1
|
Stengel DB, Connan S, Popper ZA. Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 2011; 29:483-501. [PMID: 21672617 DOI: 10.1016/j.biotechadv.2011.05.016] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 05/29/2011] [Accepted: 05/30/2011] [Indexed: 02/06/2023]
Abstract
There has been significant recent interest in the commercial utilisation of algae based on their valuable chemical constituents many of which exhibit multiple bioactivities with applications in the food, cosmetic, agri- and horticultural sectors and in human health. Compounds of particular commercial interest include pigments, lipids and fatty acids, proteins, polysaccharides and phenolics which all display considerable diversity between and within taxa. The chemical composition of natural algal populations is further influenced by spatial and temporal changes in environmental parameters including light, temperature, nutrients and salinity, as well as biotic interactions. As reported bioactivities are closely linked to specific compounds it is important to understand, and be able to quantify, existing chemical diversity and variability. This review outlines the taxonomic, ecological and chemical diversity between, and within, different algal groups and the implications for commercial utilisation of algae from natural populations. The biochemical diversity and complexity of commercially important types of compounds and their environmental and developmental control are addressed. Such knowledge is likely to help achieve higher and more consistent levels of bioactivity in natural samples and may allow selective harvesting according to algal species and local environmental conditions for different groups of compounds.
Collapse
|
Review |
14 |
252 |
2
|
Cueto M, Jensen PR, Kauffman C, Fenical W, Lobkovsky E, Clardy J. Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. JOURNAL OF NATURAL PRODUCTS 2001; 64:1444-6. [PMID: 11720529 DOI: 10.1021/np0102713] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The isolation and structure determination of a new chlorinated benzophenone antibiotic, pestalone (1), is described. The new compound was produced by a cultured marine fungus only when a unicellular marine bacterium, strain CNJ-328, was co-cultured in the fungal fermentation. The fungus, isolated from the surface of the brown alga Rosenvingea sp. collected in the Bahamas Islands, was identified as an undescribed member of the genus Pestalotia. The structure of 1, initially assigned with only modest confidence by combined spectral and chemical data, was confirmed by single-crystal X-ray analysis. Pestalone (1) exhibits moderate in vitro cytotoxicity in the National Cancer Institute's 60 human tumor cell line screen (mean GI(50) = 6.0 microM). More importantly, pestalone shows potent antibiotic activity against methicillin-resistant Staphylococcus aureus (MIC = 37 ng/mL) and vancomycin-resistant Enterococcus faecium (MIC = 78 ng/mL), indicating that pestalone should be evaluated in advanced models of infectious disease.
Collapse
|
|
24 |
235 |
3
|
Pomin VH, Mourão PAS. Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology 2008; 18:1016-27. [PMID: 18796647 DOI: 10.1093/glycob/cwn085] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Sulfated fucans and galactans are strongly anionic polysaccharides found in marine organisms. Their structures vary among species, but their major features are conserved among phyla. Sulfated fucans are found in marine brown algae and echinoderms, whereas sulfated galactans occur in red and green algae, marine angiosperms, tunicates (ascidians), and sea urchins. Polysaccharides with 3-linked, beta-galactose units are highly conserved in some taxonomic groups of marine organisms and show a strong tendency toward 4-sulfation in algae and marine angiosperms, and 2-sulfation in invertebrates. Marine algae mainly express sulfated polysaccharides with complex, heterogeneous structures, whereas marine invertebrates synthesize sulfated fucans and sulfated galactans with regular repetitive structures. These polysaccharides are structural components of the extracellular matrix. Sulfated fucans and galactans are involved in sea urchin fertilization acting as species-specific inducers of the sperm acrosome reaction. Because of this function the structural evolution of sulfated fucans could be a component in the speciation process. The algal and invertebrate polysaccharides are also potent anticoagulant agents of mammalian blood and represent a potential source of compounds for antithrombotic therapies.
Collapse
|
Review |
17 |
216 |
4
|
Bilal M, Shah JA, Ashfaq T, Gardazi SMH, Tahir AA, Pervez A, Haroon H, Mahmood Q. Waste biomass adsorbents for copper removal from industrial wastewater--a review. JOURNAL OF HAZARDOUS MATERIALS 2013; 263 Pt 2:322-33. [PMID: 23972667 DOI: 10.1016/j.jhazmat.2013.07.071] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/18/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
Copper (Cu(2+)) containing wastewaters are extensively released from different industries and its excessive entry into food chains results in serious health impairments, carcinogenicity and mutagenesis in various living systems. An array of technologies is in use to remediate Cu(2+) from wastewaters. Adsorption is the most attractive option due to the availability of cost effective, sustainable and eco-friendly bioadsorbents. The current review is dedicated to presenting state of the art knowledge on various bioadsorbents and physico-chemical conditions used to remediate Cu(2+) from waste streams. The advantages and constraints of various adsorbents were also discussed. The literature revealed the maximum Cu adsorption capacities of various bioadsorbents in the order of algae>agricultural and forest>fungal>bacterial>activated carbon>yeast. However, based on the average Cu adsorption capacity, the arrangement can be: activated carbon>algal>bacterial>agriculture and forest-derived>fungal>yeast biomass. The data of Cu removal using these bioadsorbents were found best fit both Freundlich and Langmuir models. Agriculture and forest derived bioadsorbents have greater potential for Cu removal because of higher uptake, cheaper nature, bulk availability and mono to multilayer adsorption behavior. Higher costs at the biomass transformation stage and decreasing efficiency with desorption cycles are the major constraints to implement this technology.
Collapse
|
Review |
12 |
196 |
5
|
Abka-khajouei R, Tounsi L, Shahabi N, Patel AK, Abdelkafi S, Michaud P. Structures, Properties and Applications of Alginates. Mar Drugs 2022; 20:364. [PMID: 35736167 PMCID: PMC9225620 DOI: 10.3390/md20060364] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Alginate is a hydrocolloid from algae, specifically brown algae, which is a group that includes many of the seaweeds, like kelps and an extracellular polymer of some bacteria. Sodium alginate is one of the best-known members of the hydrogel group. The hydrogel is a water-swollen and cross-linked polymeric network produced by the simple reaction of one or more monomers. It has a linear (unbranched) structure based on d-mannuronic and l-guluronic acids. The placement of these monomers depending on the source of its production is alternating, sequential and random. The same arrangement of monomers can affect the physical and chemical properties of this polysaccharide. This polyuronide has a wide range of applications in various industries including the food industry, medicine, tissue engineering, wastewater treatment, the pharmaceutical industry and fuel. It is generally recognized as safe when used in accordance with good manufacturing or feeding practice. This review discusses its application in addition to its structural, physical, and chemical properties.
Collapse
|
Review |
3 |
175 |
6
|
Kim EJ, Park SY, Lee JY, Park JHY. Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol 2010; 10:96. [PMID: 20727207 PMCID: PMC2931458 DOI: 10.1186/1471-230x-10-96] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/22/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Fucoidan is a sulfated polysaccharide found in brown algae; it has been shown to exhibit a number of biological effects, including anti-tumor effects. In this study, we evaluated the effects of fucoidan on apoptosis in HT-29 and HCT116 human colon cancer cells. METHODS HT-29 and HCT116 cells were cultured with various concentrations of fucoidan (0 - 20 microg/mL). Apoptosis was assayed via Hoechst staining and Annexin V staining followed by flow cytometric analysis. Western blot analyses and JC-1 staining were conducted to determine the levels of apoptosis-regulating proteins and mitochondrial membrane permeability, respectively. RESULTS Fucoidan induced substantial reductions in viable cell numbers and apoptosis of HT-29 and HCT116 cells in a dose-dependent manner. In HT-29 cells, fucoidan also increased the levels of cleaved caspases-8, -9, -7, and -3, and cleaved poly (ADP-ribose) polymerase (PARP) levels. The levels of the X-linked inhibitor of apoptosis protein and survivin were attenuated in the fucoidan-treated cells. Fucoidan was also shown to enhance mitochondrial membrane permeability, as well as the cytochrome c and Smac/Diablo release from the mitochondria. Fucoidan increased the levels of the Bak and truncated Bid proteins, but reduced the levels of Mcl-1. Additionally, fucoidan increased the levels of the tumor necrosis factor-related apoptosis-inducing ligand, Fas and death receptor 5 proteins. The caspase-8 and -9 inhibitors Z-IETD-FMK and Z-LEHD-FMK induced a reduction in fucoidan-mediated apoptosis. Caspase-8 inhibitor inhibited the fucoidan-induced cleavage of Bid, caspases-9 and -3, and PARP. CONCLUSION The findings of this study indicate that fucoidan induces apoptosis in HT-29 and HCT116 human colon cancer cells, and that this phenomenon is mediated via both the death receptor-mediated and mitochondria-mediated apoptotic pathways. These results suggest that fucoidan may prove useful in the development of a colon cancer-preventive protocol.
Collapse
|
research-article |
15 |
172 |
7
|
Mata YN, Torres E, Blázquez ML, Ballester A, González F, Muñoz JA. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. JOURNAL OF HAZARDOUS MATERIALS 2009; 166:612-8. [PMID: 19124199 DOI: 10.1016/j.jhazmat.2008.11.064] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 11/20/2008] [Accepted: 11/20/2008] [Indexed: 05/27/2023]
Abstract
In this paper, the bioreduction of Au(III) to Au(0) using biomass of the brown alga Fucus vesiculosus was investigated. The recovery and reduction process took place in two stages with an optimum pH range of 4-9 with a maximum uptake obtained at pH 7. In the first stage, an induction period previous to gold reduction, the variation of pH, redox potential and gold concentration in solution was practically negligible and no color change was observed. In the second stage, the gold reduction was followed by a sharp decrease of gold concentration, pH and redox potential of solution and a color change from yellow to reddish purple. Hydroxyl groups present in the algal polysaccharides were involved in the gold bioreduction. Metallic gold was detected as microprecipitates on the biomass surface and in colloidal form as nanoparticles in the solution. Bioreduction with F. vesiculosus could be an alternative and environmentally friendly process that can be used for recovering gold from dilute hydrometallurgical solutions and leachates of electronic scraps, and for the synthesis of gold nanoparticles of different size and shape.
Collapse
|
|
16 |
145 |
8
|
Abstract
Replacing dysfunctional endocrine tissues (eg, islets) with healthy, nonautologous material protected against the immune defense of the patient could soon become a reality. Recent advances have resulted in the development of alginate-based microcapsules that meet the demands of biocompatibility, long-term integrity, and function. Focus on the development of good manufacturing practice-conforming microfluidic chip technology for generation of immunoisolated transplants and on cryopreservation technology will bring the cell-based therapy to the market and clinics.
Collapse
|
Review |
18 |
127 |
9
|
Dobrinčić A, Balbino S, Zorić Z, Pedisić S, Bursać Kovačević D, Elez Garofulić I, Dragović-Uzelac V. Advanced Technologies for the Extraction of Marine Brown Algal Polysaccharides. Mar Drugs 2020; 18:E168. [PMID: 32197494 PMCID: PMC7143672 DOI: 10.3390/md18030168] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022] Open
Abstract
Over the years, brown algae bioactive polysaccharides laminarin, alginate and fucoidan have been isolated and used in functional foods, cosmeceutical and pharmaceutical industries. The extraction process of these polysaccharides includes several complex and time-consuming steps and the correct adjustment of extraction parameters (e.g., time, temperature, power, pressure, solvent and sample to solvent ratio) greatly influences the yield, physical, chemical and biochemical properties as well as their biological activities. This review includes the most recent conventional procedures for brown algae polysaccharides extraction along with advanced extraction techniques (microwave-assisted extraction, ultrasound assisted extraction, pressurized liquid extraction and enzymes assisted extraction) which can effectively improve extraction process. The influence of these extraction techniques and their individual parameters on yield, chemical structure and biological activities from the most current literature is discussed, along with their potential for commercial applications as bioactive compounds and drug delivery systems.
Collapse
|
Review |
5 |
126 |
10
|
Li B, Wei XJ, Sun JL, Xu SY. Structural investigation of a fucoidan containing a fucose-free core from the brown seaweed, Hizikia fusiforme. Carbohydr Res 2006; 341:1135-46. [PMID: 16643873 DOI: 10.1016/j.carres.2006.03.035] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Revised: 03/20/2006] [Accepted: 03/23/2006] [Indexed: 11/29/2022]
Abstract
A fucoidan, obtained from the hot-water extract of the brown seaweed, Hizikia fusiforme, was separated into five fractions by DEAE Sepharose CL-6B and Sepharose CL-6B column chromatography. All five fractions contained predominantly fucose, mannose and galactose and also contained sulfate groups and uronic acid. The fucoidans had MWs from 25 to 950 kDa. The structure of fraction F32 was investigated by desulfation, carboxyl-group reduction, partial hydrolysis, methylation analysis and NMR spectroscopy. The results showed that the sugar composition of F32 was mainly fucose, galactose, mannose, xylose and glucuronic acid; sulfate was 21.8%, and the MW was 92.7 kDa. The core of F32 was mainly composed of alternating units of -->2)-alpha-D-Man(1--> and -->4)-beta-D-GlcA(1-->, with a minor portion of -->4)-beta-D-Gal(1--> units. The branch points were at C-3 of -->2)-Man-(1-->, C-2 of -->4)-Gal-(1--> and C-2 of -->6)-Gal-(1-->. About two-thirds of the fucose units were at the nonreducing ends, and the remainder were (1-->4)-, (1-->3)- and (1-->2)-linked. About two-thirds of xylose units were at the nonreducing ends, and the remainder were (1-->4)-linked. Most of the mannose units were (1-->2)-linked, and two-thirds of them had a branch at C-3. Galactose was mainly (1-->6)-linked. The absolute configurations of the sugar residues were alpha-D-Manp, alpha-L-Fucp, alpha-D-Xylp, beta-D-Galp and beta-D-GlcpA. Sulfate groups in F32 were at C-6 of -->2,3)-Man-(1-->, C-4 and C-6 of -->2)-Man-(1-->, C-3 of -->6)-Gal-(1-->, C-2, C-3 or C-4 of fucose, while some fucose had two sulfate groups. There were no sulfate groups in either the GlcA or xylose residues.
Collapse
|
|
19 |
125 |
11
|
Beppu F, Niwano Y, Tsukui T, Hosokawa M, Miyashita K. Single and repeated oral dose toxicity study of fucoxanthin (FX), a marine carotenoid, in mice. J Toxicol Sci 2009; 34:501-10. [PMID: 19797858 DOI: 10.2131/jts.34.501] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fucoxanthin (FX), a xanthophyll derivative, is an orange-colored pigment present in edible brown algae. As a part of safety evaluation, single and repeated oral dose toxicity study of FX was conducted. In a single dose study, FX purified from seaweed was orally administered to male and female ICR mice at doses of 1,000 and 2,000 mg/kg. In a repeated doses study, FX at doses of 500 and 1,000 mg/kg was orally administered for 30 days. In both studies, no mortality and no abnormalities in gross appearance were observed. In the repeated doses study, histological observation revealed no abnormal changes in liver, kidney, spleen and gonadal tissues of any of the FX-treated groups. However, significantly increased total cholesterol concentrations were shown by plasma biochemical analyses in all FX-treated groups. Although total bilirubin concentrations were increased by FX, it was established that presence of fucoxanthinol, a major metabolite of FX, interfered with bilirubin determination in plasma. To further ascertain the safety of FX, the mechanism by which FX induces hypercholesterolemia in mice and species differences in the induction of hypercholesterolemia should be elucidated.
Collapse
|
|
16 |
125 |
12
|
Hashimoto T, Ozaki Y, Taminato M, Das SK, Mizuno M, Yoshimura K, Maoka T, Kanazawa K. The distribution and accumulation of fucoxanthin and its metabolites after oral administration in mice. Br J Nutr 2009; 102:242-8. [PMID: 19173766 DOI: 10.1017/s0007114508199007] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pharmacokinetics of dietary fucoxanthin, one of the xanthophylls in brown sea algae, is little understood. In the present study, mice were orally administered fucoxanthin, and the distribution and accumulation of fucoxanthin and its metabolites fucoxanthinol and amarouciaxanthin A were measured in the plasma, erythrocytes, liver, lung, kidney, heart, spleen and adipose tissue. In a single oral administration of 160 nmol fucoxanthin, fucoxanthinol and amarouciaxanthin A were detectable in all specimens tested in the present study, but fucoxanthin was not. The time at maximum concentration (Tmax) of these metabolites in adipose tissue was 24 h, while the Tmax in the others was 4 h. The area under the curve to infinity (AUCinfinity) of fucoxanthinol in the liver was the highest value (4680 nmol/g x h) among the tissues tested in the present study, while the AUCinfinity of amarouciaxanthin A in adipose tissue was the highest value (4630 nmol/g x h). In daily oral administration of 160 nmol fucoxanthin for 1 week, fucoxanthin was also detectable in the tissues even at a low concentration. The amount of fucoxanthinol was 123 nmol/g in the heart and 85.2 nmol/g in the liver. Amarouciaxanthin A in the adipose tissue was distributed at a concentration of 97.5 nmol/g. These results demonstrate that dietary fucoxanthin accumulates in the heart and liver as fucoxanthinol and in adipose tissue as amarouciaxanthin A.
Collapse
|
|
16 |
123 |
13
|
BEATTIE A, HIRST EL, PERCIVAL E. Studies on the metabolism of the Chrysophyceae. Comparative structural investigations on leucosin (chrysolaminarin) separated from diatoms and laminarin from the brown algae. Biochem J 1961; 79:531-7. [PMID: 13688276 PMCID: PMC1205682 DOI: 10.1042/bj0790531] [Citation(s) in RCA: 111] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
research-article |
64 |
111 |
14
|
Lee SH, Ko CI, Ahn G, You S, Kim JS, Heu MS, Kim J, Jee Y, Jeon YJ. Molecular characteristics and anti-inflammatory activity of the fucoidan extracted from Ecklonia cava. Carbohydr Polym 2012; 89:599-606. [PMID: 24750764 DOI: 10.1016/j.carbpol.2012.03.056] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/02/2012] [Accepted: 03/18/2012] [Indexed: 11/29/2022]
Abstract
Enzymatic extraction has been successfully used for extracting numerous biologically active compounds from a wide variety of seaweeds. In this study, we found that enzymatic extraction of the fucoidan from Ecklonia cava may be more advantageous than water extraction. Therefore, we studied the E. cava fucoidans extracted by the enzymatic extraction technique and used ion-exchange chromatography to determine their molecular characteristics and anti-inflammatory activities. The crude and fractionated fucoidans (F1, F2, and F3) consisted mostly of carbohydrates (47.1-57.1%), uronic acids (9.0-15.8%), and sulfates (16.5-39.1%), as well as varying levels of proteins (1.3-8.7%). The monosaccharide levels significantly differed, and the composition included fucose (53.1-77.9%) and galactose (10.1-32.8%), with a small amount of rhamnose (2.3-4.5%), xylose (4.0-8.2%), and glucose (0.8-2.2%). These fucoidans contained one or two subfractions with an average molecular weight (Mw) ranging from 18 to 359×10(3)g/mol. These fucoidans significantly inhibited NO production in lipopolysaccharide (LPS)-induced Raw 264.7 macrophage cells by down-regulating the expression of iNOS, COX-2, and pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β. Thus, the present results suggest that E. cava fucoidan may be a potentially useful therapeutic approach for various inflammatory diseases.
Collapse
|
|
13 |
108 |
15
|
Hentati F, Delattre C, Ursu AV, Desbrières J, Le Cerf D, Gardarin C, Abdelkafi S, Michaud P, Pierre G. Structural characterization and antioxidant activity of water-soluble polysaccharides from the Tunisian brown seaweed Cystoseira compressa. Carbohydr Polym 2018; 198:589-600. [PMID: 30093038 DOI: 10.1016/j.carbpol.2018.06.098] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 11/25/2022]
Abstract
A fucoidan (CCF) and a sodium alginate (CCSA) were extracted and purified from the Tunisian brown seaweed Cystoseira compressa. CCF was a highly sulfated heterogalactofucan composed of α-(1→3), α-(1→4)-linked l-Fucp as main backbone which could be highly branched (31.84%) at O-3 and O-4 positions of α-(1→4)-l-Fucp and α-(1→3)-l-Fucp by terminal monosaccharides and side chains such as terminal α-l-Fucp, terminal β-d-Galp, β-d-Galp-(1→3)-α-l-Fucp and β-d-Galp-(1→4)-α-l-Fucp. The ratio of α-(1→3)/α-(1→4) linkages was estimated at 3.86:1. CCSA was characterized by HPAEC-PAD, GC/MS-EI, ATR-FTIR, and 1H-NMR. The M/G ratio was M/G = 0.77, indicating that CCSA respectively contained 44% and 56% of mannuronic and guluronic acids. The values of FGG, FMM, FGM (or FMG) blocks as well as the parameter η were estimated. The two polysaccharides exhibited effective antioxidant activities by ferrous ion chelation, ferric ion reduction and DPPH radical-scavenging, outlining their potentials as natural additives.
Collapse
|
|
7 |
103 |
16
|
Kaewsarn P. Biosorption of copper(II) from aqueous solutions by pre-treated biomass of marine algae Padina sp. CHEMOSPHERE 2002; 47:1081-5. [PMID: 12137041 DOI: 10.1016/s0045-6535(01)00324-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Biosorption of heavy metals can be an effective process for the removal and recovery of heavy metal ions from aqueous solutions. The biomass of marine algae has been reported to have high uptake capacities for a number of heavy metal ions. In this paper, the adsorption properties of a pre-treated biomass of marine algae Padina sp. for copper(II) were investigated. Equilibrium isotherms and kinetics were obtained from batch adsorption experiments. The biosorption capacities were solution pH dependent and the maximum capacity obtained was 0.80 mmol/g at a solution pH of about 5. The biosorption kinetics was found to be fast, with 90% of adsorption within 15 min and equilibrium reached at 30 min. The effects of light metal ions on copper(II) uptake were studied and the presence of light metal ions did not affect copper(II) uptake significantly. Fixed-bed breakthrough curves for copper(II) removal were also obtained. This study demonstrated that the pre-treated biomass of Padina sp. could be used as an effective biosorbent for the treatment of copper(II) containing wastewater streams.
Collapse
|
|
23 |
87 |
17
|
Kang HS, Chung HY, Jung JH, Son BW, Choi JS. A new phlorotannin from the brown alga Ecklonia stolonifera. Chem Pharm Bull (Tokyo) 2003; 51:1012-4. [PMID: 12913249 DOI: 10.1248/cpb.51.1012] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new phlorotannin, named eckstolonol (1), was isolated from the EtOAc soluble fraction of the methanolic extract of the brown alga, Ecklonia stolonifera OKAMURA, along with three known phlorotannins, eckol (2), phlorofucofuroeckol A (3), and dieckol (4). The structure of eckstolonol was identified as 5,8,13,14-tetraoxa-pentaphene-1,3,6,9,11-pentaol on the basis of spectroscopic evidence. The new compound was found to be a radical scavenger on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical.
Collapse
|
|
22 |
83 |
18
|
Nguyen TT, Mikkelsen MD, Tran VHN, Trang VTD, Rhein-Knudsen N, Holck J, Rasin AB, Cao HTT, Van TTT, Meyer AS. Enzyme-Assisted Fucoidan Extraction from Brown Macroalgae Fucus distichus subsp. evanescens and Saccharina latissima. Mar Drugs 2020; 18:E296. [PMID: 32498331 PMCID: PMC7344474 DOI: 10.3390/md18060296] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Fucoidans from brown macroalgae (brown seaweeds) have different structures and many interesting bioactivities. Fucoidans are classically extracted from brown seaweeds by hot acidic extraction. Here, we report a new targeted enzyme-assisted methodology for fucoidan extraction from brown seaweeds. This enzyme-assisted extraction protocol involves a one-step combined use of a commercial cellulase preparation (Cellic®CTec2) and an alginate lyase from Sphingomonas sp. (SALy), reaction at pH 6.0, 40 °C, removal of non-fucoidan polysaccharides by Ca2+ precipitation, and ethanol-precipitation of crude fucoidan. The workability of this method is demonstrated for fucoidan extraction from Fucus distichus subsp. evanescens (basionym Fucus evanescens) and Saccharina latissima as compared with mild acidic extraction. The crude fucoidans resulting directly from the enzyme-assisted method contained considerable amounts of low molecular weight alginate, but this residual alginate was effectively removed by an additional ion-exchange chromatographic step to yield pure fucoidans (as confirmed by 1H NMR). The fucoidan yields that were obtained by the enzymatic method were comparable to the chemically extracted yields for both F. evanescens and S. latissima, but the molecular sizes of the fucoidans were significantly larger with enzyme-assisted extraction. The molecular weight distribution of the fucoidan fractions was 400 to 800 kDa for F. evanescens and 300 to 800 kDa for S. latissima, whereas the molecular weights of the corresponding chemically extracted fucoidans from these seaweeds were 10-100 kDa and 50-100 kDa, respectively. Enzyme-assisted extraction represents a new gentle strategy for fucoidan extraction and it provides new opportunities for obtaining high yields of native fucoidan structures from brown macroalgae.
Collapse
|
research-article |
5 |
72 |
19
|
Shawky S, Emons H. Distribution pattern of organotin compounds at different trophic levels of aquatic ecosystems. CHEMOSPHERE 1998; 36:523-35. [PMID: 9451810 DOI: 10.1016/s0045-6535(97)10011-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Organotin compounds including methyl- and butyltin species were determined in selected aquatic specimens (fish muscles, fish liver, mussels, algae) as well as in sediment and water from the mud flats of the German North Sea and the River Elbe. The concentration of tributyltin (TBT) ranged between 27-202 ng/g (fresh mass) in fish muscles, 54-223 ng/g (fresh mass) in fish liver, 10-25 ng/g (fresh mass) in common mussels and 42-97 ng/g (fresh mass) in bladderwrack. The concentration of total organotin compounds (mono-, di-, and trimethyltin + mono-, di-, and tributyltin) in water samples along the River Elbe up to the Elbe estuary ranged between 30-96 ng/l. Retrospective investigation of butylin compounds in mussel samples from the North Sea was performed by the analysis of cryogenically stored samples from 1985. A comparison of the results with that in muscles from 1993 shows that the total tin content and the TBT content decreased from 1985-1993 by a factor of 3.5 and 6.5, respectively. In addition estimated bioconcentration factors (BCF) for organotin compounds in samples from different trophic levels are presented.
Collapse
|
|
27 |
71 |
20
|
Mori J, Iwashima M, Takeuchi M, Saito H. A synthetic study on antiviral and antioxidative chromene derivative. Chem Pharm Bull (Tokyo) 2006; 54:391-6. [PMID: 16508200 DOI: 10.1248/cpb.54.391] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An efficient synthesis of the antiviral and antioxidative chromene (1) was achieved. A small amount of chromene 1 could be derived from plastoquinones 2 and 3, the major constituents of the brown alga, Sargassum micracanthum. By the following synthetic scheme involving its application, many kinds of analogs can be synthesized for evaluation of their biological activity and mechanistic study. The total synthesis of 1, started from geranyl acetate and protected 2-bromo-6-methylhydroquinone, was executed with Sharpless asymmetric dihydroxylation for introduction of the terminal diol system and base-catalyzed sigmatropic rearrangement for construction of the chromene skeleton as the crucial steps. The stereochemistry at C-11' was reconfirmed by this synthesis.
Collapse
|
|
19 |
69 |
21
|
Abstract
DNA was immobilized within alginate matrix using an external or an internal calcium source, and then membrane coated with chitosan or poly-L-lysine. Membrane thickness increased with decreasing polymer molecular weight and increasing degree of deacetylation (chitosan). Beads were exposed to a 31,000 molecular weight nuclease to determine the levels of DNA protection offered by different membrane and matrix combinations. Almost total hydrolysis of DNA was observed in alginate beads following nuclease exposure. Less than 1% of total double-stranded DNA remained unhydrolyzed within chitosan- or poly-L-lysine-coated beads, corresponding with an increase in DNA residuals (i.e. double- and single-stranded DNA, polynucleotides, bases). Chitosan membranes did not offer sufficient DNA protection from DNase diffusion since all of the double-stranded DNA was hydrolyzed after 40 min of exposure. Both chitosan and poly-L-lysine membranes reduced the permeability of alginate beads, shown by enhanced retention of DNA residuals after DNase exposure. The highest level of DNA protection within freshly prepared beads was obtained with high molecular weight (197,100) poly-L-lysine membranes coated on beads formed using an external calcium source, where over 80% of the double-stranded DNA remained after 40 min of DNase exposure. Lyophilization and rehydration of DNA beads also reduced permeability to nucleases, resulted in DS-DNA recoveries of 60% for chitosan-coated, 90% for poly-L-lysine-coated, and 95% for uncoated alginate beads.
Collapse
|
|
27 |
68 |
22
|
Ramkumar VS, Pugazhendhi A, Prakash S, Ahila NK, Vinoj G, Selvam S, Kumar G, Kannapiran E, Rajendran RB. Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications. Biomed Pharmacother 2017; 92:479-490. [PMID: 28570982 DOI: 10.1016/j.biopha.2017.05.076] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 05/13/2017] [Accepted: 05/17/2017] [Indexed: 12/26/2022] Open
Abstract
In the recent years, synthesis of nanomaterials using seaweeds and their diverse applications is escalating research in modern era. Among the noble metals, platinum nanoparticles (PtNPs) are of great importance owing to their catalytic property and less toxicity. The significance of this work is a simple one-step synthesis of PtNPs using aqueous extract of Indian brown seaweed Padina gymnospora and their catalytic activity with a polymer Polyvinylpyrrolidone (PVP) as PVP/PtNPs nanocomposite towards antimicrobial, haemolytic, cytotoxic (Artemia salina) and antioxidant properties. Fourier Transform Infrared (FT-IR) spectrum results showed diversified functional groups (biomoeities such as carbohydrates and proteins) present in the seaweed extract is responsible for the reduction of platinum ions (Pt+) to PtNPs. The seaweed mediated PtNPs was characterized by UV-vis spectrophotometer, X-ray diffraction (XRD) pattern, Field Emission Scanning Electron Microscopy (FESEM) equipped with Energy Dispersive X-ray (EDX) spectroscopy and High Resolution Transmission Electron Microscopy (HRTEM) analysis. The synthesized PtNPs was found to be truncated octahedral in shape with the range of 5-50nm. Crystalline nature of the nanoparticles was evidenced by Selected Area Electron Diffraction (SAED) pattern with bright circular spots corresponding to (111), (200), (220) and (311) Bragg's reflection planes. The size of the PtNPs was further evidenced by Dynamic Light Scattering (DLS) analysis and it is originate to be stable at -22.5mV through Zeta Potential (ZP) analysis. The present study shows that the catalytic behavior of PtNPs as polymer/metal nanocomposite (PVP/PtNPs) preparation for an antibacterial activity against seven disease causing pathogenic bacterial strains with the maximum activity against Escherichia coli (15.6mm) followed by Lactococcus lactis (14.8mm) and Klebsiella pneumoniae (14.4mm). But no haemolytic activity was seen at their effective bactericidal concentration, whereas increase in the haeomyltic activity was seen only in higher concentrations (600, 900 and 1200μgmL-1). On the other hand, PVP/PtNPs nanocomposite has shown cytotoxic activity at 100±4μgmL-1 (LC50) against Artemia salina nauplii. Furthermore, PVP/PtNPs nanocomposite showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide, nitric oxide and hydroxyl radicals.
Collapse
|
|
8 |
68 |
23
|
Yang RY, Li CY, Lin YC, Peng GT, She ZG, Zhou SN. Lactones from a brown alga endophytic fungus (No. ZZF36) from the South China Sea and their antimicrobial activities. Bioorg Med Chem Lett 2006; 16:4205-8. [PMID: 16781152 DOI: 10.1016/j.bmcl.2006.05.081] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 05/09/2006] [Accepted: 05/29/2006] [Indexed: 11/19/2022]
Abstract
Two new metabolites named 6-oxo-de-O-methyllasiodiplodin (1) and (E)-9-etheno-lasiodiplodin (2), with three known compounds lasiodiplodin (3), de-O-methyllasiodiplodin (4), and 5-hydroxy-de-O-methyllasiodiplodin (5), were isolated from the mycelium extracts of a brown alga endophytic fungus (No. ZZF36) obtained from the South China Sea. Their structures were elucidated using spectroscopic methods, mainly 1D and 2D NMR. Additionally, the structure of compound 1 was confirmed by single crystal X-ray diffraction analysis. The antimicrobial activities of lasiodiplodins, and the 13-acetyl and 12,14-dibromo derivatives of lasiodiplodin were tested for the first time and the results were compared to each other.
Collapse
|
|
19 |
68 |
24
|
Wang J, Jin W, Zhang W, Hou Y, Zhang H, Zhang Q. Hypoglycemic property of acidic polysaccharide extracted from Saccharina japonica and its potential mechanism. Carbohydr Polym 2013; 95:143-7. [PMID: 23618250 DOI: 10.1016/j.carbpol.2013.02.076] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/14/2013] [Accepted: 02/28/2013] [Indexed: 11/23/2022]
Abstract
In the present study, a sulfated polysaccharide fucoidan extracted from Saccharina japonica was administered to normal and alloxan-diabetic rats/mice, and its effects on glycemia, insulin and serum lipid levels were evaluated. Fucoidan administered at 200 or 1200 mg/kg body weight/day could significantly reduce the blood glucose level by 22% and 34%, respectively, in alloxan-induced diabetic rats. Serum insulin levels in diabetic mice were increased by the administration of fucoidan (P<0.05). The results of an oral glucose tolerance test (OGTT) revealed that fucoidan treatment had some effect on glucose disposal after 15 days of treatment. Furthermore, fucoidan altered plasma lipid levels by lowering cholesterol, triglyceride and plasma low-density lipoprotein concentrations, while elevating plasma high-density lipoprotein cholesterol at 100 or 300 mg/kg body weight/day. The results suggested that fucoidan exhibited a considerable hypoglycemic effect, possibly by stimulating pancreatic release of insulin and/or by reducing insulin metabolism. Our results indicated that fucoidan could be developed as a potential oral hypoglycemic agents or functional food for the management of diabetes.
Collapse
|
|
12 |
67 |
25
|
Salima A, Benaouda B, Noureddine B, Duclaux L. Application of Ulva lactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents. WATER RESEARCH 2013; 47:3375-88. [PMID: 23597681 DOI: 10.1016/j.watres.2013.03.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 06/02/2023]
Abstract
Marine algae Ulva lactuca (ULV-AC) and Systoceira stricta (SYS-AC) based activated carbons were investigated as potential adsorbents for the removal of hazardous cationic dyes. Both algae were surface oxidised by phosphoric acid for 2 and subsequently air activated at 600 °C for 3 h. Dyes adsorption parameters such as solution pH, contact time, carbon dosage, temperature and ionic strength were measured in batch experiments. Adsorption capacities of 400 and 526 mg/g for Malachite green and Safranine O by the SYS-AC and ULV-AC respectively were significantly enhanced by the chemical treatments. Model equations such as Langmuir, Freundlich and Temkin isotherms were used to analyse the adsorption equilibrium data and the best fits to the experimental data were provided by the first two isotherm models. BET, FT-IR, iodine number and methylene blue index determination were also performed to characterize the adsorbents. To describe the adsorption mechanism, kinetic models such as pseudo-second-order and the intra particle diffusion were applied. Thermodynamic analysis of the adsorption processes of both dyes confirms their spontaneity and endothermicity. Increasing solution ionic strength increased significantly the adsorption of Safranine O. This study shows that surface modified algae can be an alternative to the commercially available adsorbents for dyes removal from liquid effluents.
Collapse
|
|
12 |
64 |