1
|
Luine V, Villegas M, Martinez C, McEwen BS. Repeated stress causes reversible impairments of spatial memory performance. Brain Res 1994; 639:167-70. [PMID: 8180832 DOI: 10.1016/0006-8993(94)91778-7] [Citation(s) in RCA: 556] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Restraint stress, 6 h/day for 21 days, caused an impairment, during acquisition, of the performance of a spatial memory task, the eight-arm radial maze. The impairment was reversible, temporally limited and blocked by phenytoin, a blocker of excitatory amino acid action, or tianeptine, an antidepressant, which lowers extracellular serotonin. These effects on behavior parallel the reversible stress-induced atrophy of dendrites of hippocampal CA3 neurons that are also blocked by the drugs.
Collapse
|
|
31 |
556 |
2
|
|
Review |
50 |
473 |
3
|
Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. PHARMACOGENETICS 2002; 12:251-63. [PMID: 11927841 DOI: 10.1097/00008571-200204000-00010] [Citation(s) in RCA: 455] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The discovery of six distinct polymorphisms in the genetic sequence encoding for the cytochrome P450 2C9 (CYP2C9) protein has stimulated numerous investigations in an attempt to characterize their population distribution and metabolic activity. Since the CYP2C9*1, *2 and *3 alleles were discovered first, they have undergone more thorough investigation than the recently identified *4, *5 and *6 alleles. Population distribution data suggest that the variant *2 and *3 alleles are present in approximately 35% of Caucasian individuals; however, these alleles are significantly less prevalent in African-American and Asian populations. In-vitro data have consistently demonstrated that the CYP2C9*2 and *3 alleles are associated with significant reductions in intrinsic clearance of a variety of 2C9 substrates compared with CYP2C9*1; however, the degree of these reductions appear to be highly substrate-dependent. In addition, multiple in-vivo investigations and clinical case reports have associated genotypes expressing the CYP2C9*2 and *3 alleles with significant reductions in both the metabolism and daily dose requirements of selected CYP2C9 substrates. Individuals expressing these variant genotypes also appear to be significantly more susceptible to adverse events with the narrow therapeutic index agents warfarin and phenytoin, particularly during the initiation of therapy. These findings have subsequently raised numerous questions regarding the potential clinical utility of genotyping for CYP2C9 prior to initiation of therapy with these agents. However, further clinical investigations evaluating the metabolic consequences in individuals expressing the CYP2C9*2, *3, *4, *5, or *6 alleles are required before large-scale clinical genotyping can be recommended.
Collapse
|
Review |
23 |
455 |
4
|
Abstract
Plasma growth hormone (GH), insulin, cortisol, and glucose were measured during sleep on 38 nights in eight young adults. Blood was drawn from an indwelling catheter at 30-min intervals; EEG and electrooculogram were recorded throughout the night. In seven subjects, a plasma GH peak (13-72 mmug/ml) lasting 1.5-3.5 hr appeared with the onset of deep sleep. Smaller GH peaks (6-14 mmug/ml) occasionally appeared during subsequent deep sleep phases. Peak GH secretion was delayed if the onset of sleep was delayed. Subjects who were awakened for 2-3 hr and allowed to return to sleep exhibited another peak of GH secretion (14-46 mmug/ml). Peak GH secretion was not correlated with changes in plasma glucose, insulin, and cortisol. The effects of 6-CNS-active drugs on sleep-related GH secretion were investigated. Imipramine (50 mg) completely abolished GH peaks in two of four subjects, whereas chlorpromazine (30 mg), phenobarbital (97 mg), diphenylhydantoin (90 mg), chlordiazepoxide (20 mg), and isocarboxazid (30 mg) did not inhibit GH peaks. Altered hypothalamic activity associated with initiation of sleep results in a major peak of growth hormone secretion unrelated to hypoglycemia or changes in cortisol and insulin secretion.
Collapse
|
research-article |
57 |
454 |
5
|
Leach MJ, Marden CM, Miller AA. Pharmacological studies on lamotrigine, a novel potential antiepileptic drug: II. Neurochemical studies on the mechanism of action. Epilepsia 1986; 27:490-7. [PMID: 3757936 DOI: 10.1111/j.1528-1157.1986.tb03573.x] [Citation(s) in RCA: 380] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lamotrigine (LTG) [3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine] is a novel anticonvulsant chemically unrelated to current antiepileptic drugs and with a pharmacological profile similar to that of phenytoin. The effect of LTG has been compared with that of phenytoin, on the release of endogenous amino acids and radiolabelled acetylcholine evoked by veratrine or potassium, from slices of rat cerebral cortex in vitro. Both veratrine and potassium evoked a marked release of glutamate and gamma-aminobutyric acid (GABA), with a more moderate release of aspartate. LTG inhibited veratrine-evoked release of glutamate and aspartate, with ED50 values of 21 microM for both amino acids, but LTG was less potent in the inhibition of GABA release (ED50 = 44 microM). At concentrations up to 300 microM, LTG had no effect on potassium-evoked amino acid release or on spontaneous release. Also, LTG was some five times less potent in the inhibition of veratrine-evoked [3H]acetylcholine release (ED50 = 100 microM) than in glutamate or aspartate release. The total lack of effect of LTG on potassium-evoked release and the potent effect on veratrine-evoked release (at concentrations found in rat brain after anticonvulsant doses) strongly suggest that LTG acts at voltage-sensitive sodium channels to stabilise neuronal membranes and inhibit transmitter release, principally glutamate. The role of glutamate in the aetiology of epilepsy is discussed.
Collapse
|
|
39 |
380 |
6
|
Ragsdale DS, McPhee JC, Scheuer T, Catterall WA. Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci U S A 1996; 93:9270-5. [PMID: 8799190 PMCID: PMC38631 DOI: 10.1073/pnas.93.17.9270] [Citation(s) in RCA: 363] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Voltage-gated Na+ channels are the molecular targets of local anesthetics, class I antiarrhythmic drugs, and some anticonvulsants. These chemically diverse drugs inhibit Na+ channels with complex voltage- and frequency-dependent properties that reflect preferential drug binding to open and inactivated channel states. The site-directed mutations F1764A and Y1771A in transmembrane segment IVS6 of type IIA Na+ channel alpha subunits dramatically reduce the affinity of inactivated channels for the local anesthetic etidocaine. In this study, we show that these mutations also greatly reduce the sensitivity of Na+ channels to state-dependent block by the class Ib antiarrhythmic drug lidocaine and the anticonvulsant phenytoin and, to a lesser extent, reduce the sensitivity to block by the class Ia and Ic antiarrhythmic drugs quinidine and flecainide. For lidocaine and phenytoin, which bind preferentially to inactivated Na+ channels, the mutation F1764A reduced the affinity for binding to the inactivated state 24.5-fold and 8.3-fold, respectively, while Y1771A had smaller effects. For quinidine and flecainide, which bind preferentially to the open Na+ channels, the mutations F1764A and Y1771A reduced the affinity for binding to the open state 2- to 3-fold. Thus, F1764 and Y1771 are common molecular determinants of state-dependent binding of diverse drugs including lidocaine, phenytoin, flecainide, and quinidine, suggesting that these drugs interact with a common receptor site. However, the different magnitude of the effects of these mutations on binding of the individual drugs indicates that they interact in an overlapping, but nonidentical, manner with a common receptor site. These results further define the contributions of F1764 and Y1771 to a complex drug receptor site in the pore of Na+ channels.
Collapse
|
research-article |
29 |
363 |
7
|
Abstract
Established antiepileptic drugs (AEDs) decrease membrane excitability by interacting with neurotransmitter receptors or ion channels. AEDs developed before 1980 appear to act on sodium channels, gamma-aminobutyric acid type A (GABAA) receptors, or calcium channels. Benzodiazepines and barbiturates enhance GABAA receptor-mediated inhibition. Phenytoin (PHT), carbamazepine (CBZ), and possibly valproate (VPA) decrease high-frequency repetitive firing of action potentials by enhancing sodium-channel inactivation. Ethosuximide (ESM) and VPA reduce a low threshold (T-type) calcium-channel current. The mechanisms of action of the new AEDs are not fully established. Gabapentin (GBP) binds to a high-affinity site on neuronal membranes in a restricted regional distribution of the central nervous system. This binding site may be related to a possible active transport process of GBP into neurons; however, this has not been proven, and the mechanism of action of GBP remains uncertain. Lamotrigine (LTG) decreases sustained high-frequency repetitive firing of voltage-dependent sodium action potentials that may result in a preferential decreased release of presynaptic glutamate. The mechanism of action of oxcarbazepine (OCBZ) is not known; however, its similarity in structure and clinical efficacy to CBZ suggests that its mechanism of action may involve inhibition of sustained high-frequency repetitive firing of voltage-dependent sodium action potentials. Vigabatrin (VGB) irreversibly inhibits GABA transaminase, the enzyme that degrades GABA, thereby producing greater available pools of presynaptic GABA for release in central synapses. Increased activity of GABA at postsynaptic receptors may underline the clinical efficacy of VGB.
Collapse
|
Review |
30 |
299 |
8
|
Marrannes R, Willems R, De Prins E, Wauquier A. Evidence for a role of the N-methyl-D-aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain Res 1988; 457:226-40. [PMID: 2851364 DOI: 10.1016/0006-8993(88)90690-7] [Citation(s) in RCA: 259] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The neurotransmitter glutamate activates the N-methyl-D-aspartate (NMDA), quisqualate and kainate receptors. It has been proposed, but also disputed, that local release of glutamate would play a pivotal role in cortical spreading depression (SD). We tested this hypothesis by investigating the influence of NMDA antagonists on SD, using the non-competitive NMDA antagonists ketamine, phencyclidine (PCP) and MK-801 and the competitive NMDA antagonist DL-2-amino-7-phosphonoheptanoate (2-APH), injected intraperitoneally in rats anesthetized with alfentanil. SD was elicited by cathodal DC-stimulation of the frontal cortex. SD propagation was followed using two ion-sensitive microelectrodes placed in the parietal and occipital cortex. The NMDA antagonists increased SD threshold, decreased the propagation velocity and decreased the duration of the accompanying extracellular DC, K+ and Ca2+ changes at the following doses: 40 mg/kg ketamine, 10 mg/kg PCP, 0.63 mg/kg MK-801, 10 and 40 mg/kg 2-APH. With each NMDA antagonist failure of SD propagation between both microelectrodes could be observed. SD elicitation (or propagation) was inhibited completely with 80 mg/kg ketamine, 3.1 mg/kg MK-801 and 160 mg/kg 2-APH. These NMDA antagonists have also anticonvulsant properties. None of these effects on SD were observed with high doses of other anticonvulsants such as 80 mg/kg phenytoin or 40 mg/kg diazepam. These experiments indicate that endogenous release of excitatory amino acids and their action on the NMDA receptor play an important role in the initiation, propagation and duration of SD.
Collapse
|
|
37 |
259 |
9
|
Watanabe Y, Gould E, Cameron HA, Daniels DC, McEwen BS. Phenytoin prevents stress- and corticosterone-induced atrophy of CA3 pyramidal neurons. Hippocampus 1992; 2:431-5. [PMID: 1308199 DOI: 10.1002/hipo.450020410] [Citation(s) in RCA: 256] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Repeated daily restraint stress and daily corticosterone administration to adult male Sprague-Dawley rats leads to decreases in the number of branch points and length of dendrites of CA3 pyramidal neurons of the hippocampal formation. This decrease is prevented by daily administration of the antiepileptic drug phenytoin (Dilantin), which is known to interfere with excitatory amino acid release and actions. Phenytoin had no obvious effect on behavior during and after stress and failed to prevent stress-induced reduction of body weight gain and stress-induced increases of adrenal weight relative to body weight; it also failed to attenuate glucocorticoid-induced diminution of the size of the thymus gland, indicating that it does not directly antagonize glucocorticoid actions. Stress- and corticosterone-induced effects on dendritic length and branch point number are more pronounced on the apical, as opposed to the basal, CA3 dendrites that receive the largest mossy fiber input from the dentate gyrus. Because phenytoin is also known to prevent ischemic damage, these results are consistent with a model in which stress- and corticosterone-induced CA3 dendritic atrophy is produced by excitatory amino acids released from the mossy fibers.
Collapse
|
|
33 |
256 |
10
|
Abstract
We studied the kinetics of recovery from inactivation of voltage-dependent Na+ channels in rat hippocampal CA1 neurons. Recovery proceeded exponentially after an initial delay and was accompanied by a tiny ionic current. Both the delay and the time constant of recovery became shorter with increasing hyperpolarization. Negative to -170 mV, the rate of recovery saturated at approximately 4 ms-1 (22 degrees C). Recovery from block by the anticonvulsant drug diphenylhydantoin was far slower, but the pattern of voltage dependence was very similar. Our results suggest that, analogous to the coupling between Na+ channel activation and the development of inactivation, recovery from inactivation is coupled to channel deactivation. Such coupling ensures very little "leak" Na+ current during recovery and a highly voltage-sensitive repriming of Na+ channels for the next impulse.
Collapse
|
|
31 |
241 |
11
|
Seth P, Fei YJ, Li HW, Huang W, Leibach FH, Ganapathy V. Cloning and functional characterization of a sigma receptor from rat brain. J Neurochem 1998; 70:922-31. [PMID: 9489711 DOI: 10.1046/j.1471-4159.1998.70030922.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have cloned a sigma receptor from rat brain and established its functional identity using a heterologous expression system. The cloned cDNA (1,582 bp long) codes for a protein of 223 amino acids that possesses a single putative transmembrane domain. The amino acid sequence of the rat brain sigma receptor is highly homologous to that of the sigma receptor recently cloned from guinea pig liver and a human placental cell line but is not related to any other known mammalian receptors. When expressed in HeLa cells, the rat brain sigma receptor cDNA leads to a two- to threefold increase in haloperidol binding, and this cDNA-induced binding is sensitive to inhibition by several sigma receptor-specific ligands. Kinetic analysis using the heterologous expression system has revealed that the rat brain sigma receptor interacts with haloperidol with an apparent dissociation constant (K(D)) of 3 nM. Functional expression of the cloned rat brain sigma receptor in HeLa cells also leads to an increase in the binding of two other sigma ligands, namely, (+)-pentazocine and (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine (PPP). Pharmacological characterization of the cloned rat brain sigma receptor reveals that it exhibits severalfold higher affinity for clorgyline than for 1 ,3-di(2-tolyl)guanidine, it interacts with progesterone and testosterone, and its interaction with PPP is markedly enhanced by phenytoin. In addition, transfection of MCF-7 cells, which do not express type 1 sigma receptor mRNA or activity, with the cloned rat brain cDNA leads to the appearance of haloperidol-sensitive binding of (+)-pentazocine, a selective type 1 sigma receptor ligand. These data show that the cloned rat brain cDNA codes for a functional type 1 sigma receptor. Northern blot analysis with poly(A)+ RNA isolated from various rat tissues has indicated that the sigma receptor-specific transcript, 1.6 kb in size, is expressed abundantly in liver and moderately in intestine, kidney, brain, and lung.
Collapse
|
|
27 |
224 |
12
|
Spina E, Pisani F, Perucca E. Clinically significant pharmacokinetic drug interactions with carbamazepine. An update. Clin Pharmacokinet 1996; 31:198-214. [PMID: 8877250 DOI: 10.2165/00003088-199631030-00004] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Carbamazepine is one of the most commonly prescribed antiepileptic drugs and is also used in the treatment of trigeminal neuralgia and psychiatric disorders, particularly bipolar depression. Because of its widespread and long term use, carbamazepine is frequently prescribed in combination with other drugs, leading to the possibility of drug interactions. The most important interactions affecting carbamazepine pharmacokinetics are those resulting in induction or inhibition of its metabolism. Phenytoin, phenobarbital (phenobarbitone) and primidone accelerate the elimination of carbamazepine, probably by stimulating cytochrome P450 (CYP) 3A4, and reduce plasma carbamazepine concentrations to a clinically important extent. Inhibition of carbamazepine metabolism and elevation of plasma carbamazepine to potentially toxic concentrations can be caused by stiripentol, remacemide, acetazolamide, macrolide antibiotics, isoniazid, metronidazole, certain antidepressants, verapamil, diltiazem, cimetidine, danazol and (dextropropoxyphene) propoxyphene. In other cases, toxic symptoms may result from elevated plasma concentrations of the active metabolite carbamazepine-10,11-epoxide, due to the inhibition of epoxide hydrolase by valproic acid (sodium valproate), valpromide, valnoctamide and progabide. Carbamazepine is a potent inducer of CYP3A4 and other oxidative enzyme system in the liver, and it may also increase glucuronyltransferase activity. This results in the acceleration of the metabolism of concurrently prescribed anticonvulsants, particularly valproic acid, clonazepam, ethosuximide, lamotrigine, topiramate, tiagabine and remacemide. The metabolism of many other drugs such as tricyclic antidepressants, antipsychotics, steroid oral contraceptives, glucocorticoids, oral anticoagulants, cyclosporin, theophylline, chemotherapeutic agents and cardiovascular drugs can also be induced, leading to a number of clinically relevant drug interactions. Interactions with carbamazepine can usually be predicted on the basis of the pharmacological properties of the combined drug, particularly with respect to its therapeutic index, site of metabolism and ability to affect specific drug metabolising isoenzymes. Avoidance of unnecessary polypharmacy, selection of alternative agents with lower interaction potential, and careful dosage adjustments based on serum drug concentration monitoring and clinical observation represent the mainstays for the minimisation of risks associated with these interactions.
Collapse
|
Review |
29 |
214 |
13
|
Rumack BH. Acetaminophen hepatotoxicity: the first 35 years. JOURNAL OF TOXICOLOGY. CLINICAL TOXICOLOGY 2002; 40:3-20. [PMID: 11990202 DOI: 10.1081/clt-120002882] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The acetaminophen nomogram including its uses and limitations is discussed as well as the development of the N-acetylcysteine protocol. While it has taken many years to elucidate the genetic variability and true multiplicity of the cytochrome P450 "mixed function oxidase system" many publications early on looked at the enzyme system as a single entity. Numerous articles indicated that barbiturates, anticonvulsants, and others could induce "P450" and add to the toxicity of acetaminophen. It rapidly became apparent that just because "P450" was induced when measured as a whole, not all other substrates would have changed metabolic activity. The role of diet and ethanol induction and inhibition on CYP2E1, the enzyme of greatest interest for acetaminophen is multifaceted. The lack of enhancement of acetaminophen toxicity by phenytoin and in fact, the potential for reduction of toxicity with that agent is a good example of the evolution of our knowledge. Further complicating our understanding is the introduction of misleading terms such as "therapeutic misadventure" and other expressions of molecular intent. A critical understanding of the literature makes it clear that therapeutic doses of acetaminophen either alone or in the presence of inducers do not produce toxicity. While the community of clinical toxicologists is small, it needs to be more aggressive in making sure that physicians from other specialties and non-clinical toxicology colleagues understand the significance and implications of this science.
Collapse
|
Lecture |
23 |
210 |
14
|
Hahn TJ, Hendin BA, Scharp CR, Haddad JG. Effect of chronic anticonvulsant therapy on serum 25-hydroxycalciferol levels in adults. N Engl J Med 1972; 287:900-4. [PMID: 4561667 DOI: 10.1056/nejm197211022871803] [Citation(s) in RCA: 205] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
Clinical Trial |
53 |
205 |
15
|
Bodin K, Bretillon L, Aden Y, Bertilsson L, Broomé U, Einarsson C, Diczfalusy U. Antiepileptic drugs increase plasma levels of 4beta-hydroxycholesterol in humans: evidence for involvement of cytochrome p450 3A4. J Biol Chem 2001; 276:38685-9. [PMID: 11514559 DOI: 10.1074/jbc.m105127200] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major cholesterol oxidation products in the human circulation are 27-hydroxycholesterol, 24-hydroxycholesterol, and 7alpha-hydroxycholesterol. These oxysterols are formed from cholesterol by specific cytochrome P450 enzymes, CYP27, CYP46, and CYP7A, respectively. An additional oxysterol present in concentrations comparable with 7alpha- and 24-hydroxycholesterol is 4beta-hydroxycholesterol. We now report that patients treated with the antiepileptic drugs phenobarbital, carbamazepine, or phenytoin have highly elevated levels of plasma 4beta-hydroxycholesterol. When patients with uncomplicated cholesterol gallstone disease were treated with ursodeoxycholic acid, plasma 4beta-hydroxycholesterol increased by 45%. Ursodeoxycholic acid, as well as the antiepileptic drugs, are known to induce cytochrome P450 3A. Recombinant CYP3A4 was shown to convert cholesterol to 4beta-hydroxycholesterol, whereas no conversion was observed with CYP1A2, CYP2C9, or CYP2B6. The concentration of 4alpha-hydroxycholesterol in plasma was lower than the concentration of 4beta-hydroxycholesterol and not affected by treatment with the antiepileptic drugs or ursodeoxycholic acid. Together, these data suggest that 4beta-hydroxycholesterol in human circulation is formed by a cytochrome P450 enzyme.
Collapse
|
|
24 |
196 |
16
|
Hahn TJ, Birge SJ, Scharp CR, Avioli LV. Phenobarbital-induced alterations in vitamin D metabolism. J Clin Invest 1972; 51:741-8. [PMID: 4335442 PMCID: PMC302186 DOI: 10.1172/jci106868] [Citation(s) in RCA: 193] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The metabolic fate of intravenously injected vitamin D(3)-1,2-(3)H (D(3)-(3)H) was studied in two normal individuals on chronic phenobarbital therapy. Silicic acid column chromatography of lipid-soluble plasma extracts obtained serially for 96 hr after D(3)-(3)H injection demonstrated a decreased plasma D(3)-(3)H half-life and increased conversion to more polar metabolites. The polar metabolites formed included several with chromatographic mobility similar to known biologically inactive vitamin D metabolites and one with chromatographic mobility identical to 25-hydroxycholecalciferol. Disappearance of this latter material was also accelerated. A child with rickets and a normal volunteer studied before and after a 2 wk course of phenobarbital therapy demonstrated similar alterations in D(3)-(3)H metabolism. When liver microsomes from 3-wk-old Sprague-Dawley rats treated with phenobarbital were incubated with D(3)-(3)H, polar metabolites were produced with chromatographic mobility similar to the plasma D(3)-(3)H metabolites from phenobarbital-treated humans. Similar incubations employing 25-hydroxy-cholecalciferol-26-27-(3)H as the substrate also demonstrated an increased conversion to polar metabolites. The data suggest that the reported increased incidence of osteomalacia observed in patients on chronic anticonvulsant therapy may be the result of an accelerated conversion of vitamin D and its active metabolite, 25-hydroxycholecalciferol, to polar metabolites by druginduced liver microsomal enzymes.
Collapse
|
research-article |
53 |
193 |
17
|
Craner MJ, Damarjian TG, Liu S, Hains BC, Lo AC, Black JA, Newcombe J, Cuzner ML, Waxman SG. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia 2004; 49:220-9. [PMID: 15390090 DOI: 10.1002/glia.20112] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Loss of axons is a major contributor to nonremitting deficits in the inflammatory demyelinating disease multiple sclerosis (MS). Based on biophysical studies showing that activity of axonal sodium channels can trigger axonal degeneration, recent studies have tested sodium channel-blocking drugs in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and have demonstrated a protective effect on axons. However, it is possible that, in addition to a direct effect on axons, sodium channel blockers may also interfere with inflammatory mechanisms. We therefore examined the novel hypothesis that sodium channels contribute to activation of microglia and macrophages in EAE and acute MS lesions. In this study, we demonstrate a robust increase of sodium channel Nav1.6 expression in activated microglia and macrophages in EAE and MS. We further demonstrate that treatment with the sodium channel blocker phenytoin ameliorates the inflammatory cell infiltrate in EAE by 75%. Supporting a role for sodium channels in microglial activation, we show that tetrodotoxin, a specific sodium channel blocker, reduces the phagocytic function of activated rat microglia by 40%. To further confirm a role of Nav1.6 in microglial activation, we examined the phagocytic capacity of microglia from med mice, which lack Nav1.6 channels, and show a 65% reduction in phagocytic capacity compared with microglia from wildtype mice. Our findings indicate that sodium channels are important for activation and phagocytosis of microglia and macrophages in EAE and MS and suggest that, in addition to a direct neuroprotective effect on axons, sodium channel blockade may ameliorate neuroinflammatory disorders via anti-inflammatory mechanisms.
Collapse
MESH Headings
- Animals
- Axons/drug effects
- Axons/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Female
- Gliosis/drug therapy
- Gliosis/metabolism
- Gliosis/physiopathology
- Macrophages/drug effects
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Microglia/drug effects
- Microglia/metabolism
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/physiopathology
- NAV1.6 Voltage-Gated Sodium Channel
- Nerve Degeneration/chemically induced
- Nerve Degeneration/drug therapy
- Nerve Degeneration/metabolism
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuroprotective Agents/pharmacology
- Phagocytosis/drug effects
- Phagocytosis/genetics
- Phenytoin/pharmacology
- Phenytoin/therapeutic use
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Sodium Channel Blockers/pharmacology
- Sodium Channel Blockers/therapeutic use
- Sodium Channels/genetics
- Sodium Channels/metabolism
- Tetrodotoxin/pharmacology
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
|
|
21 |
191 |
18
|
Abstract
The effects of diphenylhydantoin (DPH) were studied on isolated, perfused Purkinje fibers over a range of concentrations from 10
-8
to 10
-4
M
. The time course of repolarization of the transmembrane action potential shortened due to abbreviation of all phases of repolarization. The effective refractory period also shortened during exposure to DPH, but to a lesser extent than the action potential. As a result the earliest effective test stimulus elicited action potentials with greater amplitude and dv/dt of phase 0 than under control conditions. In driven fibers with normal action potentials, DPH had little effect on the amplitude or rate of rise (dv/dt) of phase 0 of the action potential. In driven fibers which were partially depolarized, or those with low dv/dt of phase 0 despite normal resting potentials, DPH caused an increase in the rate of rise of phase 0 of the action potential. DPH caused a decrease in the firing rate of normal automatic fibers by decreasing the slope of phase 4 depolarization. In automatic fibers which showed generalized diastolic depolarization and decreased maximum diastolic potential, DPH caused an increase in the latter as well as a decrease in the slope of phase 4 depolarization.
Collapse
|
|
57 |
182 |
19
|
|
Review |
51 |
178 |
20
|
Singh BN, Williams EM. Effect of altering potassium concentration on the action of lidocaine and diphenylhydantoin on rabbit atrial and ventricular muscle. Circ Res 1971; 29:286-95. [PMID: 5093288 DOI: 10.1161/01.res.29.3.286] [Citation(s) in RCA: 171] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
All previously studied antiarrhythmic drugs which also have local anaesthetic properties reduce the maximum rate of depolarization (MRD) of cardiac muscle. Recent evidence suggested that lidocaine and diphenylhydantoin (DPH) might have a different mode of action, because they did not reduce MRD except at high concentration. The latter evidence, however, was obtained from tissues nourished by solutions containing 2.7-3 m
M
potassium. In the present experiments, the effects of lidocaine and DPH were studied in solutions with 5.6 and 3 mM KCl. In the former, both drugs reduced MRD at concentrations similar to those found in the blood of treated patients, but in low [KCl] higher concentrations were necessary. It was concluded that there was no reason to suppose that the mode of action of lidocaine and DPH on the cardiac membrane is fundamentally different from that of quinidine, procaine, procainamide and other compounds which interfere directly with depolarization.
Collapse
|
|
54 |
171 |
21
|
Minchin MC, Iversen LL. Release of (3H)gamma-aminobutyric acid from glial cells in rat dorsal root ganglia. J Neurochem 1974; 23:533-40. [PMID: 4153611 DOI: 10.1111/j.1471-4159.1974.tb06056.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
Comparative Study |
51 |
164 |
22
|
Zhang SL, Yue Z, Arnold DM, Artiushin G, Sehgal A. A Circadian Clock in the Blood-Brain Barrier Regulates Xenobiotic Efflux. Cell 2018; 173:130-139.e10. [PMID: 29526461 PMCID: PMC5866247 DOI: 10.1016/j.cell.2018.02.017] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/22/2017] [Accepted: 02/07/2018] [Indexed: 12/29/2022]
Abstract
Endogenous circadian rhythms are thought to modulate responses to external factors, but mechanisms that confer time-of-day differences in organismal responses to environmental insults/therapeutic treatments are poorly understood. Using a xenobiotic, we find that permeability of the Drosophila "blood"-brain barrier (BBB) is higher at night. The permeability rhythm is driven by circadian regulation of efflux and depends on a molecular clock in the perineurial glia of the BBB, although efflux transporters are restricted to subperineurial glia (SPG). We show that transmission of circadian signals across the layers requires cyclically expressed gap junctions. Specifically, during nighttime, gap junctions reduce intracellular magnesium ([Mg2+]i), a positive regulator of efflux, in SPG. Consistent with lower nighttime efflux, nighttime administration of the anti-epileptic phenytoin is more effective at treating a Drosophila seizure model. These findings identify a novel mechanism of circadian regulation and have therapeutic implications for drugs targeted to the central nervous system.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
163 |
23
|
Abstract
The effect of pentobarbital (PB) and related compounds on frog motoneurons was examined with sucrose gap recording from the ventral roots. PB was found to: (1) depress the action of glutamate, (2) selectively enhance the action of GABA, (3) reverse the non-competitive picrotoxin antagonism of GABA and the competitive strychnine antagonism of beta-alanine, but not the competitive bicuculline methiodide antagonism of GABA, and (4) elicit a GABAmimetic hyperpolarization. The first three actions had a threshold concentration of 10 microM, while the GABAmimetic action required a 10-fold higher concentration. The reversal of picrotoxin's action by PB suggests that PB might modify GABA mechanisms by combining to the picrotoxin recognition site. Phenobarbital shared all of the properties of PB but was approximately one-fifth as potent. The only property that phenytoin shared with PB was a weak depression of glutamate responses. Chlordiazepoxide selectively enhanced GABA responses but was devoid of the other actions of PB. These results suggest that the GABAmimetic effect of PB may be an important feature in the depressant and anesthetic properties of PB. The anesthetic chloralose, which is structurally unrelated to PB, nevertheless shared all of the actions of PB. This finding suggests that the properties described for PB may also be found in other general anesthetics.
Collapse
|
|
45 |
162 |
24
|
Chen R, Samii A, Caños M, Wassermann EM, Hallett M. Effects of phenytoin on cortical excitability in humans. Neurology 1997; 49:881-3. [PMID: 9305361 DOI: 10.1212/wnl.49.3.881] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We studied the effects of a loading dose of phenytoin on motor cortex excitability in five healthy volunteers. Phenytoin elevated motor thresholds to transcranial magnetic stimulation (TMS) in all subjects, but had no effects on motor-evoked potential amplitudes, silent period durations, and intracortical excitability tested by paired TMS during rest and voluntary muscle activation. These results are consistent with the hypothesis that blockade of voltage-gated sodium channels decreases membrane excitability and elevates the threshold to TMS, but will not reduce intracortical excitability.
Collapse
|
|
28 |
162 |
25
|
Veronese ME, Mackenzie PI, Doecke CJ, McManus ME, Miners JO, Birkett DJ. Tolbutamide and phenytoin hydroxylations by cDNA-expressed human liver cytochrome P4502C9. Biochem Biophys Res Commun 1991; 175:1112-8. [PMID: 2025243 DOI: 10.1016/0006-291x(91)91680-b] [Citation(s) in RCA: 157] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A human cytochrome P4502C9 cDNA clone has been isolated from a human liver bacteriophage Lambda gt11 library using oligonucleotide probes. Expression of the 1762 base pair cDNA in COS cells demonstrated that the encoded enzyme has a molecular mass of 55 kDa as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The expressed enzyme catalysed the methylhydroxylation of tolbutamide with an apparent Km of 131.7 microM, similar to that observed in human liver microsomes. P4502C9 also catalysed the 4-hydroylation of phenytoin, and inhibition experiments demonstrated that phenytoin was a competitive inhibitor of tolbutamide hydroxylation with an apparent Ki of 19.1 microM. Sulphaphenazole was a potent inhibitor of the expressed enzyme with respect to both tolbutamide and phenytoin hydroxylations. These data demonstrate that a single isozyme can catalyse the hydroxylations of both tolbutamide and phenytoin, and suggest that both reactions are mediated by the same isozyme(s) of cytochrome P450 in human liver.
Collapse
|
|
34 |
157 |