1
|
Brauer MJ, Yuan J, Bennett BD, Lu W, Kimball E, Botstein D, Rabinowitz JD. Conservation of the metabolomic response to starvation across two divergent microbes. Proc Natl Acad Sci U S A 2006; 103:19302-7. [PMID: 17159141 PMCID: PMC1697828 DOI: 10.1073/pnas.0609508103] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We followed 68 cellular metabolites after carbon or nitrogen starvation of Escherichia coli and Saccharomyces cerevisiae, using a filter-culture methodology that allows exponential growth, nondisruptive nutrient removal, and fast quenching of metabolism. Dynamic concentration changes were measured by liquid chromatography-tandem mass spectrometry and viewed in clustered heat-map format. The major metabolic responses anticipated from metabolite-specific experiments in the literature were observed as well as a number of novel responses. When the data were analyzed by singular value decomposition, two dominant characteristic vectors were found, one corresponding to a generic starvation response and another to a nutrient-specific starvation response that is similar in both organisms. Together these captured a remarkable 72% of the metabolite concentration changes in the full data set. The responses described by the generic starvation response vector (42%) included, for example, depletion of most biosynthetic intermediates. The nutrient-specific vector (30%) included key responses such as increased phosphoenolpyruvate signaling glucose deprivation and increased alpha-ketoglutarate signaling ammonia deprivation. Metabolic similarity across organisms extends from the covalent reaction network of metabolism to include many elements of metabolome response to nutrient deprivation as well.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
206 |
2
|
Rosengren E, Aman P, Thelin S, Hansson C, Ahlfors S, Björk P, Jacobsson L, Rorsman H. The macrophage migration inhibitory factor MIF is a phenylpyruvate tautomerase. FEBS Lett 1997; 417:85-8. [PMID: 9395080 DOI: 10.1016/s0014-5793(97)01261-1] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A macrophage migration inhibitory factor (MIF), originally described as a product of activated lymphocytes, has been defined as a 12 kDa protein, expressed in a wide variety of tissues. Here MIF is identified as a phenylpyruvate tautomerase (EC 5.3.2.1) having p-hydroxyphenylpyruvate and phenylpyruvate as its natural substrates. The definition of MIF as an enzyme may yield insight into the mechanism of action of this proinflammatory and immunomodulating cytokine.
Collapse
|
|
28 |
196 |
3
|
Pittard J, Wallace BJ. Distribution and function of genes concerned with aromatic biosynthesis in Escherichia coli. J Bacteriol 1966; 91:1494-508. [PMID: 5326114 PMCID: PMC316068 DOI: 10.1128/jb.91.4.1494-1508.1966] [Citation(s) in RCA: 186] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pittard, James (School of Microbiology, University of Melbourne, Victoria, Australia), and B. J. Wallace. Distribution and function of genes concerned with aromatic biosynthesis in Escherichia coli. J. Bacteriol. 91:1494-1508. 1966.-A number of mutant strains of Escherichia coli K-12, which are blocked in the biosynthesis of the aromatic amino acids, were examined biochemically to determine their particular enzymatic deficiencies. The mutations carried by these strains were mapped by use of the methods of conjugation and transduction. Structural genes for five of the enzymes of the common pathway leading to chorismate and for the two enzymes converting chorismate to phenylpyruvate and p-hydroxyphenylpyruvate, respectively, were identified. Unlike the genes of the tryptophan operon most of these genes are distributed over widely separated regions of the chromosome.
Collapse
|
research-article |
59 |
186 |
4
|
Swope M, Sun HW, Blake PR, Lolis E. Direct link between cytokine activity and a catalytic site for macrophage migration inhibitory factor. EMBO J 1998; 17:3534-41. [PMID: 9649424 PMCID: PMC1170690 DOI: 10.1093/emboj/17.13.3534] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a secreted protein that activates macrophages, neutrophils and T cells, and is implicated in sepsis, adult respiratory distress syndrome and rheumatoid arthritis. The mechanism of MIF function, however, is unknown. The three-dimensional structure of MIF is unlike that of any other cytokine, but bears striking resemblance to three microbial enzymes, two of which possess an N-terminal proline that serves as a catalytic base. Human MIF also possesses an N-terminal proline (Pro-1) that is invariant among all known homologues. Multiple sequence alignment of these MIF homologues reveals additional invariant residues that span the entire polypeptide but are in close proximity to the N-terminal proline in the folded protein. We find that p-hydroxyphenylpyruvate, a catalytic substrate of MIF, binds to the N-terminal region and interacts with Pro-1. Mutation of Pro-1 to a glycine substantially reduces the catalytic and cytokine activity of MIF. We suggest that the underlying biological activity of MIF may be based on an enzymatic reaction. The identification of the active site should facilitate the development of structure-based inhibitors.
Collapse
|
research-article |
27 |
157 |
5
|
Vuralhan Z, Morais MA, Tai SL, Piper MDW, Pronk JT. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl Environ Microbiol 2003; 69:4534-41. [PMID: 12902239 PMCID: PMC169140 DOI: 10.1128/aem.69.8.4534-4541.2003] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Catabolism of amino acids via the Ehrlich pathway involves transamination to the corresponding alpha-keto acids, followed by decarboxylation to an aldehyde and then reduction to an alcohol. Alternatively, the aldehyde may be oxidized to an acid. This pathway is functional in Saccharomyces cerevisiae, since during growth in glucose-limited chemostat cultures with phenylalanine as the sole nitrogen source, phenylethanol and phenylacetate were produced in quantities that accounted for all of the phenylalanine consumed. Our objective was to identify the structural gene(s) required for the decarboxylation of phenylpyruvate to phenylacetaldehyde, the first specific step in the Ehrlich pathway. S. cerevisiae possesses five candidate genes with sequence similarity to genes encoding thiamine diphosphate-dependent decarboxylases that could encode this activity: YDR380w/ARO10, YDL080C/THI3, PDC1, PDC5, and PDC6. Phenylpyruvate decarboxylase activity was present in cultures grown with phenylalanine as the sole nitrogen source but was absent from ammonia-grown cultures. Furthermore, the transcript level of one candidate gene (ARO10) increased 30-fold when phenylalanine replaced ammonia as the sole nitrogen source. Analyses of phenylalanine catabolite production and phenylpyruvate decarboxylase enzyme assays indicated that ARO10 was sufficient to encode phenylpyruvate decarboxylase activity in the absence of the four other candidate genes. There was also an alternative activity with a higher capacity but lower affinity for phenylpyruvate. The candidate gene THI3 did not itself encode an active phenylpyruvate decarboxylase but was required along with one or more pyruvate decarboxylase genes (PDC1, PDC5, and PDC6) for the alternative activity. The K(m) and V(max) values of the two activities differed, showing that Aro10p is the physiologically relevant phenylpyruvate decarboxylase in wild-type cells. Modifications to this gene could therefore be important for metabolic engineering of the Ehrlich pathway.
Collapse
|
research-article |
22 |
142 |
6
|
Lubetsky JB, Swope M, Dealwis C, Blake P, Lolis E. Pro-1 of macrophage migration inhibitory factor functions as a catalytic base in the phenylpyruvate tautomerase activity. Biochemistry 1999; 38:7346-54. [PMID: 10353846 DOI: 10.1021/bi990306m] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an important immunoregulatory molecule with a unique ability to suppress the anti-inflammatory effects of glucocorticoids. Although considered a cytokine, MIF possesses a three-dimensional structure and active site similar to those of 4-oxalocrotonate tautomerase and 5-carboxymethyl-2-hydroxymuconate isomerase. Moreover, a number of catalytic activities have been defined for MIF. To gain insight into the role of catalysis in the biological function of MIF, we have begun to characterize the catalytic activities in more detail. Here we report the crystal structure of MIF complexed with p-hydroxyphenylpyruvate, a substrate for the phenylpyruvate tautomerase activity of MIF. The three binding sites for p-hydroxyphenylpyruvate in the MIF trimer lie at the interface between two subunits. The substrate interacts with Pro-1, Lys-32, and Ile-64 from one subunit and Tyr-95 and Asn-97 from an adjacent subunit. Pro-1 is positioned to function as a catalytic base. There is no functional group that polarizes the alpha-carbonyl of the substrate to weaken the adjacent C-H bond. Mutation of Pro-1 to glycine substantially reduces the catalytic activity. The insertion of an alanine between Pro-1 and Met-2 essentially abolishes activity. Structural studies of these mutants define a source of the reduced activity and provide insight into the mechanism of the catalytic reaction.
Collapse
|
|
26 |
131 |
7
|
Calne DB, Karoum F, Ruthven CR, Sandler M. The metabolism of orally administered L-Dopa in Parkinsonism. Br J Pharmacol 1969; 37:57-68. [PMID: 5343357 PMCID: PMC1703776 DOI: 10.1111/j.1476-5381.1969.tb09522.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
1. Gas-liquid chromatographic methods were used to measure urinary acidic and alcoholic metabolites of L-DOPA, which had been administered in high oral dosage to patients with postencephalitic and idiopathic Parkinsonism.2. The output of these compounds was normal before treatment. During drug therapy, large quantities of the dopamine metabolites, homovanillic acid and dihydroxyphenylacetic acid, were excreted but traces only of 4-hydroxy-3-methoxyphenylethanol. Noradrenaline metabolites showed little change in output other than a small increase in 4-hydroxy-3-methoxymandelic acid.3. Information was obtained about a number of minor routes of degradation which might be implicated in the therapeutic action of L-DOPA. A raised output of m-hydroxyphenylacetic acid pointed to p-dehydroxylation of dihydroxyphenylacetic acid by gut flora. Evidence of transamination as a minor metabolic pathway was obtained by finding appreciable urinary levels of 4-hydroxy-3-methoxyphenyllactic acid. A keto-acid precursor of this compound may act as competitive inhibitor of an enzyme active in the normal degradation route of tyrosine, p-hydroxyphenylpyruvic acid oxidase, for increased amounts of p-hydroxyphenyllactic acid, the major metabolic derivative of p-hydroxyphenylpyruvic acid, accumulated in the urine during DOPA treatment.
Collapse
|
research-article |
56 |
116 |
8
|
Walser M, Lund P, Ruderman NB, Coulter AW. Synthesis of essential amino acids from their alpha-keto analogues by perfused rat liver and muscle. J Clin Invest 1973; 52:2865-77. [PMID: 4748513 PMCID: PMC302555 DOI: 10.1172/jci107483] [Citation(s) in RCA: 101] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Most essential amino acids can be replaced by their alpha-keto-analogues in the diet. These ketoacids have therefore been proposed as substitutes for dietary protein. In order to determine their fate in tissues of normal animals, isolated rat liver and hindquarter (muscle) preparations were perfused with keto-analogues of valine, leucine, isoleucine, methionine, or phenylalanine. When perfused at 1.5-2.0 mM, all five compounds were utilized rapidly by the liver of 48-h starved rats, at rates varying from 49 to 155 mumol/h per 200g rat. The corresponding amino acids appeared in the medium in significantly increased concentrations. Perfusion with phenylpyruvate also led to the appearance of tyrosine. Urea release was unaltered. Measurement of metabolite concentrations in freeze-clamped liver revealed two abnormalities, particularly at ketoacid concentrations of 5 mM or above: a large increase in alpha-ketoglutarate, and a moderate to marked decrease in tissue glutamine. This decrease was quantitatively sufficient to account for nitrogen appearing in newly synthesized amino acids. Isolated hindquarters of fed rats were perfused with the same ketoacids at concentrations of 1.3-8.0 mM. All were utilized at rates varying from 1.4 to 7.0 mumol/h per g muscle perfused. The corresponding amino acids were released at greatly increased rates. Alanine and glutamate levels fell in some perfusions, but the principal nitrogen donor in muscle was not identified; the content of glutamine in tissue, and its rate of release into the perfusate remained constant.
Collapse
|
research-article |
52 |
101 |
9
|
Dal Cin V, Tieman DM, Tohge T, McQuinn R, de Vos RC, Osorio S, Schmelz EA, Taylor MG, Smits-Kroon MT, Schuurink RC, Haring MA, Giovannoni J, Fernie AR, Klee HJ. Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit. THE PLANT CELL 2011; 23:2738-53. [PMID: 21750236 PMCID: PMC3226207 DOI: 10.1105/tpc.111.086975] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription factor, Petunia hybrida ODORANT1, to alter Phe and phenylpropanoid metabolism in tomato (Solanum lycopersicum) fruits. Despite the importance of Phe and phenylpropanoids to plant and human health, the pathway for Phe synthesis has not been unambiguously determined. Microarray analysis of ripening fruits from transgenic and control plants permitted identification of a suite of coregulated genes involved in synthesis and further metabolism of Phe. The pattern of coregulated gene expression facilitated discovery of the tomato gene encoding prephenate aminotransferase, which converts prephenate to arogenate. The expression and biochemical data establish an arogenate pathway for Phe synthesis in tomato fruits. Metabolic profiling and ¹³C flux analysis of ripe fruits further revealed large increases in the levels of a specific subset of phenylpropanoid compounds. However, while increased levels of these human nutrition-related phenylpropanoids may be desirable, there were no increases in levels of Phe-derived flavor volatiles.
Collapse
|
research-article |
14 |
92 |
10
|
Ndikuryayo F, Moosavi B, Yang WC, Yang GF. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Chemical Biology to Agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8523-8537. [PMID: 28903556 DOI: 10.1021/acs.jafc.7b03851] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The development of new herbicides is receiving considerable attention to control weed biotypes resistant to current herbicides. Consequently, new enzymes are always desired as targets for herbicide discovery. 4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is an enzyme engaged in photosynthetic activity and catalyzes the transformation of 4-hydroxyphenylpyruvic acid (HPPA) into homogentisic acid (HGA). HPPD inhibitors constitute a promising area of discovery and development of innovative herbicides with some advantages, including excellent crop selectivity, low application rates, and broad-spectrum weed control. HPPD inhibitors have been investigated for agrochemical interests, and some of them have already been commercialized as herbicides. In this review, we mainly focus on the chemical biology of HPPD, discovery of new potential inhibitors, and strategies for engineering transgenic crops resistant to current HPPD-inhibiting herbicides. The conclusion raises some relevant gaps for future research directions.
Collapse
|
Review |
8 |
92 |
11
|
Marienhagen J, Kennerknecht N, Sahm H, Eggeling L. Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J Bacteriol 2005; 187:7639-46. [PMID: 16267288 PMCID: PMC1280304 DOI: 10.1128/jb.187.22.7639-7646.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Twenty putative aminotransferase (AT) proteins of Corynebacterium glutamicum, or rather pyridoxal-5'-phosphate (PLP)-dependent enzymes, were isolated and assayed among others with L-glutamate, L-aspartate, and L-alanine as amino donors and a number of 2-oxo-acids as amino acceptors. One outstanding AT identified is AlaT, which has a broad amino donor specificity utilizing (in the order of preference) L-glutamate > 2-aminobutyrate > L-aspartate with pyruvate as acceptor. Another AT is AvtA, which utilizes L-alanine to aminate 2-oxo-isovalerate, the L-valine precursor, and 2-oxo-butyrate. A second AT active with the L-valine precursor and that of the other two branched-chain amino acids, too, is IlvE, and both enzyme activities overlap partially in vivo, as demonstrated by the analysis of deletion mutants. Also identified was AroT, the aromatic AT, and this and IlvE were shown to have comparable activities with phenylpyruvate, thus demonstrating the relevance of both ATs for L-phenylalanine synthesis. We also assessed the activity of two PLP-containing cysteine desulfurases, supplying a persulfide intermediate. One of them is SufS, which assists in the sulfur transfer pathway for the Fe-S cluster assembly. Together with the identification of further ATs and the additional analysis of deletion mutants, this results in an overview of the ATs within an organism that may not have been achieved thus far.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
85 |
12
|
Navarro-Llorens JM, Patrauchan MA, Stewart GR, Davies JE, Eltis LD, Mohn WW. Phenylacetate catabolism in Rhodococcus sp. strain RHA1: a central pathway for degradation of aromatic compounds. J Bacteriol 2005; 187:4497-504. [PMID: 15968060 PMCID: PMC1151785 DOI: 10.1128/jb.187.13.4497-4504.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-negative bacteria, a pathway for aerobic degradation of phenylacetic acid (PAA) that proceeds via phenylacetyl-coenzyme A (CoA) and hydrolytic ring fission plays a central role in the degradation of a range of aromatic compounds. In contrast, the PAA pathway and its role are not well characterized in gram-positive bacteria. A cluster including 13 paa genes encoding enzymes orthologous to those of gram-negative bacteria was identified on the chromosome of Rhodococcus sp. strain RHA1. These genes were transcribed during growth on PAA, with 11 of the genes apparently in an operon yielding a single transcript. Quantitative proteomic analyses revealed that at least 146 proteins were more than twice as abundant in PAA-grown cells of RHA1 than in pyruvate-grown cells. Of these proteins, 29 were identified, including 8 encoded by the paa genes. Knockout mutagenesis indicated that paaN, encoding a putative ring-opening enzyme, was essential for growth on PAA. However, paaF, encoding phenylacetyl-CoA ligase, and paaR, encoding a putative regulator, were not essential. paaN was also essential for growth of RHA1 on phenylacetaldehyde, phenylpyruvate, 4-phenylbutyrate, 2-phenylethanol, 2-phenylethylamine, and l-phenylalanine. In contrast, growth on 3-hydroxyphenylacetate, ethylbenzene, and styrene was unaffected. These results suggest that the range of substrates degraded via the PAA pathway in RHA1 is somewhat limited relative to the range in previously characterized gram-negative bacteria.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
85 |
13
|
Blanco A, Burgos C, Gerez de Burgos NM, Montamat EE. Properties of the testicular lactate dehydrogenase isoenzyme. Biochem J 1976; 153:165-72. [PMID: 1275882 PMCID: PMC1172559 DOI: 10.1042/bj1530165] [Citation(s) in RCA: 81] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. Studies were carried out with pure lactate dehydrogenase isoenzymes C4 (LDH isoenzyme X), B4, (LDH isoenzyme 1) and A4 (LDH isoenzyme 5) isolated from mouse testis, heart and muscle tissue respectively; with LDH isoenzyme X purified from pigeon testes and with crude lysates of spermatozoa from man, bull and rabbit. 2. LDH isoenzyme X from all species showed greater ability than the other isoenzymes to catalyse the NAD+-linked interconversions of 2-oxobutanoate into 2-hydroxybutanoate and of 2-oxopentanoate into 2-hydroxypentanoate. 3. Mouse LDH isoenzyme X presented the broadest spectrum of substrate specificity. It exhibited very similar Km values for a variety of 2-oxo acids: 2-oxopropanoate (pyruvate), 2-oxobutanoate, 2-oxo-3-methylbutanoate, 2-oxopentanoate, 2-oxo-3-methylpentanoate, 2-oxo-4-methylpentanoate, 2-oxohexanoate and 2-oxo-3-phenylpropanoate (phenylpyruvate). The corresponding 2-hydroxy acids were also readily utilized in the reverse reaction. A strong inhibition by substrate and product was demonstrated for the direct reaction. 4. Intracellular distribution of LDH isoenzyme X was investigated in mouse testes. LDH isoenzyme X activity was located in the fraction of "heavy mitochondria" and in the soluble phase. 5. A possible functional role for LDH isoenzyme X is proposed: the redox couple-2-oxo acid-2-hydroxy acid could integrate a shuttle system transferring reducing equivalents from cytoplasm to mitochondria.
Collapse
|
research-article |
49 |
81 |
14
|
Borowski T, Bassan A, Siegbahn PEM. 4-Hydroxyphenylpyruvate Dioxygenase: A Hybrid Density Functional Study of the Catalytic Reaction Mechanism. Biochemistry 2004; 43:12331-42. [PMID: 15379572 DOI: 10.1021/bi049503y] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density functional calculations using the B3LYP functional has been used to study the reaction mechanism of 4-hydroxyphenylpyruvate dioxygenase. The first part of the catalytic reaction, dioxygen activation, is found to have the same mechanism as in alpha-ketoglutarate-dependent enzymes; the ternary enzyme-substrate-dioxygen complex is first decarboxylated to the iron(II)-peracid intermediate, followed by heterolytic cleavage of the O-O bond yielding an iron(IV)-oxo species. This highly reactive intermediate attacks the aromatic ring at the C1 position and forms a radical sigma complex, which can either form an arene oxide or undergo a C1-C2 side-chain migration. The arene oxide is found to have no catalytic relevance. The side-chain migration is a two-step process; the carbon-carbon bond cleavage first affords a biradical intermediate, followed by a decay of this species forming the new C-C bond. The ketone intermediate formed by a 1,2 shift of an acetic acid group rearomatizes either at the active site of the enzyme or in solution. The hypothetical oxidation of the aromatic ring at the C2 position was also studied to shed light on the 4-HPPD product specificity. In addition, the benzylic hydroxylation reaction, catalyzed by 4-hydroxymandelate synthase, was also studied. The results are in good agreement with the experimental findings.
Collapse
|
|
21 |
74 |
15
|
Li X, Jiang B, Pan B. Biotransformation of phenylpyruvic acid to phenyllactic acid by growing and resting cells of a Lactobacillus sp. Biotechnol Lett 2007; 29:593-7. [PMID: 17333468 DOI: 10.1007/s10529-006-9275-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 11/23/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
Phenyllactic acid (PLA) is a novel antimicrobial compound derived from phenylalanine (Phe). Lactobacillus sp. SK007, having high PLA-producing ability, was isolated from Chinese traditional pickles. When 6.1 mM phenylpyruvic acid (PPA) was used to replace Phe as substrate at the same concentration, PLA production increased 14-fold and the fermentation time decreased from 72 h to 24 h with growing cells. With resting cells, however, 6.8 mM PLA could be obtained as optimal yield using the following conditions: 12 mM PPA, 55 mM glucose, pH 7.5, 35 degrees C and 4 h.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
70 |
16
|
Abstract
Decarboxylation reactions using microbial cells or enzymes are increasingly being used for the synthesis of enantiomerically pure compounds because of their high degree of regio- and stereo-specificity. Pyruvate decarboxylase, benzoylformate decarboxylase and phenylpyruvate decarboxylase enzymes are capable of acyloin-type condensation reactions leading to formation of chiral alpha-hydroxy ketones, which are versatile building blocks in the pharmaceutical and chemical industries. Availability of three-dimensional structures of some decarboxylases in recent years has facilitated understanding of reaction mechanisms and the creation of mutants with enhanced activity and stability.
Collapse
|
Review |
25 |
69 |
17
|
Urrestarazu A, Vissers S, Iraqui I, Grenson M. Phenylalanine- and tyrosine-auxotrophic mutants of Saccharomyces cerevisiae impaired in transamination. MOLECULAR & GENERAL GENETICS : MGG 1998; 257:230-7. [PMID: 9491082 DOI: 10.1007/s004380050643] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This paper reports the first isolation of Saccharomyces cerevisiae mutants lacking aromatic aminotransferase I activity (aro8), and of aro8 and aro9 double mutants which are auxotrophic for both phenylalanine and tyrosine, because the second mutation, aro9 affects aromatic aminotransferase II. Neither of the single mutants displays any nutritional requirement on minimal ammonia medium. In vitro, aromatic aminotransferase I is active not only with the aromatic amino acids, but also with methionine, alpha-aminoadipate, and leucine when phenylpyruvate is the amino acceptor, and in the reverse reactions with their oxo-acid analogues and phenylalanine as the amino donor. Its contribution amounts to half of the glutamate:2-oxoadipate activity detected in cell-free extracts and the enzyme might be identical to one of the two known alpha-aminoadipate aminotransferases. Aromatic aminotransferase I has properties of a general aminotransferase which, like several aminotransferases of Escherichia coli, may be able to play a role in several otherwise unrelated metabolic pathways. Aromatic aminotransferase II also has a broader substrate specificity than initially described. In particular, it is responsible for all the measured kynurenine aminotransferase activity. Mutants lacking this activity grow very slowly on kynurenine medium.
Collapse
|
|
27 |
67 |
18
|
Land JM, Mowbray J, Clark JB. Control of pyruvate and beta-hydroxybutyrate utilization in rat brain mitochondria and its relevance to phenylketonuria and maple syrup urine disease. J Neurochem 1976; 26:823-30. [PMID: 987160 DOI: 10.1111/j.1471-4159.1976.tb04458.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
|
49 |
66 |
19
|
Svenson J, Zheng N, Nicholls IA. A Molecularly Imprinted Polymer-Based Synthetic Transaminase. J Am Chem Soc 2004; 126:8554-60. [PMID: 15238014 DOI: 10.1021/ja039622l] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design, synthesis, and evaluation of a molecularly imprinted polymer transaminase mimic is described. Methacrylic acid-ethylene glycol dimethacrylate copolymers were synthesized using, as a template, a transition state analogue (TSA) for the reaction of phenylpyruvic acid and pyridoxamine to yield phenylalanine and pyridoxal. Polymer suitability was established on the basis of (1)H NMR studies of template-functional monomer interactions. Polymer recognition characteristics were examined in a series of HPLC studies using the polymers as chromatographic stationary phases. Selectivity for the TSA, relative to substrates and products, was observed in both aqueous and nonpolar media. In the latter case (chloroform/AcOH, 96:4), an enantioseparation factor (alpha) of 2.1 was obtained, and frontal chromatographic studies revealed the presence of 11.9 +/- 0.2 micromol g(-1) (dry weight) of enantioselective sites. Polymers imprinted with the l-form of the oxazine-based TSA induced a 15-fold enhancement of the apparent reaction rate (app. V(max) 2.5 x 10(-7) mol s(-1); app. K(m) 8.2 x 10(-3) M) and enantioselective production of phenylalanine (32 +/- 4% ee) for reactions conducted in an aqueous buffer system. Substrate selectivity was evident, and a turnover number (k(cat)) of 0.1 s(-)(1) was determined. This is the first example of the catalysis of sigmatropic shifts in aqueous media by molecularly imprinted polymers.
Collapse
|
|
21 |
62 |
20
|
Zheng Z, Ma C, Gao C, Li F, Qin J, Zhang H, Wang K, Xu P. Efficient conversion of phenylpyruvic acid to phenyllactic acid by using whole cells of Bacillus coagulans SDM. PLoS One 2011; 6:e19030. [PMID: 21533054 PMCID: PMC3080406 DOI: 10.1371/journal.pone.0019030] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 03/15/2011] [Indexed: 11/23/2022] Open
Abstract
Background Phenyllactic acid (PLA), a novel antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi, can be produced by many microorganisms, especially lactic acid bacteria. However, the concentration and productivity of PLA have been low in previous studies. The enzymes responsible for conversion of phenylpyruvic acid (PPA) into PLA are equivocal. Methodology/Principal Findings A novel thermophilic strain, Bacillus coagulans SDM, was isolated for production of PLA. When the solubility and dissolution rate of PPA were enhanced at a high temperature, whole cells of B. coagulans SDM could effectively convert PPA into PLA at a high concentration (37.3 g l−1) and high productivity (2.3 g l−1 h−1) under optimal conditions. Enzyme activity staining and kinetic studies identified NAD-dependent lactate dehydrogenases as the key enzymes that reduced PPA to PLA. Conclusions/Significance Taking advantage of the thermophilic character of B. coagulans SDM, a high yield and productivity of PLA were obtained. The enzymes involved in PLA production were identified and characterized, which makes possible the rational design and construction of microorganisms suitable for PLA production with metabolic engineering.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
61 |
21
|
Sandorf I, Holländer-Czytko H. Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana. PLANTA 2002; 216:173-9. [PMID: 12430028 DOI: 10.1007/s00425-002-0888-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2002] [Accepted: 07/16/2002] [Indexed: 05/22/2023]
Abstract
Coronatine-inducible tyrosine aminotransferase (TAT), which catalyses the transamination from tyrosine to p-hydroxyphenylpyruvate, is the first enzyme of a pathway leading via homogentisic acid to plastoquinone and tocopherols, the latter of which are known to be radical scavengers in plants. TAT can be also induced by the octadecanoids methyl jasmonate (MeJA) and methyl-12-oxophytodienoic acid (MeOPDA), as well as by wounding, high light, UV light and the herbicide oxyfluorfen. In order to elucidate the role of octadecanoids in the process of TAT induction in Arabidopsis thaliana (L.) Heynh., the jasmonate-deficient mutant delayed dehiscence (dde1) was used, in which the gene for 12-oxophytodienoic acid reductase 3 is disrupted. The amount of immunodetectable TAT was low. The enzyme was still fully induced by coronatine as well as by MeJA although induction by the latter was to a lesser extent and later than in the wild type. Treatment with MeOPDA, wounding and UV light, however, had hardly any effects. Tocopherol levels that showed considerable increases in the wild type after some treatments were much less affected in the mutant. However, starting levels of tocopherol were higher in non-induced dde1 than in the wild type. We conclude that jasmonate plays an important role in the signal transduction pathway regulating TAT activity and the biosynthesis of its product tocopherol.
Collapse
|
Comparative Study |
23 |
61 |
22
|
Maaser C, Eckmann L, Paesold G, Kim HS, Kagnoff MF. Ubiquitous production of macrophage migration inhibitory factor by human gastric and intestinal epithelium. Gastroenterology 2002; 122:667-80. [PMID: 11875000 DOI: 10.1053/gast.2002.31891] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS Macrophage migration inhibitory factor (MIF) inhibits macrophage migration and has pleiotropic activities on immune and inflammatory responses, cell growth, and glucose metabolism. MIF is produced by T cells, macrophages, and endothelial cells. Because intestinal epithelial cells produce mediators important for regulating mucosal immune and inflammatory responses, we sought to determine if these cells produce MIF. METHODS MIF expression was determined by immunostaining of human intestinal mucosa, intestinal xenografts, and cultured cells. MIF protein levels were quantitated by enzyme-linked immunosorbent assay and immunoblot analysis, messenger RNA was assessed by real-time reverse-transcription polymerase chain reaction, and functional activity was assessed by enzymatic and migration assays. RESULTS MIF was abundantly expressed in vivo in gastric, small intestinal, and colonic epithelium and in epithelium lining human intestinal xenografts. MIF was also constitutively expressed at the messenger RNA and protein level by several cultured colon and gastric epithelial cell lines, and its expression in those cells was not up-regulated by the proinflammatory cytokines interleukin 1alpha, tumor necrosis factor alpha, or interferon gamma. Epithelial MIF from cultured cells was released predominantly from the apical side after Salmonella infection, had tautomerase activity, and arrested macrophage migration. CONCLUSIONS Human intestinal epithelial cells are a major source of MIF, a molecule that can regulate macrophage migration, inflammation, and cell metabolism.
Collapse
|
|
23 |
60 |
23
|
Drechsel H, Thieken A, Reissbrodt R, Jung G, Winkelmann G. Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol 1993; 175:2727-33. [PMID: 8478334 PMCID: PMC204576 DOI: 10.1128/jb.175.9.2727-2733.1993] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Growth promotion and iron transport studies revealed that certain alpha-keto acids generated by amino acid deaminases, by enterobacteria of the Proteus-Providencia-Morganella group (of the tribe Proteeae), show significant siderophore activity. Their iron-binding properties were confirmed by the chrome azurol S assay and UV spectra. These compounds form ligand-to-metal charge transfer bands in the range of 400 to 500 nm. Additional absorption bands of the enolized ligands at 500 to 700 nm are responsible for color formation. Siderophore activity was most pronounced with alpha-keto acids possessing an aromatic or heteroaromatic side chain, like phenylpyruvic acid and indolylpyruvic acid, resulting from deamination of phenylalanine and tryptophan, respectively. In addition, alpha-keto acids possessing longer nonpolar side chains, like alpha-ketoisocaproic acid or alpha-ketoisovaleric acid and even alpha-ketoadipic acid, also showed siderophore activity which was absent or negligible with smaller alpha-keto acids or those possessing polar functional groups, like pyruvic acid, alpha-ketobutyric acid, or alpha-ketoglutaric acid. The fact that deaminase-negative enterobacteria, like Escherichia coli and Salmonella spp., could not utilize alpha-keto acids supports the view that specific iron-carboxylate transport systems have evolved in members of the tribe Proteeae and are designed to recognize ferric complexes of both alpha-hydroxy acids and alpha-keto acids, of which the latter can easily be generated by L-amino acid deaminases in an amino acid-rich medium. Exogenous siderophores, like ferric hydroxamates (ferrichromes) and ferric polycarboxylates (rhizoferrin and citrate), were also utilized by members of the tribe Proteeae.
Collapse
|
research-article |
32 |
59 |
24
|
Bedewitz MA, Góngora-Castillo E, Uebler JB, Gonzales-Vigil E, Wiegert-Rininger KE, Childs KL, Hamilton JP, Vaillancourt B, Yeo YS, Chappell J, DellaPenna D, Jones AD, Buell CR, Barry CS. A root-expressed L-phenylalanine:4-hydroxyphenylpyruvate aminotransferase is required for tropane alkaloid biosynthesis in Atropa belladonna. THE PLANT CELL 2014; 26:3745-62. [PMID: 25228340 PMCID: PMC4213168 DOI: 10.1105/tpc.114.130534] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The tropane alkaloids, hyoscyamine and scopolamine, are medicinal compounds that are the active components of several therapeutics. Hyoscyamine and scopolamine are synthesized in the roots of specific genera of the Solanaceae in a multistep pathway that is only partially elucidated. To facilitate greater understanding of tropane alkaloid biosynthesis, a de novo transcriptome assembly was developed for Deadly Nightshade (Atropa belladonna). Littorine is a key intermediate in hyoscyamine and scopolamine biosynthesis that is produced by the condensation of tropine and phenyllactic acid. Phenyllactic acid is derived from phenylalanine via its transamination to phenylpyruvate, and mining of the transcriptome identified a phylogenetically distinct aromatic amino acid aminotransferase (ArAT), designated Ab-ArAT4, that is coexpressed with known tropane alkaloid biosynthesis genes in the roots of A. belladonna. Silencing of Ab-ArAT4 disrupted synthesis of hyoscyamine and scopolamine through reduction of phenyllactic acid levels. Recombinant Ab-ArAT4 preferentially catalyzes the first step in phenyllactic acid synthesis, the transamination of phenylalanine to phenylpyruvate. However, rather than utilizing the typical keto-acid cosubstrates, 2-oxoglutarate, pyruvate, and oxaloacetate, Ab-ArAT4 possesses strong substrate preference and highest activity with the aromatic keto-acid, 4-hydroxyphenylpyruvate. Thus, Ab-ArAT4 operates at the interface between primary and specialized metabolism, contributing to both tropane alkaloid biosynthesis and the direct conversion of phenylalanine to tyrosine.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
52 |
25
|
Nierop Groot MN, de Bont JA. Involvement of manganese in conversion of phenylalanine to benzaldehyde by lactic acid bacteria. Appl Environ Microbiol 1999; 65:5590-3. [PMID: 10584022 PMCID: PMC91762 DOI: 10.1128/aem.65.12.5590-5593.1999] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/1999] [Accepted: 09/01/1999] [Indexed: 11/20/2022] Open
Abstract
We examined the involvement of Mn(II) in the conversion of phenylalanine to benzaldehyde in cell extracts of lactic acid bacteria. Experiments performed with Lactobacillus plantarum demonstrated that Mn(II), present at high levels in this strain, is involved in benzaldehyde formation by catalyzing the conversion of phenylpyruvic acid. Experiments performed with various lactic acid bacterial strains belonging to different genera revealed that benzaldehyde formation in a strain was related to a high Mn(II) level.
Collapse
|
research-article |
26 |
48 |