1
|
Romberg N, Chamberlain N, Saadoun D, Gentile M, Kinnunen T, Ng YS, Virdee M, Menard L, Cantaert T, Morbach H, Rachid R, Martinez-Pomar N, Matamoros N, Geha R, Grimbacher B, Cerutti A, Cunningham-Rundles C, Meffre E. CVID-associated TACI mutations affect autoreactive B cell selection and activation. J Clin Invest 2013; 123:4283-93. [PMID: 24051380 DOI: 10.1172/jci69854] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/25/2013] [Indexed: 01/11/2023] Open
Abstract
Common variable immune deficiency (CVID) is an assorted group of primary diseases that clinically manifest with antibody deficiency, infection susceptibility, and autoimmunity. Heterozygous mutations in the gene encoding the tumor necrosis factor receptor superfamily member TACI are associated with CVID and autoimmune manifestations, whereas two mutated alleles prevent autoimmunity. To assess how the number of TACI mutations affects B cell activation and tolerance checkpoints, we analyzed healthy individuals and CVID patients carrying one or two TACI mutations. We found that TACI interacts with the cleaved, mature forms of TLR7 and TLR9 and plays an important role during B cell activation and the central removal of autoreactive B cells in healthy donors and CVID patients. However, only subjects with a single TACI mutation displayed a breached immune tolerance and secreted antinuclear antibodies (ANAs). These antibodies were associated with the presence of circulating B cell lymphoma 6-expressing T follicular helper (Tfh) cells, likely stimulating autoreactive B cells. Thus, TACI mutations may favor CVID by altering B cell activation with coincident impairment of central B cell tolerance, whereas residual B cell responsiveness in patients with one, but not two, TACI mutations enables autoimmune complications.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
112 |
2
|
Richards DM, Kyewski B, Feuerer M. Re-examining the Nature and Function of Self-Reactive T cells. Trends Immunol 2016; 37:114-125. [PMID: 26795134 PMCID: PMC7611850 DOI: 10.1016/j.it.2015.12.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/11/2015] [Accepted: 12/13/2015] [Indexed: 01/08/2023]
Abstract
Recent studies have leveraged MHC tetramer and TCR sequencing approaches towards a more precise characterization of the peripheral T cell repertoire, providing important insight into both the contribution of self-reactive T cells to the overall repertoire and their function. The peripheral T cell repertoire of healthy individuals contains a high frequency of diverse, self-reactive T cells. Furthermore, self-reactive T cells can perform essential beneficial physiological functions. We review these recent findings here, and discuss their implications to the current understanding of peripheral tolerance and the role of self-reactive T cells in autoimmune disease. We outline gaps in understanding, and argue that an important step forward is to revise the definition of self-reactive T cells to incorporate new concepts regarding the nature and physiological functions of different populations of T cells capable of recognizing self-antigens.
Collapse
|
Review |
9 |
58 |
3
|
Zhao B, Chang L, Fu H, Sun G, Yang W. The Role of Autoimmune Regulator (AIRE) in Peripheral Tolerance. J Immunol Res 2018; 2018:3930750. [PMID: 30255105 PMCID: PMC6142728 DOI: 10.1155/2018/3930750] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/02/2018] [Accepted: 08/11/2018] [Indexed: 02/07/2023] Open
Abstract
Autoimmune regulator (AIRE), whose gene mutation is considered to be a causative factor of autoimmune polyglandular syndrome type 1 (APS1), is an important transcriptional regulator. Studies on the role of AIRE in the central immune system have demonstrated that AIRE can eliminate autoreactive T cells by regulating the expression of a series of tissue specific antigens promiscuously in medullary thymic epithelial cells (mTECs) and induce regulatory T cell (Treg) production to maintain central immune tolerance. However, the related research of AIRE in peripheral tolerance is few. In order to understand the current research progress on AIRE in peripheral tolerance, this review mainly focuses on the expression and distribution of AIRE in peripheral tissues and organs, and the role of AIRE in peripheral immune tolerance such as regulating Toll-like receptor (TLR) expression and the maturation status of antigen presenting cells (APCs), inducing T cell tolerance and differentiation. This review will show us that AIRE also plays an indispensable role in the periphery.
Collapse
|
Review |
7 |
39 |
4
|
Jimenez RV, Wright TT, Jones NR, Wu J, Gibson AW, Szalai AJ. C-Reactive Protein Impairs Dendritic Cell Development, Maturation, and Function: Implications for Peripheral Tolerance. Front Immunol 2018; 9:372. [PMID: 29556231 PMCID: PMC5845098 DOI: 10.3389/fimmu.2018.00372] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022] Open
Abstract
C-reactive protein (CRP) is the prototypical acute phase reactant, increasing in blood concentration rapidly and several-fold in response to inflammation. Recent evidence indicates that CRP has an important physiological role even at low, baseline levels, or in the absence of overt inflammation. For example, we have shown that human CRP inhibits the progression of experimental autoimmune encephalomyelitis (EAE) in CRP transgenic mice by shifting CD4+ T cells away from the TH1 and toward the TH2 subset. Notably, this action required the inhibitory Fcγ receptor IIB (FcγRIIB), but did not require high levels of human CRP. Herein, we sought to determine if CRP's influence in EAE might be explained by CRP acting on dendritic cells (DC; antigen presenting cells known to express FcγRIIB). We found that CRP (50 µg/ml) reduced the yield of CD11c+ bone marrow-derived DCs (BMDCs) and CRP (≥5 μg/ml) prevented their full expression of major histocompatibility complex class II and the co-stimulatory molecules CD86 and CD40. CRP also decreased the ability of BMDCs to stimulate antigen-driven proliferation of T cells in vitro. Importantly, if the BMDCs were genetically deficient in mouse FcγRIIB then (i) the ability of CRP to alter BMDC surface phenotype and impair T cell proliferation was ablated and (ii) CD11c-driven expression of a human FCGR2B transgene rescued the CRP effect. Lastly, the protective influence of CRP in EAE was fully restored in mice with CD11c-driven human FcγRIIB expression. These findings add to the growing evidence that CRP has important biological effects even in the absence of an acute phase response, i.e., CRP acts as a tonic suppressor of the adaptive immune system. The ability of CRP to suppress development, maturation, and function of DCs implicates CRP in the maintenance of peripheral T cell tolerance.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
37 |
5
|
Schlöder J, Shahneh F, Schneider FJ, Wieschendorf B. Boosting regulatory T cell function for the treatment of autoimmune diseases – That’s only half the battle! Front Immunol 2022; 13:973813. [PMID: 36032121 PMCID: PMC9400058 DOI: 10.3389/fimmu.2022.973813] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 01/04/2023] Open
Abstract
Regulatory T cells (Treg) represent a subset of specialized T cells that are essential for the regulation of immune responses and maintenance of peripheral tolerance. Once activated, Treg exert powerful immunosuppressive properties, for example by inhibiting T cell-mediated immune responses against self-antigens, thereby protecting our body from autoimmunity. Autoimmune diseases such as multiple sclerosis, rheumatoid arthritis or systemic lupus erythematosus, exhibit an immunological imbalance mainly characterized by a reduced frequency and impaired function of Treg. In addition, there has been increasing evidence that – besides Treg dysfunction – immunoregulatory mechanisms fail to control autoreactive T cells due to a reduced responsiveness of T effector cells (Teff) for the suppressive properties of Treg, a process termed Treg resistance. In order to efficiently treat autoimmune diseases and thus fully induce immunological tolerance, a combined therapy aimed at both enhancing Treg function and restoring Teff responsiveness could most likely be beneficial. This review provides an overview of immunomodulating drugs that are currently used to treat various autoimmune diseases in the clinic and have been shown to increase Treg frequency as well as Teff sensitivity to Treg-mediated suppression. Furthermore, we discuss strategies on how to boost Treg activity and function, and their potential use in the treatment of autoimmunity. Finally, we present a humanized mouse model for the preclinical testing of Treg-activating substances in vivo.
Collapse
|
|
3 |
35 |
6
|
Kim HS, Lee MB, Lee D, Min KY, Koo J, Kim HW, Park YH, Kim SJ, Ikutani M, Takaki S, Kim YM, Choi WS. The regulatory B cell-mediated peripheral tolerance maintained by mast cell IL-5 suppresses oxazolone-induced contact hypersensitivity. SCIENCE ADVANCES 2019; 5:eaav8152. [PMID: 31328158 PMCID: PMC6636983 DOI: 10.1126/sciadv.aav8152] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
The function of regulatory immune cells in peripheral tissues is crucial to the onset and severity of various diseases. Interleukin-10 (IL-10)-producing regulatory B (IL-10+ Breg) cells are known to suppress various inflammatory diseases. However, evidence for the mechanism by which IL-10+ Breg cells are generated and maintained is still very limited. Here, we found that IL-10+ Breg cells suppress the activation of IL-13-producing type 2 innate lymphoid cells (IL-13+ ILC2s) in an IL-10-dependent manner in mice with oxazolone-induced severe contact hypersensitivity (CHS). Mast cell (MC) IL-5 was important for maintaining the population of IL-10+ Breg cells in peripheral lymphoid tissues. Overall, these results uncover a previously unknown mechanism of MCs as a type of immunoregulatory cell and elucidate the cross-talk among MCs, IL-10+ Breg cells, and IL-13+ ILC2s in CHS.
Collapse
|
research-article |
6 |
24 |
7
|
Cheru N, Hafler DA, Sumida TS. Regulatory T cells in peripheral tissue tolerance and diseases. Front Immunol 2023; 14:1154575. [PMID: 37197653 PMCID: PMC10183596 DOI: 10.3389/fimmu.2023.1154575] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/13/2023] [Indexed: 05/19/2023] Open
Abstract
Maintenance of peripheral tolerance by CD4+Foxp3+ regulatory T cells (Tregs) is essential for regulating autoreactive T cells. The loss of function of Foxp3 leads to autoimmune disease in both animals and humans. An example is the rare, X-linked recessive disorder known as IPEX (Immune Dysregulation, Polyendocrinopathy, Enteropathy X-linked) syndrome. In more common human autoimmune diseases, defects in Treg function are accompanied with aberrant effector cytokines such as IFNγ. It has recently become appreciated that Tregs plays an important role in not only maintaining immune homeostasis but also in establishing the tissue microenvironment and homeostasis of non-lymphoid tissues. Tissue resident Tregs show profiles that are unique to their local environments which are composed of both immune and non-immune cells. Core tissue-residence gene signatures are shared across different tissue Tregs and are crucial to homeostatic regulation and maintaining the tissue Treg pool in a steady state. Through interaction with immunocytes and non-immunocytes, tissue Tregs exert a suppressive function via conventional ways involving contact dependent and independent processes. In addition, tissue resident Tregs communicate with other tissue resident cells which allows Tregs to adopt to their local microenvironment. These bidirectional interactions are dependent on the specific tissue environment. Here, we summarize the recent advancements of tissue Treg studies in both human and mice, and discuss the molecular mechanisms that maintain tissue homeostasis and prevent pathogenesis.
Collapse
|
Review |
2 |
23 |
8
|
Shapiro MR, Yeh WI, Longfield JR, Gallagher J, Infante CM, Wellford S, Posgai AL, Atkinson MA, Campbell-Thompson M, Lieberman SM, Serreze DV, Geurts AM, Chen YG, Brusko TM. CD226 Deletion Reduces Type 1 Diabetes in the NOD Mouse by Impairing Thymocyte Development and Peripheral T Cell Activation. Front Immunol 2020; 11:2180. [PMID: 33013915 PMCID: PMC7500101 DOI: 10.3389/fimmu.2020.02180] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/10/2020] [Indexed: 01/04/2023] Open
Abstract
The costimulatory molecule CD226 is highly expressed on effector/memory T cells and natural killer cells. Costimulatory signals received by T cells can impact both central and peripheral tolerance mechanisms. Genetic polymorphisms in CD226 have been associated with susceptibility to type 1 diabetes and other autoimmune diseases. We hypothesized that genetic deletion of Cd226 in the non-obese diabetic (NOD) mouse would impact type 1 diabetes incidence by altering T cell activation. CD226 knockout (KO) NOD mice displayed decreased disease incidence and insulitis in comparison to wild-type (WT) controls. Although female CD226 KO mice had similar levels of sialoadenitis as WT controls, male CD226 KO mice showed protection from dacryoadenitis. Moreover, CD226 KO T cells were less capable of adoptively transferring disease compared to WT NOD T cells. Of note, CD226 KO mice demonstrated increased CD8+ single positive (SP) thymocytes, leading to increased numbers of CD8+ T cells in the spleen. Decreased percentages of memory CD8+CD44+CD62L- T cells were observed in the pancreatic lymph nodes of CD226 KO mice. Intriguingly, CD8+ T cells in CD226 KO mice showed decreased islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-tetramer and CD5 staining, suggesting reduced T cell receptor affinity for this immunodominant antigen. These data support an important role for CD226 in type 1 diabetes development by modulating thymic T cell selection as well as impacting peripheral memory/effector CD8+ T cell activation and function.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD5 Antigens/genetics
- CD5 Antigens/metabolism
- CD8-Positive T-Lymphocytes/immunology
- Cell Differentiation
- Cells, Cultured
- Diabetes Mellitus, Type 1/immunology
- Disease Models, Animal
- Gene Expression Regulation
- Glucose-6-Phosphatase/genetics
- Glucose-6-Phosphatase/metabolism
- Humans
- Immunodominant Epitopes/immunology
- Immunologic Memory
- Lymphocyte Activation
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Peripheral Tolerance
- Receptors, Antigen, T-Cell/metabolism
- Thymocytes/immunology
Collapse
|
Research Support, N.I.H., Extramural |
5 |
23 |
9
|
Vogel A, Martin K, Soukup K, Halfmann A, Kerndl M, Brunner JS, Hofmann M, Oberbichler L, Korosec A, Kuttke M, Datler H, Kieler M, Musiejovsky L, Dohnal A, Sharif O, Schabbauer G. JAK1 signaling in dendritic cells promotes peripheral tolerance in autoimmunity through PD-L1-mediated regulatory T cell induction. Cell Rep 2022; 38:110420. [PMID: 35196494 DOI: 10.1016/j.celrep.2022.110420] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 11/25/2022] Open
Abstract
Dendritic cells (DCs) induce peripheral T cell tolerance, but cell-intrinsic signaling cascades governing their stable tolerogenesis remain poorly defined. Janus Kinase 1 (JAK1) transduces cytokine-receptor signaling, and JAK inhibitors (Jakinibs), including JAK1-specific filgotinib, break inflammatory cycles in autoimmunity. Here, we report in heterogeneous DC populations of multiple secondary lymphoid organs that JAK1 promotes peripheral T cell tolerance during experimental autoimmune encephalomyelitis (EAE). Mice harboring DC-specific JAK1 deletion exhibit elevated peripheral CD4+ T cell expansion, less regulatory T cells (Tregs), and worse EAE outcomes, whereas adoptive DC transfer ameliorates EAE pathogenesis by inducing peripheral Tregs, programmed cell death ligand 1 (PD-L1) dependently. This tolerogenic program is substantially reduced upon the transfer of JAK1-deficient DCs. DC-intrinsic IFN-γ-JAK1-STAT1 signaling induces PD-L1, which is required for DCs to convert CD4+ T cells into Tregs in vitro and attenuated upon JAK1 deficiency and filgotinib treatment. Thus, DC-intrinsic JAK1 promotes peripheral tolerance, suggesting potential unwarranted DC-mediated effects of Jakinibs in autoimmune diseases.
Collapse
|
|
3 |
19 |
10
|
Grupillo M, Gualtierotti G, He J, Sisino G, Bottino R, Rudert WA, Trucco M, Fan Y. Essential roles of insulin expression in Aire+ tolerogenic dendritic cells in maintaining peripheral self-tolerance of islet β-cells. Cell Immunol 2012; 273:115-23. [PMID: 22297234 DOI: 10.1016/j.cellimm.2011.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/20/2011] [Accepted: 12/27/2011] [Indexed: 11/22/2022]
Abstract
Anti-insulin autoimmunity is one of the primary forces in initiating and progressing β-cell destruction in type 1 diabetes. While insulin expression in thymic medullary epithelial cells has been shown to be essential for establishing β-cell central tolerance, the function of insulin expression in antigen-presenting cells (APCs) of hematopoietic lineage remains elusive. With a Cre-lox reporter approach, we labeled Aire-expressing cells with enhanced yellow fluorescent proteins, and found that insulin expression in the spleen was restricted predominantly to a population of Aire(+)CD11c(int)B220(+) dendritic cells (DCs). Targeted insulin deletion in APCs failed to induce anti-islet autoimmunity in B6 mice. In contrast, elevated levels of T cell infiltration into islets were observed in B6(g7) congenic mice when insulin was specifically deleted in their CD11c-expressing DCs (B6(g7)·CD11c-ΔIns mice). Thus, insulin expression in BM-derived, Aire(+) tolerogenic DCs may play an essential role to prevent the activation and expansion of insulin-reactive T cells in the periphery.
Collapse
|
|
13 |
18 |
11
|
Zhou F, Zhang GX, Rostami A. Apoptotic cell-treated dendritic cells induce immune tolerance by specifically inhibiting development of CD4⁺ effector memory T cells. Immunol Res 2016; 64:73-81. [PMID: 26111522 PMCID: PMC4691443 DOI: 10.1007/s12026-015-8676-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CD4(+) memory T cells play an important role in induction of autoimmunity and chronic inflammatory responses; however, regulatory mechanisms of CD4(+) memory T cell-mediated inflammatory responses are poorly understood. Here we show that apoptotic cell-treated dendritic cells inhibit development and differentiation of CD4(+) effector memory T cells in vitro and in vivo. Simultaneously, intravenous transfer of apoptotic T cell-induced tolerogenic dendritic cells can block development of experimental autoimmune encephalomyelitis (EAE), an inflammatory disease of the central nervous system in C57 BL/6J mouse. Our results imply that it is effector memory CD4(+) T cells, not central memory CD4(+) T cells, which play a major role in chronic inflammatory responses in mice with EAE. Intravenous transfer of tolerogenic dendritic cells induced by apoptotic T cells leads to immune tolerance by specifically blocking development of CD4(+) effector memory T cells compared with results of EAE control mice. These results reveal a new mechanism of apoptotic cell-treated dendritic cell-mediated immune tolerance in vivo.
Collapse
|
research-article |
9 |
14 |
12
|
Temajo NO, Howard N. The viral enterprises in autoimmunity: conversion of target cells into de novo APCs is the presage to autoimmunity. Autoimmun Rev 2012; 11:653-8. [PMID: 22122867 DOI: 10.1016/j.autrev.2011.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/14/2011] [Indexed: 12/20/2022]
Abstract
An autoimmune disease (AD) occurs in a situation where an individual's protective immune system attacks and destroys the individual's own tissues and organ(s), causing a recognizable syndrome(s). The viruses feature in the triggering of autoimmune diseases in genetically primed individuals through generating a viral group of regulatory immediate early proteins (IE). The IE indulges in promiscuous regulations of the viral replications as well as of host intracellular proteins. But there are consequences in the IE controlling host cell protein regulations, which we suggest as: the IE titration of the transactivator protein, autoimmune regulator (AIRE), which causes abolition of central tolerance; and the IE titration of the repressor protein, FOXP3, which results in the breach of peripheral tolerance. Titrations of AIRE and FOXP3 allow the escape of autoreactive T cells into the (peripheral) circulation where they can reach and zero in on self-tissues. The AD-predisposing MHC-II-DR-DQ haplotypes probably play a crucial role in the shaping of the T cell repertoire intrathymically for the survival of budding autoreactive T cell receptors (TCRs). Finally, we suggest there is IE titration of the repressors, the histone deacetylases (HDACs), in target organ cells which then consequentially express de novo MHC-II molecules and become de novo non-professional antigen-presenting cells (APCs), able to present viral peptides to cognate TCRs, thereby enrolling themselves for apoptotic death: a destiny of all APCs in immune responses, in general. Extensive apoptotic destruction of organ cells leads to an autoimmune syndrome(s).
Collapse
|
Review |
13 |
12 |
13
|
Castleman MJ, Stumpf MM, Therrien NR, Smith MJ, Lesteberg KE, Palmer BE, Maloney JP, Janssen WJ, Mould KJ, Beckham JD, Pelanda R, Torres RM. SARS-CoV-2 infection relaxes peripheral B cell tolerance. J Exp Med 2022; 219:e20212553. [PMID: 35420627 PMCID: PMC9014793 DOI: 10.1084/jem.20212553] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Severe SARS-CoV-2 infection is associated with strong inflammation and autoantibody production against diverse self-antigens, suggesting a system-wide defect in B cell tolerance. BND cells are a B cell subset in healthy individuals harboring autoreactive but anergic B lymphocytes. In vitro evidence suggests inflammatory stimuli can breach peripheral B cell tolerance in this subset. We asked whether SARS-CoV-2-associated inflammation impairs BND cell peripheral tolerance. To address this, PBMCs and plasma were collected from healthy controls, individuals immunized against SARS-CoV-2, or subjects with convalescent or severe SARS-CoV-2 infection. We demonstrate that BND cells from severely infected individuals are significantly activated, display reduced inhibitory receptor expression, and restored BCR signaling, indicative of a breach in anergy during viral infection, supported by increased levels of autoreactive antibodies. The phenotypic and functional BND cell alterations significantly correlate with increased inflammation in severe SARS-CoV-2 infection. Thus, autoreactive BND cells are released from peripheral tolerance with SARS-CoV-2 infection, likely as a consequence of robust systemic inflammation.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
10 |
14
|
Krishnamurthy B, Chee J, Jhala G, Fynch S, Graham KL, Santamaria P, Morahan G, Allison J, Izon D, Thomas HE, Kay TW. Complete diabetes protection despite delayed thymic tolerance in NOD8.3 TCR transgenic mice due to antigen-induced extrathymic deletion of T cells. Diabetes 2012; 61:425-35. [PMID: 22190647 PMCID: PMC3266425 DOI: 10.2337/db11-0948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Prevention of autoimmunity requires the elimination of self-reactive T cells during their development in the thymus and maturation in the periphery. Transgenic NOD mice that overexpress islet-specific glucose 6 phosphatase catalytic subunit-related protein (IGRP) in antigen-presenting cells (NOD-IGRP mice) have no IGRP-specific T cells. To study the relative contribution of central and peripheral tolerance mechanisms to deletion of antigen-specific T cells, we crossed NOD-IGRP mice to highly diabetogenic IGRP206-214 T-cell receptor transgenic mice (NOD8.3 mice) and studied the frequency and function of IGRP-specific T cells in the thymus and periphery. Peripheral tolerance was extremely efficient and completely protected NOD-IGRP/NOD8.3 mice from diabetes. Peripheral tolerance was characterized by activation of T cells in peripheral lymphoid tissue where IGRP was expressed followed by activation-induced cell death. Thymectomy showed that thymic output of IGRP-specific transgenic T cells compensated for peripheral deletion to maintain peripheral T-cell numbers. Central tolerance was undetectable until 10 weeks and complete by 15 weeks. These in vivo data indicate that peripheral tolerance alone can protect NOD8.3 mice from autoimmune diabetes and that profound changes in T-cell repertoire can follow subtle changes in thymic antigen presentation.
Collapse
|
research-article |
13 |
9 |
15
|
Stephen-Victor E, Chatila TA. An embarrassment of riches: RORγt + antigen-presenting cells in peripheral tolerance. Immunity 2022; 55:1978-1980. [PMID: 36351372 PMCID: PMC10069454 DOI: 10.1016/j.immuni.2022.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RORγt+ regulatory T (Treg) cells are critical toward maintaining gut immune tolerance. In recent studies published in Nature, Kedmi et al., Lyu et al., and Akagbosu et al. describe MHCII+RORγt+ antigen-presenting cells that mediate RORγt+ Treg cell differentiation but propose disparate identities for these cells.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
9 |
16
|
Badr ME, Zhang Z, Tai X, Singer A. CD8 T cell tolerance results from eviction of immature autoreactive cells from the thymus. Science 2023; 382:534-541. [PMID: 37917689 PMCID: PMC11302524 DOI: 10.1126/science.adh4124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023]
Abstract
CD8 T cell tolerance is thought to result from clonal deletion of autoreactive thymocytes before they differentiate into mature CD8 T cells in the thymus. However, we report that, in mice, CD8 T cell tolerance instead results from premature thymic eviction of immature autoreactive CD8 thymocytes into the periphery, where they differentiate into self-tolerant mature CD8 T cells. Premature thymic eviction is triggered by T cell receptor (TCR)-driven down-regulation of the transcriptional repressor Gfi1, which induces expression of sphingosine-1-phosphate receptor-1 (S1P1) on negatively selected immature CD8 thymocytes. Thus, premature thymic eviction is the basis for CD8 T cell tolerance and is the mechanism responsible for the appearance in the periphery of mature CD8 T cells bearing autoreactive TCRs that are absent from the thymus.
Collapse
|
research-article |
2 |
8 |
17
|
Aas IB, Austbø L, Falk K, Hordvik I, Koppang EO. The interbranchial lymphoid tissue likely contributes to immune tolerance and defense in the gills of Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:247-254. [PMID: 28655579 DOI: 10.1016/j.dci.2017.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Central and peripheral immune tolerance is together with defense mechanisms a hallmark of all lymphoid tissues. In fish, such tolerance is especially important in the gills, where the intimate contact between gill tissue and the aqueous environment would otherwise lead to continual immune stimulation by innocuous antigens. In this paper, we focus on the expression of genes associated with immune regulation by the interbranchial lymphoid tissue (ILT) in an attempt to understand its role in maintaining immune homeostasis. Both healthy and virus-challenged fish were investigated, and transcript levels were examined from laser-dissected ILT, gills, head kidney and intestine. Lack of Aire expression in the ILT excluded its involvement in central tolerance and any possibility of its being an analogue to the thymus. On the other hand, the ILT appears to participate in peripheral immune tolerance due to its relatively high expression of forkhead box protein 3 (Foxp3) and other genes associated with regulatory T cells (Tregs) and immune suppression.
Collapse
|
|
8 |
8 |
18
|
Hachem RR. The impact of non-HLA antibodies on outcomes after lung transplantation and implications for therapeutic approaches. Hum Immunol 2019; 80:583-587. [PMID: 31005400 DOI: 10.1016/j.humimm.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/09/2019] [Accepted: 04/13/2019] [Indexed: 01/12/2023]
Abstract
The role of donor-specific antibodies (DSA) to mismatched human leukocyte antigens (HLA) in lung allograft rejection has been recognized over the past 20 years. During this time, there has been growing experience and recognition of an important role for non-HLA antibodies in lung allograft rejection. Multiple self-antigens have been identified that elicit autoimmune responses including collagen V, K-α 1 tubulin, angiotensin type 1 receptor, and endothelin type A receptor, but it is likely that other antigens elicit similar responses. The paradigm for the pathogenesis of these autoimmune responses consists of exposure of sequestered self-antigens followed by loss of peripheral tolerance, which then promotes allograft rejection. Studies have focused mainly on the impact of autoimmune responses on the development of Bronchiolitis Obliterans Syndrome or its mouse model surrogate. However, there are emerging data that illustrate that non-HLA antibodies can induce acute antibody-mediated rejection (AMR) after lung transplantation. Treatment has focused on antibody-depletion protocols, but experience is limited to cohort studies and appropriate controlled trials have not been conducted. It is noteworthy that depletion of non-HLA antibodies has been associated with favorable clinical outcomes. Clearly, additional studies are needed to identify the optimal therapeutic approaches to non-HLA antibodies in clinical practice.
Collapse
|
Review |
6 |
7 |
19
|
Sprent J. The power of dilution: using adoptive transfer to study TCR transgenic T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:5325-6. [PMID: 24244026 DOI: 10.4049/jimmunol.1302679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
Editorial |
12 |
5 |
20
|
Askenasy N. Mechanisms of diabetic autoimmunity: II--Is diabetes a central or peripheral disorder of effector and regulatory cells? Immunol Res 2016; 64:36-43. [PMID: 26482052 DOI: 10.1007/s12026-015-8725-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two competing hypotheses aiming to explain the onset of autoimmune reactions are discussed in the context of genetic and environmental predisposition to type 1 diabetes (T1D). The first hypothesis has evolved along characterization of the mechanisms of self-discrimination and attributes diabetic autoimmunity to escape of reactive T cells from central regulation in the thymus. The second considers frequent occurrence of autoimmune reactions within the immune homunculus, which are adequately suppressed by regulatory T cells originating from the thymus, and occasionally, insufficient suppression results in autoimmunity. Besides thymic dysfunction, deregulation of both effector and suppressor cells can in fact result from homeostatic aberrations at the peripheral level during initial stages of evolution of adaptive immunity. Pathogenic cells sensitized in the islets are efficiently expanded in the target tissue and pancreatic lymph nodes of lymphopenic neonates. In parallel, the same mechanisms of peripheral sensitization contribute to tolerization through education of naïve/effector T cells and expansion of regulatory T cells. Experimental evidence presented for each individual mechanism implies that T1D may result from a primary effector or suppressor immune abnormality. Disturbed self-tolerance leading to T1D may well result from peripheral deregulation of innate and adaptive immunity, with variable contribution of central thymic dysfunction.
Collapse
|
Review |
9 |
4 |
21
|
Agazio A, Cimons J, Shotts KM, Guo K, Santiago ML, Pelanda R, Torres RM. Histone H2A-Reactive B Cells Are Functionally Anergic in Healthy Mice With Potential to Provide Humoral Protection Against HIV-1. Front Immunol 2020; 11:1565. [PMID: 32849530 PMCID: PMC7396680 DOI: 10.3389/fimmu.2020.01565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
Peripheral tolerance is essential for silencing weakly autoreactive B cells that have escaped central tolerance, but it is unclear why these potentially pathogenic B cells are retained rather than being eliminated entirely. Release from peripheral tolerance restraint can occur under certain circumstances (i.e., strong TLR stimulus), that are present during infection. In this regard, we hypothesized that autoreactive B cells could function as a reserve population that can be activated to contribute to the humoral immune response, particularly with pathogens, such as HIV-1, that exploit immune tolerance to avoid host defense. In this study, we identify a population of autoreactive B cells with the potential to neutralize HIV-1 and experimentally release them from the functional restrictions of peripheral tolerance. We have previously identified murine monoclonal antibodies that displayed autoreactivity against histone H2A and neutralized HIV-1 in vitro. Here, we identify additional H2A-reactive IgM monoclonal antibodies and demonstrate that they are both autoreactive and polyreactive with self and foreign antigens and are able to neutralize multiple clades of tier 2 HIV-1. Flow cytometric analysis of H2A-reactive B cells in naïve wildtype mice revealed that these B cells are present in peripheral B cell populations and we further document that murine H2A-reactive B cells are restrained by peripheral tolerance mechanisms. Specifically, we show endogenous H2A-reactive B cells display increased expression of the inhibitory mediators CD5 and phosphatase and tensin homolog (PTEN) phosphatase and fail to mobilize calcium upon immunoreceptor stimulation; all characterized markers of anergy. Moreover, we show that toll-like receptor stimulation or provision of CD4 T cell help induces the in vitro production of H2A-reactive antibodies, breaking tolerance. Thus, we have identified a novel poly/autoreactive B cell population that has the potential to neutralize HIV-1 but is silenced by immune tolerance.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
3 |
22
|
Silva M, Martin KC, Mondal N, Sackstein R. sLeX Expression Delineates Distinct Functional Subsets of Human Blood Central and Effector Memory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1920-1932. [PMID: 32868410 PMCID: PMC10636707 DOI: 10.4049/jimmunol.1900679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Sialyl Lewis X (sLeX) regulates T cell trafficking from the vasculature into skin and sites of inflammation, thereby playing a critical role in immunity. In healthy persons, only a small proportion of human blood T cells express sLeX, and their function is not fully defined. Using a combination of biochemical and functional studies, we find that human blood sLeX+CD4+T cells comprise a subpopulation expressing high levels of Th2 and Th17 cytokines, chemokine receptors CCR4 and CCR6, and the transcription factors GATA-3 and RORγT. Additionally, sLeX+CD4+T cells exclusively contain the regulatory T cell population (CD127lowCD25high and FOXP3+) and characteristically display immune-suppressive molecules, including the coinhibitor receptors PD-1 and CTLA-4. Among CD8+T cells, sLeX expression distinguishes a subset displaying low expression of cytotoxic effector molecules, perforin and granzyme β, with reduced degranulation and CD57 expression and, consistently, marginal cytolytic capacity after TCR engagement. Furthermore, sLeX+CD8+T cells present a pattern of features consistent with Th cell-like phenotype, including release of pertinent Tc2 cytokines and elevated expression of CD40L. Together, these findings reveal that sLeX display is associated with unique functional specialization of both CD4+ and CD8+T cells and indicate that circulating T cells that are primed to migrate to lesional sites at onset of inflammation are not poised for cytotoxic function.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
1 |
23
|
Dadey RE, Grebinoski S, Zhang Q, Brunazzi EA, Burton A, Workman CJ, Vignali DAA. Regulatory T Cell-Derived TRAIL Is Not Required for Peripheral Tolerance. Immunohorizons 2021; 5:48-58. [PMID: 33483333 PMCID: PMC8663370 DOI: 10.4049/immunohorizons.2000098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/26/2022] Open
Abstract
TRAIL (Tnfsf10/TRAIL/CD253/Apo2L) is an important immune molecule that mediates apoptosis. TRAIL can play key roles in regulating cell death in the tumor and autoimmune microenvironments. However, dissecting TRAIL function remains difficult because of the lack of optimal models. We have now generated a conditional knockout (Tnfsf10 L/L) for cell type-specific analysis of TRAIL function on C57BL/6, BALB/c, and NOD backgrounds. Previous studies have suggested a role for TRAIL in regulatory T cell (Treg)-mediated suppression. We generated mice with a Treg-restricted Tnfsf10 deletion and surprisingly found no impact on tumor growth in C57BL/6 and BALB/c tumor models. Furthermore, we found no difference in the suppressive capacity of Tnfsf10-deficient Tregs and no change in function or proliferation of T cells in tumors. We also assessed the role of TRAIL on Tregs in two autoimmune mouse models: the NOD mouse model of autoimmune diabetes and the myelin oligodendrocyte glycoprotein (MOG) C57BL/6 model of experimental autoimmune encephalomyelitis. We found that deletion of Tnfsf10 on Tregs had no effect on disease progression in either model. We conclude that Tregs do not appear to be dependent on TRAIL exclusively as a mechanism of suppression in both the tumor and autoimmune microenvironments, although it remains possible that TRAIL may contribute in combination with other mechanisms and/or in different disease settings. Our Tnfsf10 conditional knockout mouse should prove to be a useful tool for the dissection of TRAIL function on different cell populations in multiple mouse models of human disease.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
1 |
24
|
de Vries VC, Le Mercier I, Nowak EC, Noelle RJ. Studying mast cells in peripheral tolerance by using a skin transplantation model. Methods Mol Biol 2015; 1220:461-86. [PMID: 25388268 DOI: 10.1007/978-1-4939-1568-2_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mast cells (MCs) play an important role in both inflammatory and immunosuppressive responses [1]. The importance of MCs in maintaining peripheral tolerance was discovered in a FoxP3(+) regulatory T-cell (Treg)-mediated skin transplant model [2]. MCs can directly mediate tolerance by releasing anti-inflammatory mediators (reviewed in ref. 3) or by interacting with other immune cells in the graft. Here we will present protocols used to study the role of MCs in peripheral tolerance with the emphasis on how MCs can regulate T-cell functionality. First we will introduce the skin transplant model followed by reconstitution of mast cell-deficient mice (B6.Cg-Kit (W-sh) ). This includes the preparation of MCs from the bone marrow. Finally the methods used to study the influence of MCs on T-cell responses and Treg functionality will be presented by modulating the balance between tolerance and inflammation.
Collapse
|
|
10 |
1 |
25
|
Kearney ER, Pape KA, Loh DY, Jenkins MK. Pillars article: visualization of Peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity. 1994. 1: 327-339. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:5327-5339. [PMID: 24244027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
Biography |
12 |
|