patulin must be regarded as a mycotoxin with selective DNA-damaging activity.
Collapse
|
research-article |
39 |
41 |
14
|
Abstract
The action of patulin on Saccharomyces cerevisiae was studied. At weak doses, the drug inhibited growth, but inhibition was transient. After 10 min, syntheses of rRNA, tRNA, and probably mRNA were blocked; this was shown by radioactive precursor incorporation assays and gel electrophoresis of RNAs. After recovery of growth, patulin disappeared from the medium. It seemed that this degradation resulted from the activity of an inducible enzymatic system. Induced cells resisted very high patulin concentrations.
Collapse
|
research-article |
42 |
38 |
15
|
Dai Z, Huang Y, Sadee W, Blower P. Chemoinformatics analysis identifies cytotoxic compounds susceptible to chemoresistance mediated by glutathione and cystine/glutamate transport system xc-. J Med Chem 2007; 50:1896-906. [PMID: 17367118 DOI: 10.1021/jm060960h] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glutathione detoxification has been broadly implicated in resistance to chemotherapy. This study explores the relationship between chemical structure and GSH-mediated chemoresistance. System xc-, the heterodimeric cystine/glutamate exchanger composed of SLC7A11 and SLC3A2, plays a role in maintaining cellular glutathione (GSH) levels. Previous results show that SLC7A11 expression negatively correlates with drug potency across the National Cancer Institute's 60 cell lines for compounds susceptible to GSH-mediated chemoresistance. The number of significant SLC7A11-drug correlations was much greater than those of other genes tested, suggesting that SLC7A11 plays a critical role. Approximately 15% of a curated set of 3045 compounds yielded significant negative SLC7A11 correlations. These compounds tend to contain structural features amenable to GSH reactivity, such as Mannich bases. In cell lines strongly expressing SLC7A11, the potency of selected compounds, was enhanced by inhibition of SLC7A11. This system provides a rapid screen for detecting susceptibility of anticancer drugs to GSH-mediated resistance.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
35 |
16
|
Thust R, Kneist S, Mendel J. Patulin, a further clastogenic mycotoxin, is negative in the SCE assay in Chinese hamster V79-E cells in vitro. Mutat Res 1982; 103:91-7. [PMID: 7057787 DOI: 10.1016/0165-7992(82)90093-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Patulin is a potent inducer of chromatid-type aberrations in Chinese hamster V79-E cells, but loses its activity when 9000 g supernatant of rat-liver homogenate is added. The narrow dose range of patulin clastogenicity shows a quantitative relationship between absolute amount of mycotoxin applied and the number of indicator cells treated. Within a dose range permitting survival of V79-E, patulin does not induce an increase of the SCE rate. It is suggested that patulin clastogenicity is caused by interaction with chromosomal proteins and that DNA is not the virtual target of this mycotoxin.
Collapse
|
|
43 |
33 |
17
|
Moulé Y, Hatey F. Mechanism of the in vitro inhibition of transcription by patulin, a mycotoxin from Byssochlamys nivea. FEBS Lett 1977; 74:121-5. [PMID: 320044 DOI: 10.1016/0014-5793(77)80767-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
|
48 |
33 |
18
|
Riley RT, Goeger DE, Yoo H, Showker JL. Comparison of three tetramic acids and their ability to alter membrane function in cultured skeletal muscle cells and sarcoplasmic reticulum vesicles. Toxicol Appl Pharmacol 1992; 114:261-7. [PMID: 1609418 DOI: 10.1016/0041-008x(92)90076-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclopiazonic acid is a potent inhibitor of calcium uptake and Ca(2+)-ATPase activity in sarcoplasmic and endoplasmic reticulum. In L6 muscle myoblasts, cyclopiazonic acid stimulates the uptake of tetraphenylphosphonium, a lipophilic membrane potential probe, and has antioxidant properties. The purpose of the present study was to investigate the structural requirements necessary for causing the surface charge alterations, and the antioxidant activity in L6 skeletal muscle myoblasts, and for inhibition of calcium transport by rat skeletal muscle sarcoplasmic reticulum vesicles. This was accomplished by comparing the effects of two structurally related tetramic acids, cyclopiazonic acid imine and tenuazonic acid, with cyclopiazonic acid. Cyclopiazonic acid imine inhibited oxalate-assisted 45Ca2+ uptake and ATPase activity in sarcoplasmic reticulum vesicles and stimulated tetraphenylphosphonium accumulation by L6 muscle myoblasts. However, these effects required an approximately fourfold higher concentration than that of cyclopiazonic acid. Tenuazonic acid, up to 1 mM, had no effect on oxalate-assisted 45Ca2+ uptake or Ca(2+)-ATPase activity in sarcoplasmic reticulum vesicles and did not stimulate tetraphenylphosphonium accumulation by L6 muscle myoblasts. Cyclopiazonic acid was only slightly more effective than cyclopiazonic acid imine at preventing the patulin-induced increase in thiobarbituric acid positive substance (used to estimate lipid peroxidation); tenuazonic acid was totally ineffective. Previously, it was shown that cyclopiazonic acid was twice as effective as cyclopiazonic acid imine at preventing increases in thiobarbituric acid positive substance in cultured renal cells, LLC-PK1. Thus, the indole nucleus of cyclopiazonic acid is essential for the membrane-associated biological activity; however, modification of the acetyl group reduces the potency of the activity.
Collapse
|
Comparative Study |
33 |
30 |
19
|
Maidana L, Gerez JR, El Khoury R, Pinho F, Puel O, Oswald IP, Bracarense APFRL. Effects of patulin and ascladiol on porcine intestinal mucosa: An ex vivo approach. Food Chem Toxicol 2016; 98:189-194. [PMID: 27717802 DOI: 10.1016/j.fct.2016.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/14/2016] [Accepted: 10/01/2016] [Indexed: 11/18/2022]
Abstract
Patulin (PAT) is a secondary metabolite mainly produced by Aspergillus and Penicillium that is frequently found contaminating apples and rotten fruits. Patulin can be transformed in potencially less toxic compounds such as ascladiol (ASC). Toxic effects of patulin were described in rats and in in vitro models, however concerning ascladiol, data are restricted to metabolic pathways. The aim of the present study was to evaluate the effects of different concentrations of PAT (10 μM, 30 μM, 100 μM) and ASC (30 μM, 100 μM) on intestinal tissue using the jejunal explant model. Explants from pigs were exposed for 4 h to PAT and ASC and after this period were processed for histological, morphometrical and immunohistochemical analysis. Mild histological changes were observed in jejunal explants exposed to PAT and ASC, however no significant difference in the lesional score or villi height was observed between the PAT/ASC-groups and the control. Also, explants exposed to 100 μM of PAT showed a significant decrease in goblet cells density and a significant increase in cell apoptosis. These results indicate that high levels of patulin can induce mild toxic effects on intestinal mucosa whereas ascladiol apparently is non-toxic to intestinal tissue.
Collapse
|
Journal Article |
9 |
30 |
20
|
Pfeiffer E, Diwald TT, Metzler M. Patulin reduces glutathione level and enzyme activities in rat liver slices. Mol Nutr Food Res 2005; 49:329-36. [PMID: 15744717 DOI: 10.1002/mnfr.200400089] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present study, an attempt was made to identify glutathione (GSH) adducts of patulin in precision-cut rat liver slices, which were used as a model system to study the metabolism and biological effects of this mycotoxin. Patulin disappeared in the slices but none of the GSH adducts, previously demonstrated in the chemical reaction of patulin with GSH, could be detected by HPLC. After incubation with various concentrations of patulin, a concentration-dependent decline of the GSH level was observed in the slices. For example, only 25% of the GSH of controls was found with 200 microM patulin. The activities of glutathione-S-transferase (GST) and of drug metabolizing phase I and phase II enzymes, assayed by the hydroxylation and conjugation of testosterone, were also reduced. On the other hand, incubation with patulin markedly increased lipid peroxidation in the slices. The effects of patulin on enzyme activities and lipid peroxidation may be a consequence of the GSH decline, which cannot be accounted for by a direct reaction of patulin with GSH due to the high concentration of GSH in hepatocytes. The decrease of GSH level and GST activity may be related to the putative mutagenic and carcinogenic potential of patulin.
Collapse
|
|
20 |
30 |
21
|
Reiss J. Insecticidal and larvicidal activities of the mycotoxins aflatoxin B1 rubratoxin B, patulin and diacetoxyscirpenol towards Drosophila melanogaster. Chem Biol Interact 1975; 10:339-42. [PMID: 806368 DOI: 10.1016/0009-2797(75)90055-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In larvicide tests with four mycotoxins, aflatoxin B1 was most toxic to Drosophila melanogaster, followed by rubratoxin B and diacetoxyscirpenol. In concentrations of 20, 10 and 1 mug/cm-2 rubratoxin B and patulin had strong insecticidal activities. Aflatoxin B1 and diacetoxyscirpenol were less active in the contact tests.
Collapse
|
|
50 |
30 |
22
|
Arafat W, Kern D, Dirheimer G. Inhibition of aminoacyl-tRNA synthetases by the mycotoxin patulin. Chem Biol Interact 1985; 56:333-49. [PMID: 3907866 DOI: 10.1016/0009-2797(85)90015-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effect of patulin on tRNA aminoacylation has been determined. This mycotoxin inhibits the aminoacylation process by irreversibly inactivating aminoacyl-tRNA synthetases. At neutral and alkaline pH-values, the inactivation occurs mainly by modification of essential thiol groups of the protein, whereas at acidic pH, where the effect is the most pronounced, the modification of other amino acid residues cannot be excluded.
Collapse
|
Comparative Study |
40 |
28 |
23
|
Abstract
Mycotoxins are ubiquitously occurring metabolites of moulds that grow on foodstuffs. They are able to cause toxic diseases in man and animals. Aflatoxin B1 (AFB1), aflatoxin G1 (AFG1) and platulin (PA) induce chromosomal damage in Chinese hamster bone-marrow cells. With respect to the number of induced aberrant mitoses the 3 mycotoxins can be ranked in the order PA greater than AFB1 greater than AFG1.
Collapse
|
|
45 |
28 |
24
|
Yu HS, Kang MJ, Kwon JW, Lee SY, Lee E, Yang SI, Jung YH, Hong K, Kim YJ, Lee SH, Kim HJ, Kim HY, Seo JH, Kim BJ, Kim HB, Hong SJ. Claudin-1 polymorphism modifies the effect of mold exposure on the development of atopic dermatitis and production of IgE. J Allergy Clin Immunol 2014; 135:827-30.e5. [PMID: 25512082 DOI: 10.1016/j.jaci.2014.10.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 11/18/2022]
|
Research Support, Non-U.S. Gov't |
11 |
28 |
25
|
Tashiro F, Hiral K, Ueno Y. Inhibitory effects of carcinogenic mycotoxins on deoxyribonucleic acid-dependent ribonucleic acid polymerase and ribonuclease H. Appl Environ Microbiol 1979; 38:191-6. [PMID: 117749 PMCID: PMC243463 DOI: 10.1128/aem.38.2.191-196.1979] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fourteen mycotoxins were tested for inhibitory effects on ribonucleic acid polymerase of rat liver and Escherichia coli and nuclear ribonuclease H of rat liver and Tetrahymena pyriformis. These enzymes were strongly inhibited by (-)-luteoskyrin, (+)-rugulosin, patulin, and PR toxin.
Collapse
|
research-article |
46 |
27 |