1
|
Caudle KE, Sangkuhl K, Whirl‐Carrillo M, Swen JJ, Haidar CE, Klein TE, Gammal RS, Relling MV, Scott SA, Hertz DL, Guchelaar H, Gaedigk A. Standardizing CYP2D6 Genotype to Phenotype Translation: Consensus Recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group. Clin Transl Sci 2020; 13:116-124. [PMID: 31647186 PMCID: PMC6951851 DOI: 10.1111/cts.12692] [Citation(s) in RCA: 363] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Translating CYP2D6 genotype to metabolizer phenotype is not standardized across clinical laboratories offering pharmacogenetic (PGx) testing and PGx clinical practice guidelines, such as the Clinical Pharmacogenetics Implementation Consortium (CPIC) and the Dutch Pharmacogenetics Working Group (DPWG). The genotype to phenotype translation discordance between laboratories and guidelines can cause discordant cytochrome P450 2D6 (CYP2D6) phenotype assignments and, thus lead to inconsistent therapeutic recommendations and confusion among patients and clinicians. A modified-Delphi method was used to obtain consensus for a uniform system for translating CYP2D6 genotype to phenotype among a panel of international CYP2D6 experts. Experts with diverse involvement in CYP2D6 interpretation (clinicians, researchers, genetic testing laboratorians, and PGx implementers; n = 37) participated in conference calls and surveys. After completion of 7 surveys, a consensus (> 70%) was reached with 82% of the CYP2D6 experts agreeing to the final CYP2D6 genotype to phenotype translation method. Broad adoption of the proposed CYP2D6 genotype to phenotype translation method by guideline developers, such as CPIC and DPWG, and clinical laboratories as well as researchers will result in more consistent interpretation of CYP2D6 genotype.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
363 |
2
|
Theken KN, Lee CR, Gong L, Caudle KE, Formea CM, Gaedigk A, Klein TE, Agúndez JAG, Grosser T. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2C9 and Nonsteroidal Anti-Inflammatory Drugs. Clin Pharmacol Ther 2020; 108:191-200. [PMID: 32189324 PMCID: PMC8080882 DOI: 10.1002/cpt.1830] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/29/2020] [Indexed: 12/20/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used analgesics due to their lack of addictive potential. However, NSAIDs have the potential to cause serious gastrointestinal, renal, and cardiovascular adverse events. CYP2C9 polymorphisms influence metabolism and clearance of several drugs in this class, thereby affecting drug exposure and potentially safety. We summarize evidence from the published literature supporting these associations and provide therapeutic recommendations for NSAIDs based on CYP2C9 genotype (updates at www.cpicpgx.org).
Collapse
|
Practice Guideline |
5 |
215 |
3
|
Pratt VM, Cavallari LH, Del Tredici AL, Hachad H, Ji Y, Moyer AM, Scott SA, Whirl-Carrillo M, Weck KE. Recommendations for Clinical CYP2C9 Genotyping Allele Selection: A Joint Recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn 2019; 21:746-755. [PMID: 31075510 PMCID: PMC7057225 DOI: 10.1016/j.jmoldx.2019.04.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 01/17/2023] Open
Abstract
The goals of the Association for Molecular Pathology Pharmacogenomics (PGx) Working Group of the Association for Molecular Pathology Clinical Practice Committee are to define the key attributes of PGx alleles recommended for clinical testing and a minimum set of variants that should be included in clinical PGx genotyping assays. This document provides recommendations for a minimum panel of variant alleles (Tier 1) and an extended panel of variant alleles (Tier 2) that will aid clinical laboratories when designing assays for CYP2C9 testing. The Working Group considered the functional impact of the variants, allele frequencies in different populations and ethnicities, the availability of reference materials, and other technical considerations for PGx testing when developing these recommendations. Our goal is to promote standardization of testing PGx genes and alleles across clinical laboratories. These recommendations are not to be interpreted as restrictive but to provide a reference guide. The current document will focus on CYP2C9 testing that can be applied to all CYP2C9-related medications. A separate recommendation on warfarin PGx testing is being developed to include recommendations on CYP2C9 alleles and additional warfarin sensitivity-associated genes and alleles.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
101 |
4
|
Chenoweth MJ, Giacomini KM, Pirmohamed M, Hill SL, van Schaik RHN, Schwab M, Shuldiner AR, Relling MV, Tyndale RF. Global Pharmacogenomics Within Precision Medicine: Challenges and Opportunities. Clin Pharmacol Ther 2019; 107:57-61. [PMID: 31696505 DOI: 10.1002/cpt.1664] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/25/2019] [Indexed: 01/09/2023]
|
Research Support, Non-U.S. Gov't |
6 |
41 |
5
|
Hinderer M, Boeker M, Wagner SA, Lablans M, Newe S, Hülsemann JL, Neumaier M, Binder H, Renz H, Acker T, Prokosch HU, Sedlmayr M. Integrating clinical decision support systems for pharmacogenomic testing into clinical routine - a scoping review of designs of user-system interactions in recent system development. BMC Med Inform Decis Mak 2017; 17:81. [PMID: 28587608 PMCID: PMC5461630 DOI: 10.1186/s12911-017-0480-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/30/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Pharmacogenomic clinical decision support systems (CDSS) have the potential to help overcome some of the barriers for translating pharmacogenomic knowledge into clinical routine. Before developing a prototype it is crucial for developers to know which pharmacogenomic CDSS features and user-system interactions have yet been developed, implemented and tested in previous pharmacogenomic CDSS efforts and if they have been successfully applied. We address this issue by providing an overview of the designs of user-system interactions of recently developed pharmacogenomic CDSS. METHODS We searched PubMed for pharmacogenomic CDSS published between January 1, 2012 and November 15, 2016. Thirty-two out of 118 identified articles were summarized and included in the final analysis. We then compared the designs of user-system interactions of the 20 pharmacogenomic CDSS we had identified. RESULTS Alerts are the most widespread tools for physician-system interactions, but need to be implemented carefully to prevent alert fatigue and avoid liabilities. Pharmacogenomic test results and override reasons stored in the local EHR might help communicate pharmacogenomic information to other internal care providers. Integrating patients into user-system interactions through patient letters and online portals might be crucial for transferring pharmacogenomic data to external health care providers. Inbox messages inform physicians about new pharmacogenomic test results and enable them to request pharmacogenomic consultations. Search engines enable physicians to compare medical treatment options based on a patient's genotype. CONCLUSIONS Within the last 5 years, several pharmacogenomic CDSS have been developed. However, most of the included articles are solely describing prototypes of pharmacogenomic CDSS rather than evaluating them. To support the development of prototypes further evaluation efforts will be necessary. In the future, pharmacogenomic CDSS will likely include prediction models to identify patients who are suitable for preemptive genotyping.
Collapse
|
Scoping Review |
8 |
35 |
6
|
Lindor NM, Thibodeau SN, Burke W. Whole-Genome Sequencing in Healthy People. Mayo Clin Proc 2017; 92:159-172. [PMID: 28062062 DOI: 10.1016/j.mayocp.2016.10.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/26/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
Recent technological advances have radically changed genetic testing from an expensive and burdensome undertaking to a rapid and less costly option for many purposes. The utility of "next-generation" sequencing has been found to establish the diagnosis for hundreds of genetic disorders, to assess pharmacogenomic variants, and to identify treatable targets within malignant neoplasms. The ready availability of genomic information has led to the question of whether there would be clinical benefit of sequencing the genome of individuals who are not seeking a diagnosis, that is, genomic screening in generally healthy people, to provide anticipatory insights for their health care. Little research has been conducted in this area. We examine the considerable unresolved scientific and ethical issues encountered when considering whole-genome sequencing of healthy people.
Collapse
|
Review |
8 |
26 |
7
|
Smith DM, Peshkin BN, Springfield TB, Brown RP, Hwang E, Kmiecik S, Shapiro R, Eldadah Z, Lundergan C, McAlduff J, Levin B, Swain SM. Pharmacogenetics in Practice: Estimating the Clinical Actionability of Pharmacogenetic Testing in Perioperative and Ambulatory Settings. Clin Transl Sci 2020; 13:618-627. [PMID: 31961467 PMCID: PMC7214646 DOI: 10.1111/cts.12748] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/17/2019] [Indexed: 01/04/2023] Open
Abstract
Most literature describing pharmacogenetic implementations are within academic medical centers and use single-gene tests. Our objective was to describe the results and lessons learned from a multisite pharmacogenetic pilot that utilized panel-based testing in academic and nonacademic settings. This was a retrospective analysis of 667 patients from a pilot in 4 perioperative and 5 outpatient cardiology clinics. Recommendations related to 12 genes and 65 drugs were classified as actionable or not actionable. They were ascertained from Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines and US Food and Drug Administration (FDA) labeling. Patients displayed a high prevalence of actionable results (88%, 99%) and use of medications (28%, 46%) with FDA or CPIC recommendations, respectively. Sixteen percent of patients had an actionable result for a current medication per CPIC compared with 5% per FDA labeling. A systematic approach by a health system may be beneficial given the quantity and diversity of patients affected.
Collapse
|
Multicenter Study |
5 |
18 |
8
|
Collins KS, Raviele ALJ, Elchynski AL, Woodcock AM, Zhao Y, Cooper-DeHoff RM, Eadon MT. Genotype-Guided Hydralazine Therapy. Am J Nephrol 2020; 51:764-776. [PMID: 32927458 DOI: 10.1159/000510433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Despite its approval in 1953, hydralazine hydrochloride continues to be used in the management of resistant hypertension, a condition frequently managed by nephrologists and other clinicians. Hydralazine hydrochloride undergoes metabolism by the N-acetyltransferase 2 (NAT2) enzyme. NAT2 is highly polymorphic as approximately 50% of the general population are slow acetylators. In this review, we first evaluate the link between NAT2 genotype and phenotype. We then assess the evidence available for genotype-guided therapy of hydralazine, specifically addressing associations of NAT2 acetylator status with hydralazine pharmacokinetics, antihypertensive efficacy, and toxicity. SUMMARY There is a critical need to use hydralazine in some patients with resistant hypertension. Available evidence supports a significant link between genotype and NAT2 enzyme activity as 29 studies were identified with an overall concordance between genotype and phenotype of 92%. The literature also supports an association between acetylator status and hydralazine concentration, as fourteen of fifteen identified studies revealed significant relationships with a consistent direction of effect. Although fewer studies are available to directly link acetylator status with hydralazine antihypertensive efficacy, the evidence from this smaller set of studies is significant in 7 of 9 studies identified. Finally, 5 studies were identified which support the association of acetylator status with hydralazine-induced lupus. Clinicians should maintain vigilance when prescribing maximum doses of hydralazine. Key Messages: NAT2 slow acetylator status predicts increased hydralazine levels, which may lead to increased efficacy and adverse effects. Caution should be exercised in slow acetylators with total daily hydralazine doses of 200 mg or more. Fast acetylators are at risk for inefficacy at lower doses of hydralazine. With appropriate guidance on the usage of NAT2 genotype, clinicians can adopt a personalized approach to hydralazine dosing and prescription, enabling more efficient and safe treatment of resistant hypertension.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
15 |
9
|
Hicks JK, Bishop JR, Gammal RS, Sangkuhl K, Bousman C, Leeder JS, Llerena A, Mueller DJ, Ramsey LB, Scott SA, Skaar TC, Caudle KE, Klein TE, Gaedigk A. A Call for Clear and Consistent Communications Regarding the Role of Pharmacogenetics in Antidepressant Pharmacotherapy. Clin Pharmacol Ther 2020; 107:50-52. [PMID: 31664715 PMCID: PMC6925627 DOI: 10.1002/cpt.1661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/23/2019] [Indexed: 01/15/2023]
|
Research Support, N.I.H., Extramural |
5 |
14 |
10
|
Kim S, Yun YM, Chae HJ, Cho HJ, Ji M, Kim IS, Wee KA, Lee W, Song SH, Woo HI, Lee SY, Chun S. Clinical Pharmacogenetic Testing and Application: Laboratory Medicine Clinical Practice Guidelines. Ann Lab Med 2017; 37:180-193. [PMID: 28029011 PMCID: PMC5204002 DOI: 10.3343/alm.2017.37.2.180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2016] [Accepted: 12/11/2016] [Indexed: 12/15/2022] Open
Abstract
Pharmacogenetic testing for clinical applications is steadily increasing. Correct and adequate use of pharmacogenetic tests is important to reduce unnecessary medical costs and adverse patient outcomes. This document contains recommended pharmacogenetic testing guidelines for clinical application, interpretation, and result reporting through a literature review and evidence-based expert opinions for the clinical pharmacogenetic testing covered by public medical insurance in Korea. This document aims to improve the utility of pharmacogenetic testing in routine clinical settings.
Collapse
|
Practice Guideline |
8 |
12 |
11
|
Luzum JA, Cheung JC. Does cardiology hold pharmacogenetics to an inconsistent standard? A comparison of evidence among recommendations. Pharmacogenomics 2018; 19:1203-1216. [PMID: 30196751 PMCID: PMC6219446 DOI: 10.2217/pgs-2018-0097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022] Open
Abstract
Current guideline recommendations for pharmacogenetic testing for clopidogrel by the American Heart Association/American College of Cardiology (AHA/ACC) contradict the Clinical Pharmacogenetics Implementation Consortium and the US FDA. The AHA/ACC recommends against routine pharmacogenetic testing for clopidogrel because no randomized controlled trials have demonstrated that testing improves patients' outcomes. However the AHA/ACC and the National Comprehensive Cancer Network (NCCN) recommend other pharmacogenetic tests in the absence of randomized controlled trials evidence. Using clopidogrel as a case example, we compared the evidence for other pharmacogenetic tests recommended by the AHA/ACC and NCCN. In patients that received percutaneous coronary intervention, the evidence supporting pharmacogenetic testing for clopidogrel is stronger than other pharmacogenetic tests recommended by the AHA/ACC and NCCN.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
11 |
12
|
Blasco-Fontecilla H. Clinical utility of pharmacogenetic testing in children and adolescents with severe mental disorders. J Neural Transm (Vienna) 2018; 126:101-107. [PMID: 29626260 PMCID: PMC6373261 DOI: 10.1007/s00702-018-1882-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/02/2018] [Indexed: 12/03/2022]
Abstract
This is a retrospective cohort study of 20 children and adolescents to evaluate the clinical utility of a pharmacogenetic decision support tool. Twenty children and adolescents underwent pharmacogenetic testing between June 2014 and May 2017. All children and adolescents were evaluated at Puerta de Hierro University Hospital-Majadahonda (Madrid, Spain). We report the proportion of patients achieving clinical improvement, amelioration of side effects, and changes in number of drugs. Data normality was assessed with the Shapiro–Wilk test, and changes of pre- and post-pharmacogenetic testing were analyzed with the Wilcoxon test for paired samples. A two-sided p value threshold of 0.05 was considered for significance. Pharmacogenetic testing helped to improve the clinical outcome as measured by the Clinical Global Impressions (CGI) Scale in virtually all children (95%; 19 out of 20 children). The CGI improvement (CGI-I) was 2 (0.79) (range 1–4), 2.1 (0.56) (range 1–3), and 1.9 (0.99) (range 1–4) in foster and non-foster care children, respectively. Pharmacogenetic testing also helped to reduce the number of children using polypharmacy (from 65 to 45%), the mean number of drugs per children (from 3.3 to 2.4 drugs, p = 0.017), and self-reported relevant side effects (p = 0.006). Pharmacogenetic testing helped to improve the clinical outcome, and to reduce polypharmacy and the number of drugs used in children and adolescents with severe mental disorders. More evidence using robust (i.e., clinical trials) independent studies is required to properly determine the clinical utility and cost-effectiveness of pharmacogenetic testing tools in children and adolescents with mental disorders.
Collapse
|
Journal Article |
7 |
8 |
13
|
Akhtar T, Bandyopadhyay D, Ghosh RK, Aronow WS, Lavie CJ, Yadav N. Advances in the Pharmacogenomics of Antiplatelet Therapy. Am J Ther 2020; 27:e477-e484. [PMID: 31498157 DOI: 10.1097/mjt.0000000000001013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Acute coronary syndrome (ACS) is a highly thrombotic state, and a sustained antiplatelet effect is vital to the prevention of thrombotic complications. Clopidogrel, the most widely used oral P2Y12 receptor antagonist in ACS, has attracted considerable attention because of significant variability in antiplatelet effect depending on the presence of CYP2C19 allele. Other P2Y12 receptor antagonists offer sustained and more predictable antiplatelet effects than clopidogrel albeit at an increased cost. Several studies have demonstrated the promising application of pharmacogenetics in choosing personalized antiplatelet therapy using the point-of-care genotype assays. AREAS OF UNCERTAINTY Guidelines regarding the genotype-guided approach to the selection of antiplatelet therapy have been conflicting, and studies evaluating the effect of pharmacogenetic-guided selection of antiplatelet therapy on the outcomes have demonstrated mixed results. DATA SOURCES A literature search was conducted using MEDLINE and EMBASE for studies reporting the association of pharmacogenetic-guided selection of antiplatelet therapy and the outcomes in patients with ACS until December 2018. RESULTS Presence of specific CYP2C19 allele significantly influences clopidogrel metabolism and associated outcomes in patients with ACS. Thrombotic and bleeding complications are more common in patients with loss-of-function (LOF) and gain-of-function (GOF) alleles, respectively. Although the pharmacogenetic-guided approach to the selection of antiplatelet therapy appears promising in ACS, studies have shown conflicting results, and direct randomized evidence linking this approach with the better outcomes is lacking. CONCLUSIONS Genotype-guided selection of antiplatelet therapy is expected to be useful in patients undergoing percutaneous coronary intervention (PCI) with a high risk of adverse outcomes. The patient-physician discussion should be an essential part of this decision-making process. Large-scale multicenter randomized controlled trials using the point-of-care genotype assay are needed to investigate this approach further before its use can be recommended in all comers.
Collapse
|
Review |
5 |
7 |
14
|
Lunenburg CATC, Hauser AS, Ishtiak‐Ahmed K, Gasse C. Primary Care Prescription Drug Use and Related Actionable Drug-Gene Interactions in the Danish Population. Clin Transl Sci 2020; 13:798-806. [PMID: 32166845 PMCID: PMC7359946 DOI: 10.1111/cts.12768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Pharmacogenetics (PGx) aims to improve drug therapy using the individual patients' genetic make-up. Little is known about the potential impact of PGx on the population level, possibly hindering implementation of PGx in clinical care. Therefore, we investigated how many patients use actionable PGx drugs, have actionable genotypes or phenotypes and which patients could benefit the most of PGx testing. We included PGx recommendations from two international PGx consortia (Clinical Pharmacogenetics Implementation Consortium (CPIC) and Dutch Pharmacogenetics Working Group (DPWG)). Using data from publically accessible sales information drawn from the Danish Register of Medicinal Product Statistics (MEDSTAT), we identified the number of users of actionable prescription PGx drugs among the total Danish population in 2017. We estimated actionable genotypes or phenotypes based on reported frequencies from literature. We identified 49 drug-gene interactions related to 41 unique prescription drugs. The estimated median frequency of actionable genotypes or phenotypes among prescription drug users was 25% (interquartile range 7-26%). Six of 41 drugs were used more than twice as much in women. Actionable PGx drugs were most frequently used by 45-79 year old patients (62%), followed by 25-44 year old patients (18%). Almost half of the actionable PGx drugs (19/41) were psychotropics (i.e., antidepressants, antipsychotics, or psychostimulants). PGx testing can have a substantial impact on the population, as one in four prescription drug users has an actionable genotype or phenotype and could thus benefit from PGx testing. We advocate for prospective panel-based PGx testing at the time of the first PGx drug prescription ("as needed"), with PGx results ready prior to start of the first, and all future, therapies.
Collapse
|
research-article |
5 |
5 |
15
|
Davis BH, DeFrank G, Limdi NA, Harada S. Validation of the Spartan RXCYP2C19 Genotyping Assay Utilizing Blood Samples. Clin Transl Sci 2020; 13:260-264. [PMID: 31664775 PMCID: PMC7070822 DOI: 10.1111/cts.12714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
The antiplatelet agent clopidogrel, a prodrug that requires bioactivation through the cytochrome P450 2C19 (CYP2C19) enzyme, is commonly prescribed post-percutaneous coronary intervention (PCI). Genetic variation in CYP2C19 contributes to individual variability in clopidogrel response, and can lead to adverse cardiovascular events. Incorporating CYP2C19 testing during routine clinical care helps identify high-risk patients, and provides the opportunity for pharmacotherapeutic interventions in the early post-PCI period. The Spartan RX CYP2C19 System has emerged as an optimal genotyping assay for use in clinical care due to ease of use, utilization of buccal swabs, and rapid turnaround time. However, workflow constraints related to sample collection and processing, storage, time, and personnel were encountered when integrating testing into clinical care. To improve clinical workflow and successfully implement CYP2C19 genotyping at our institution, we validated the Spartan RX System to return genotype utilizing blood samples. Our Molecular Diagnostic Laboratory tested 26 known reference materials and both blood and buccal swab samples from 23 patients and volunteers using the Spartan RX Assay. Genotype results were 100% concordant between DNA from blood and buccal swabs for all patients or volunteers, and consistent with expected results for the 26 reference materials. For reproducibility, three samples were tested in at least four separate runs, with all resulting genotypes in agreement between runs. Post-validation, the laboratory began offering CYP2C19 testing during clinical care. DNA extracted from blood can serve as a genomic DNA source for the Spartan RX Assay. Alteration of the methodology allowed for clinical implementation to support genotype-guided therapy.
Collapse
|
Comparative Study |
5 |
5 |
16
|
Wake DT, Bell GC, Gregornik DB, Ho TT, Dunnenberger HM. Synthesis of major pharmacogenomics pretest counseling themes: a multisite comparison. Pharmacogenomics 2021; 22:165-176. [PMID: 33461326 DOI: 10.2217/pgs-2020-0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The accessibility of pharmacogenomic (PGx) testing has grown substantially over the last decade and with it has arisen a demand for patients to be counseled on the use of these tests. While guidelines exist for the use of PGx results; objective determinants for who should receive PGx testing remain incomplete. PGx clinical services have been created to meet these screening and education needs and significant variability exists between these programs. This article describes the practices of four PGx clinics during pretest counseling sessions. A description of the major tenets of the benefits, limitations and risks of testing are compiled. Additional tools are provided to serve as a foundation for those wishing to begin or expand their own counseling service.
Collapse
|
Comparative Study |
4 |
5 |
17
|
Jørgensen JT. Predictive biomarkers and clinical evidence. Basic Clin Pharmacol Toxicol 2021; 128:642-648. [PMID: 33665955 DOI: 10.1111/bcpt.13578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
Abstract
Predictive biomarkers play an important role in our efforts to individualize pharmacotherapy, and within recent years, a number of different types of assays have been introduced. These biomarkers may potentially support the selection and dosage of specific drugs in order to maximize efficacy and minimize adverse reactions in the individual patient. However, in many instances, the scientific and clinical evidence is insufficient to support the prescribing decision. When predictive biomarkers are used to guide pharmacotherapy, it is important to secure that decisions are based on solid clinical evidence. Here, the regulatory authorities, especially the FDA, have been at the forefront in relation to regulate this type of biomarker assay in order to secure patient safety. The approval process for companion diagnostics is an example of this effort, where the scientific validity of the biomarker and assay is in focus. With the approaching implementation of the new IVD Regulation, greater attention will also be paid to analytical and clinical validity of biomarker assays in the EU. For any type of predictive biomarker assay, including pharmacogenetic and tumour profiling tests, the clinical evidence needs to be in place before they are used routinely in the clinic.
Collapse
|
Review |
4 |
4 |
18
|
Moschella A, Mourou S, Perfler S, Zoroddu E, Bezzini D, Soru D, Trignano C, Miozzo M, Squassina A, Cecchin E, Floris M. Pharmacogenetic Information on Drug Labels of the Italian Agency of Medicines (AIFA): Actionability and Comparison Across Other Regulatory Agencies. Clin Transl Sci 2025; 18:e70138. [PMID: 39910906 PMCID: PMC11799589 DOI: 10.1111/cts.70138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 01/05/2025] [Indexed: 02/07/2025] Open
Abstract
To plan future steps for the implementation and regulation of pharmacogenetic testing, any issue in the management of pharmacogenetic information by regulatory bodies must be identified. In this paper, an analysis of pharmacogenetic information in the summary of product characteristics (SmCPs) of drugs approved by Italian Drug Agency (AIFA) was conducted. Among 4214 SmCPs of 1063 active ingredients, 53.2% (n = 2240) included pharmacogenetic information in at least one section, most frequently for drugs in the Anatomical Therapeutic Chemical category "Antineoplastic and immunomodulatory agents". To contextualize these data in the international scenario, a pharmacogenetic level of actionability, based on AIFA SmCPs, was assigned to 608 drug/gene pairs included in FDA's "Table of Pharmacogenomic Biomarkers in Drug Labels", according to PharmGKB (The Pharmacogenomics Knowledge Base). Approximately 67% of drug/gene pairs were deemed classifiable: Based on SmCPs phrasing, for half of them the genetic testing was cataloged as "required" or "recommended" (mainly tumor somatic variants), whereas 40% as "actionable" (mostly PK/PD-related germline variants). The comparison with other regulatory agencies highlighted a discordance in the assigned pharmacogenetic levels of actionability ranging from 1% to 14%. This discrepancy may also point out the need to rethink the language used in AIFA-approved SmCPs to clarify whether a pharmacogenetic test is necessary or not and for which subjects it has been recommended. For the first time, a detailed evaluation and comparative analysis of the pharmacogenetic information on Italian SmCPs was presented, placing it in an international context and laying the groundwork for rethinking pharmacogenetic indications in AIFA-approved SmCPs.
Collapse
|
Comparative Study |
1 |
|
19
|
Pratt VM, Cavallari LH, Fulmer ML, Gaedigk A, Hachad H, Ji Y, Kalman LV, Ly RC, Moyer AM, Scott SA, Turner AJ, van Schaik RHN, Whirl-Carrillo M, Weck KE. DPYD Genotyping Recommendations: A Joint Consensus Recommendation of the Association for Molecular Pathology, American College of Medical Genetics and Genomics, Clinical Pharmacogenetics Implementation Consortium, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, European Society for Pharmacogenomics and Personalized Therapy, Pharmacogenomics Knowledgebase, and Pharmacogene Variation Consortium. J Mol Diagn 2024; 26:851-863. [PMID: 39032821 DOI: 10.1016/j.jmoldx.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 07/23/2024] Open
Abstract
The goals of the Association for Molecular Pathology Clinical Practice Committee's Pharmacogenomics (PGx) Working Group are to define the key attributes of pharmacogenetic alleles recommended for clinical testing and a minimum set of variants that should be included in clinical PGx genotyping assays. This document series provides recommendations for a minimum set of variant alleles (tier 1) and an extended list of variant alleles (tier 2) that will aid clinical laboratories when designing assays for PGx testing. The Association for Molecular Pathology PGx Working Group considered the functional impact of the variant alleles, allele frequencies in multiethnic populations, the availability of reference materials, and other technical considerations for PGx testing when developing these recommendations. The goal of this Working Group is to promote standardization of PGx testing across clinical laboratories. This document will focus on clinical DPYD PGx testing that may be applied to all dihydropyrimidine dehydrogenase-related medications. These recommendations are not to be interpreted as prescriptive but to provide a reference guide.
Collapse
|
Review |
1 |
|
20
|
Hertz DL, Bousman CA, McLeod HL, Monte AA, Voora D, Orlando LA, Crutchley RD, Brown B, Teeple W, Rogers S, Patel JN. Recommendations for pharmacogenetic testing in clinical practice guidelines in the US. Am J Health Syst Pharm 2024; 81:672-683. [PMID: 38652504 PMCID: PMC12097901 DOI: 10.1093/ajhp/zxae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Pharmacogenetic testing can identify patients who may benefit from personalized drug treatment. However, clinical uptake of pharmacogenetic testing has been limited. Clinical practice guidelines recommend biomarker tests that the guideline authors deem to have demonstrated clinical utility, meaning that testing improves treatment outcomes. The objective of this narrative review is to describe the current status of pharmacogenetic testing recommendations within clinical practice guidelines in the US. SUMMARY Guidelines were reviewed for pharmacogenetic testing recommendations for 21 gene-drug pairs that have well-established drug response associations and all of which are categorized as clinically actionable by the Clinical Pharmacogenetics Implementation Consortium. The degree of consistency within and between organizations in pharmacogenetic testing recommendations was assessed. Relatively few clinical practice guidelines that provide a pharmacogenetic testing recommendation were identified. Testing recommendations for HLA-B*57:01 before initiation of abacavir and G6PD before initiation of rasburicase, both of which are included in drug labeling, were mostly consistent across guidelines. Gene-drug pairs with at least one clinical practice guideline recommending testing or stating that testing could be considered included CYP2C19-clopidogrel, CYP2D6-codeine, CYP2D6-tramadol, CYP2B6-efavirenz, TPMT-thiopurines, and NUDT15-thiopurines. Testing recommendations for the same gene-drug pair were often inconsistent between organizations and sometimes inconsistent between different guidelines from the same organization. CONCLUSION A standardized approach to evaluating the evidence of clinical utility for pharmacogenetic testing may increase the inclusion and consistency of pharmacogenetic testing recommendations in clinical practice guidelines, which could benefit patients and society by increasing clinical use of pharmacogenetic testing.
Collapse
|
Review |
1 |
|
21
|
Gaedigk A, Turner AJ, Moyer AM, Zubiaur P, Boone EC, Wang WY, Broeckel U, Kalman LV. Characterization of Reference Materials for DPYD: A GeT-RM Collaborative Project. J Mol Diagn 2024; 26:864-875. [PMID: 39032822 PMCID: PMC11818935 DOI: 10.1016/j.jmoldx.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/23/2024] Open
Abstract
The DPYD gene encodes dihydropyrimidine dehydrogenase (DPD), which is involved in the catalysis of uracil and thymine, as well as 5-fluorouracil (5-FU), which is used to treat solid tumors. Patients with decreased DPD activity are at risk of serious, sometimes fatal, adverse drug reactions to this important cancer drug. Pharmacogenetic testing for DPYD is increasingly provided by clinical and research laboratories; however, only a limited number of quality control and reference materials are currently available for clinical DPYD testing. To address this need, the Division of Laboratory Systems, Centers for Disease Control and Prevention-based Genetic Testing Reference Materials Coordination Program, in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Institute for Medical Research, has characterized 33 DNA samples derived from Coriell cell lines for DPYD. Samples were distributed to four volunteer laboratories for genetic testing using a variety of commercially available and laboratory-developed tests. Sanger sequencing was used by one laboratory and publicly available whole-genome sequence data from the 1000 Genomes Project were used by another to inform genotype. Thirty-three distinct DPYD variants were identified among the 33 samples characterized. These publicly available and well-characterized materials can be used to support the quality assurance and quality control programs of clinical laboratories performing clinical pharmacogenetic testing.
Collapse
|
research-article |
1 |
|
22
|
Garcia G. The role of pharmacogenomic testing in optimizing depression treatment in medically underserved communities: Implications for nurse practitioner practice. J Am Assoc Nurse Pract 2025; 37:203-206. [PMID: 39692864 DOI: 10.1097/jxx.0000000000001108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024]
Abstract
ABSTRACT Depression is a leading cause of disability worldwide, with treatment-resistant depression (TRD) affecting approximately 30% of patients who do not respond to standard antidepressants. In underserved and uninsured communities, where Nurse Practitioners (NPs) often provide essential mental health care, the challenges of managing TRD are compounded by limited access to specialized services. Pharmacogenomic testing offers a promising approach to overcoming these barriers by providing personalized medication recommendations based on a patient's genetic profile. This brief report examines the medical records of 46 patients from underserved communities who underwent genetic testing for TRD. Of the patients reviewed, 31 achieved remission within 2 months of receiving genetically guided treatment, resulting in a remission rate of 67.39%. Patients with specific genetic markers, such as poor metabolizers for CYP2D6 or CYP2C19 , experienced the most significant benefits. These findings suggest that pharmacogenomic testing can significantly improve treatment outcomes for TRD in underserved populations, enabling NPs to provide more personalized, effective care. Further research is necessary to explore the long-term benefits and cost-effectiveness of integrating pharmacogenomic testing into NP-led practices, particularly in resource-limited settings.
Collapse
|
|
1 |
|
23
|
Rim JH, Kim YG, Kim S, Choi R, Lee JS, Park S, Lee W, Song EY, Lee SY, Chun S. Clinical Pharmacogenetic Testing and Application: 2024 Updated Guidelines by the Korean Society for Laboratory Medicine. Ann Lab Med 2025; 45:121-132. [PMID: 39681357 PMCID: PMC11788703 DOI: 10.3343/alm.2024.0572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 10/25/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
In the era of precision medicine, pharmacogenetics has substantial potential for addressing inter-individual variability in drug responses. Although pharmacogenetics has been a research focus for many years, resulting in the establishment of several formal guidelines, its clinical implementation remains limited to several gene-drug combinations in most countries, including Korea. The main causes of delayed implementation are technical challenges in genotyping and knowledge gaps among healthcare providers; therefore, clinical laboratories play a critical role in the timely implementation of pharmacogenetics. This paper presents an update of the Clinical Pharmacogenetic Testing and Application guidelines issued by the Korean Society for Laboratory Medicine and aims to provide the necessary information for clinical laboratories planning to implement or expand their pharmacogenetic testing. Current knowledge regarding nomenclature, gene-drug relationships, genotyping technologies, testing strategies, methods for clinically relevant information delivery, QC, and reimbursements has been curated and described in this guideline.
Collapse
|
Practice Guideline |
1 |
|
24
|
Donnelly RS, Whirl-Carrillo M, Klein TE, Caudle KE. The Value of Clinical Pharmacogenomic Guidelines That Recommend Standard of Care Over Genotype-Based Prescribing. Clin Pharmacol Ther 2024; 116:897-898. [PMID: 39115927 PMCID: PMC11452270 DOI: 10.1002/cpt.3401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/26/2024] [Indexed: 10/05/2024]
|
research-article |
1 |
|
25
|
van Gelder T, van Schaik RHN. [Pharmacogenetics in daily practice]. NEDERLANDS TIJDSCHRIFT VOOR GENEESKUNDE 2020; 164:D4191. [PMID: 32608920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the exception of a few medical specialties, the implementation of pharmacogenetic tests in daily practice has thus far been limited. The Royal Dutch Pharmacists Association (KNMP) has developed pharmacogenetics-based therapeutic doserecommendations for 80 medicinal product combinations on the basis of a systematic literature review. Genotyping of patients can take place on a reactive or pre-emptive basis; the advantage of pre-emptive genotyping is that it provides genetic information the moment a medicinal product is prescribed. Clinical decision support software is crucial to implement pharmacogenetics into daily practice.
Collapse
|
|
5 |
|