1
|
Truernit E, Bauby H, Dubreucq B, Grandjean O, Runions J, Barthélémy J, Palauqui JC. High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of Phloem development and structure in Arabidopsis. THE PLANT CELL 2008; 20:1494-503. [PMID: 18523061 PMCID: PMC2483377 DOI: 10.1105/tpc.107.056069] [Citation(s) in RCA: 404] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 05/06/2008] [Accepted: 05/14/2008] [Indexed: 05/17/2023]
Abstract
Currently, examination of the cellular structure of plant organs and the gene expression therein largely relies on the production of tissue sections. Here, we present a staining technique that can be used to image entire plant organs using confocal laser scanning microscopy. This technique produces high-resolution images that allow three-dimensional reconstruction of the cellular organization of plant organs. Importantly, three-dimensional domains of gene expression can be analyzed with single-cell precision. We used this technique for a detailed examination of phloem cells in the wild type and mutants. We were also able to recognize phloem sieve elements and their differentiation state in any tissue type and visualize the structure of sieve plates. We show that in the altered phloem development mutant, a hybrid cell type with phloem and xylem characteristics develops from initially normally differentiated protophloem cells. The simplicity of sieve element data collection allows for the statistical analysis of structural parameters of sieve plates, essential for the calculation of phloem conductivity. Taken together, this technique significantly improves the speed and accuracy of the investigation of plant growth and development.
Collapse
|
research-article |
17 |
404 |
2
|
Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. PLANT PHYSIOLOGY 2009; 150:1541-55. [PMID: 19465578 PMCID: PMC2705054 DOI: 10.1104/pp.109.139139] [Citation(s) in RCA: 329] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/18/2009] [Indexed: 05/18/2023]
Abstract
Comprehensive expression profiles of Arabidopsis (Arabidopsis thaliana) MIRNA genes and mature microRNAs (miRs) are currently not available. We established a quantitative real-time polymerase chain reaction platform that allows rapid and sensitive quantification of 177 Arabidopsis primary miR transcripts (pri-miRs). The platform was used to detect phosphorus (P) or nitrogen (N) status-responsive pri-miR species. Several pri-miR169 species as well as pri-miR398a were found to be repressed during N limitation, whereas during P limitation, pri-miR778, pri-miR827, and pri-miR399 species were induced and pri-miR398a was repressed. The corresponding responses of the biologically active, mature miRs were confirmed using specific stem-loop reverse transcription primer quantitative polymerase chain reaction assays and small RNA sequencing. Interestingly, the latter approach also revealed high abundance of some miR star strands. Bioinformatic analysis of small RNA sequences with a modified miRDeep algorithm led to the identification of the novel P limitation-induced miR2111, which is encoded by two loci in the Arabidopsis genome. Furthermore, miR2111, miR169, a miR827-like sequence, and the abundances of several miR star strands were found to be strongly dependent on P or N status in rapeseed (Brassica napus) phloem sap, flagging them as candidate systemic signals. Taken together, these results reveal the existence of complex small RNA-based regulatory networks mediating plant adaptation to mineral nutrient availability.
Collapse
|
research-article |
16 |
329 |
3
|
Etchells JP, Turner SR. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 2010; 137:767-74. [PMID: 20147378 DOI: 10.1242/dev.044941] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Controlling the orientation of cell division is fundamental to the development of complex body plans. This is particularly apparent in plants, where development is determined by differential growth that results solely from changes in cell expansion and orientation of the cell division plane. Despite the fundamental importance of cell division orientation to plant development, the mechanisms regulating this process remain almost completely unknown. During vascular development, the meristematic cambial cells divide down their long axis in a highly orientated manner to generate clear files of cells. The receptor kinase PXY has previously be shown to be essential for this orientation. Here, we demonstrate that the division plane is determined by the interactions of PXY and its peptide ligand, CLE41. PXY is expressed within dividing meristematic cells of the procambium, whereas CLE41 localises to the adjacent phloem cells. Altering the pattern of CLE41 expression leads to a loss of cell division orientation and a dramatic loss of ordered vascular tissue development. By contrast, increasing phloem-specific expression of CLE41 results in more cell divisions, but the orientation of cell division is retained, leading to both increased and well-ordered vascular development. We demonstrate that PXY signalling is down-regulated by CLE41. This feedback mechanism is crucial in integrating the different roles of PXY signalling in controlling xylem differentiation, regulating the rate of vascular cell division and determining the orientation of cell division. Parallels with animal systems indicate that localised signalling from adjacent cells is a general mechanism for defining the plane of cell division.
Collapse
|
|
15 |
259 |
4
|
Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J. Identification and characterization of small RNAs from the phloem of Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:739-49. [PMID: 18005229 DOI: 10.1111/j.1365-313x.2007.03368.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Systemic signalling is indispensable for the coordination of diverse physiological processes during development, defence and nutrient allocation. Indirect evidence suggests that plant small RNAs (smRNAs) could be involved in long-distance information transfer via the vasculature of the plant. Analyses of the smRNA complements of vascular exudates from oilseed rape (Brassica napus) showed that xylem sap is devoid of RNA, whereas phloem sap contained a large number of smRNAs. In addition to 32 annotated microRNAs (miRNAs) from 18 different families that could be identified and approved, a set of unknown smRNAs, predominantly of 21 and 24 nucleotides in length, was obtained, and selected candidates were found to be highly abundant in phloem sap. Moreover, we could demonstrate that the levels of three miRNAs known to respond to nutrient deprivation in non-vascular tissue, miR395 (sulphate), miR398 (copper) and miR399 (phosphate), were increased in phloem sap during the growth of plants under the respective starvation conditions. Interestingly, only mature miRNA molecules were found to be stress responsive, demonstrating that single-stranded sense miRNAs are most likely to represent the physiologically relevant molecules. The strong responses in the phloem suggest a role of miRNAs in systemic information transfer via this long-distance transport system.
Collapse
|
|
17 |
245 |
5
|
Zhang Y, Xu YH, Yi HY, Gong JM. Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:400-10. [PMID: 22731699 DOI: 10.1111/j.1365-313x.2012.05088.x] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plant vacuole is an important organelle for storing excess iron (Fe), though its contribution to increasing the Fe content in staple foods remains largely unexplored. In this study we report the isolation and functional characterization of two rice genes OsVIT1 and OsVIT2, orthologs of the Arabidopsis VIT1. Transient expression of OsVIT1:EGFP and OsVIT2:EGFP protein fusions revealed that OsVIT1 and OsVIT2 are localized to the vacuolar membrane. Ectopic expression of OsVIT1 and OsVIT2 partially rescued the Fe(2+) - and Zn(2+) -sensitive phenotypes in yeast mutant Δccc1 and Δzrc1, and further increased vacuolar Fe(2+) , Zn(2+) and Mn(2+) accumulation. These data together suggest that OsVIT1 and OsVIT2 function to transport Fe(2+) , Zn(2+) and Mn(2+) across the tonoplast into vacuoles in yeast. In rice, OsVIT1 and OsVIT2 are highly expressed in flag leaf blade and sheath, respectively, and in contrast to OsVIT1, OsVIT2 is highly responsive to Fe treatments. Interestingly, functional disruption of OsVIT1 and OsVIT2 leads to increased Fe/Zn accumulation in rice seeds and a corresponding decrease in the source organ flag leaves, indicating an enhanced Fe/Zn translocation between source and sink organs, which might represent a novel strategy to biofortify Fe/Zn in staple foods.
Collapse
|
|
13 |
220 |
6
|
Fan SC, Lin CS, Hsu PK, Lin SH, Tsay YF. The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. THE PLANT CELL 2009; 21:2750-61. [PMID: 19734434 PMCID: PMC2768937 DOI: 10.1105/tpc.109.067603] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 08/13/2009] [Accepted: 08/20/2009] [Indexed: 05/18/2023]
Abstract
Several quantitative trait locus analyses have suggested that grain yield and nitrogen use efficiency are well correlated with nitrate storage capacity and efficient remobilization. This study of the Arabidopsis thaliana nitrate transporter NRT1.7 provides new insights into nitrate remobilization. Immunoblots, quantitative RT-PCR, beta-glucuronidase reporter analysis, and immunolocalization indicated that NRT1.7 is expressed in the phloem of the leaf minor vein and that its expression levels increase coincidentally with the source strength of the leaf. In nrt1.7 mutants, more nitrate was present in the older leaves, less (15)NO(3)(-) spotted on old leaves was remobilized into N-demanding tissues, and less nitrate was detected in the phloem exudates of old leaves. These data indicate that NRT1.7 is responsible for phloem loading of nitrate in the source leaf to allow nitrate transport out of older leaves and into younger leaves. Interestingly, nrt1.7 mutants showed growth retardation when external nitrogen was depleted. We conclude that (1) nitrate itself, in addition to organic forms of nitrogen, is remobilized, (2) nitrate remobilization is important to sustain vigorous growth during nitrogen deficiency, and (3) source-to-sink remobilization of nitrate is mediated by phloem.
Collapse
|
research-article |
16 |
219 |
7
|
Meng X, Muszynski MG, Danilevskaya ON. The FT-like ZCN8 Gene Functions as a Floral Activator and Is Involved in Photoperiod Sensitivity in Maize. THE PLANT CELL 2011; 23:942-60. [PMID: 21441432 PMCID: PMC3082274 DOI: 10.1105/tpc.110.081406] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/08/2011] [Accepted: 03/04/2011] [Indexed: 05/18/2023]
Abstract
The mobile floral-promoting signal, florigen, is thought to consist of, in part, the FT protein named after the Arabidopsis thaliana gene FLOWERING LOCUS T. FT is transcribed and translated in leaves and its protein moves via the phloem to the shoot apical meristem where it promotes the transition from vegetative to reproductive development. In our search for a maize FT-like floral activator(s), seven Zea mays CENTRORADIALIS (ZCN) genes encoding FT homologous proteins were studied. ZCN8 stood out as the only ZCN having the requisite characteristics for possessing florigenic activity. In photoperiod sensitive tropical lines, ZCN8 transcripts were strongly upregulated in a diurnal manner under floral-inductive short days. In day-neutral temperate lines, ZCN8 mRNA level was independent of daylength and displayed only a weak cycling pattern. ZCN8 is normally expressed in leaf phloem, but ectopic expression of ZCN8 in vegetative stage shoot apices induced early flowering in transgenic plants. Silencing of ZCN8 by artificial microRNA resulted in late flowering. ZCN8 was placed downstream of indeterminate1 and upstream of delayed flowering1, two other floral activator genes. We propose a flowering model linking photoperiod sensitivity of tropical maize to diurnal regulation of ZCN8.
Collapse
|
research-article |
14 |
218 |
8
|
Buhtz A, Pieritz J, Springer F, Kehr J. Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC PLANT BIOLOGY 2010; 10:64. [PMID: 20388194 PMCID: PMC2923538 DOI: 10.1186/1471-2229-10-64] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 04/13/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Nutrient availabilities and needs have to be tightly coordinated between organs to ensure a balance between uptake and consumption for metabolism, growth, and defense reactions. Since plants often have to grow in environments with sub-optimal nutrient availability, a fine tuning is vital. To achieve this, information has to flow cell-to-cell and over long-distance via xylem and phloem. Recently, specific miRNAs emerged as a new type of regulating molecules during stress and nutrient deficiency responses, and miR399 was suggested to be a phloem-mobile long-distance signal involved in the phosphate starvation response. RESULTS We used miRNA microarrays containing all known plant miRNAs and a set of unknown small (s) RNAs earlier cloned from Brassica phloem sap 1, to comprehensively analyze the phloem response to nutrient deficiency by removing sulfate, copper or iron, respectively, from the growth medium. We show that phloem sap contains a specific set of sRNAs that is distinct from leaves and roots, and that the phloem also responds specifically to stress. Upon S and Cu deficiencies phloem sap reacts with an increase of the same miRNAs that were earlier characterized in other tissues, while no clear positive response to -Fe was observed. However, -Fe led to a reduction of Cu- and P-responsive miRNAs. We further demonstrate that under nutrient starvation miR399 and miR395 can be translocated through graft unions from wild type scions to rootstocks of the miRNA processing hen1-1 mutant. In contrast, miR171 was not transported. Translocation of miR395 led to a down-regulation of one of its targets in rootstocks, suggesting that this transport is of functional relevance, and that miR395, in addition to the well characterized miR399, could potentially act as a long-distance information transmitter. CONCLUSIONS Phloem sap contains a specific set of sRNAs, of which some specifically accumulate in response to nutrient deprivation. From the observation that miR395 and miR399 are phloem-mobile in grafting experiments we conclude that translocatable miRNAs might be candidates for information-transmitting molecules, but that grafting experiments alone are not sufficient to convincingly assign a signaling function.
Collapse
|
research-article |
15 |
204 |
9
|
Zhang S, Sun L, Kragler F. The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation. PLANT PHYSIOLOGY 2009; 150:378-87. [PMID: 19261735 PMCID: PMC2675743 DOI: 10.1104/pp.108.134767] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/01/2009] [Indexed: 05/18/2023]
Abstract
In plants, the vascular tissue contains the enucleated sieve tubes facilitating long-distance transport of nutrients, hormones, and proteins. In addition, several mRNAs and small interfering RNAs/microRNAs were shown to be delivered via sieve tubes whose content is embodied by the phloem sap (PS). A number of these phloem transcripts are transported from source to sink tissues and function at targeted tissues. To gain additional insights into phloem-delivered RNAs and their potential role in signaling, we isolated and characterized PS RNA molecules distinct from microRNAs/small interfering RNAs with a size ranging from 30 to 90 bases. We detected a high number of full-length and phloem-specific fragments of noncoding RNAs such as tRNAs, ribosomal RNAs, and spliceosomal RNAs in the PS of pumpkin (Cucurbita maxima). In vitro assays show that small quantities of PS RNA molecules efficiently inhibit translation in an unspecific manner. Proof of concept that PS-specific tRNA fragments may interfere with ribosomal activity was obtained with artificially produced tRNA fragments. The results are discussed in terms of a functional role for long distance delivered noncoding PS RNAs.
Collapse
MESH Headings
- Cucurbita/genetics
- Cucurbita/metabolism
- Phloem/genetics
- Phloem/metabolism
- Plant Proteins/metabolism
- Plant Proteins/physiology
- Protein Biosynthesis
- RNA Processing, Post-Transcriptional
- RNA, Plant/isolation & purification
- RNA, Plant/metabolism
- RNA, Plant/physiology
- RNA, Ribosomal/isolation & purification
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/physiology
- RNA, Small Interfering/isolation & purification
- RNA, Small Interfering/metabolism
- RNA, Small Interfering/physiology
- RNA, Transfer/chemistry
- RNA, Transfer/isolation & purification
- RNA, Transfer/metabolism
- RNA, Transfer/physiology
Collapse
|
research-article |
16 |
189 |
10
|
Bhogale S, Mahajan AS, Natarajan B, Rajabhoj M, Thulasiram HV, Banerjee AK. MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. PLANT PHYSIOLOGY 2014; 164:1011-27. [PMID: 24351688 PMCID: PMC3912076 DOI: 10.1104/pp.113.230714] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/13/2013] [Indexed: 05/18/2023]
Abstract
MicroRNA156 (miR156) functions in maintaining the juvenile phase in plants. However, the mobility of this microRNA has not been demonstrated. So far, only three microRNAs, miR399, miR395, and miR172, have been shown to be mobile. We demonstrate here that miR156 is a potential graft-transmissible signal that affects plant architecture and tuberization in potato (Solanum tuberosum). Under tuber-noninductive (long-day) conditions, miR156 shows higher abundance in leaves and stems, whereas an increase in abundance of miR156 has been observed in stolons under tuber-inductive (short-day) conditions, indicative of a photoperiodic control. Detection of miR156 in phloem cells of wild-type plants and mobility assays in heterografts suggest that miR156 is a graft-transmissible signal. This movement was correlated with changes in leaf morphology and longer trichomes in leaves. Overexpression of miR156 in potato caused a drastic phenotype resulting in altered plant architecture and reduced tuber yield. miR156 overexpression plants also exhibited altered levels of cytokinin and strigolactone along with increased levels of LONELY GUY1 and StCyclin D3.1 transcripts as compared with wild-type plants. RNA ligase-mediated rapid amplification of complementary DNA ends analysis validated SQUAMOSA PROMOTER BINDING-LIKE3 (StSPL3), StSPL6, StSPL9, StSPL13, and StLIGULELESS1 as targets of miR156. Gel-shift assays indicate the regulation of miR172 by miR156 through StSPL9. miR156-resistant SPL9 overexpression lines exhibited increased miR172 levels under a short-day photoperiod, supporting miR172 regulation via the miR156-SPL9 module. Overall, our results strongly suggest that miR156 is a phloem-mobile signal regulating potato development.
Collapse
|
research-article |
11 |
186 |
11
|
Waters MT, Moylan EC, Langdale JA. GLK transcription factors regulate chloroplast development in a cell-autonomous manner. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:432-44. [PMID: 18643989 DOI: 10.1111/j.1365-313x.2008.03616.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In a number of land plants, Golden2-like (GLK) genes encode a pair of partially redundant nuclear transcription factors that are required for the expression of nuclear photosynthetic genes and for chloroplast development. As chloroplast biogenesis depends on close co-operation between the nuclear and plastid compartments, GLK gene function must be dependent on tight intracellular control. However, the extent to which GLK-mediated chloroplast development depends on intercellular communication is not known. Here we used sector analysis to show that GLK proteins operate cell-autonomously in leaf mesophyll cells. To establish whether GLK proteins are able to influence adjacent cell layers, we used tissue-specific promoters to restrict GLK gene expression to the epidermis and to the phloem. GLK genes driven by the Arabidopsis epidermal FIDDLEHEAD (FDH) and MERISTEM LAYER1 (AtML1) promoters failed to rescue the pale-green Atglk1 Atglk2 mutant phenotype, confirming the suggestion that GLK proteins can only influence chloroplast development intracellularly. An exception to this rule was seen in lines in which GLK genes were expressed in the phloem. However, we believe that the partial complementation of the mutant phenotype that was observed resulted from phloem unloading, as opposed to inherent properties of GLK proteins. We conclude that GLK proteins act in a cell-autonomous manner to coordinate and maintain the photosynthetic apparatus within individual cells. Significantly, this suggests that GLK proteins provide a means to fine-tune photosynthesis according to the differential requirements of cells within the leaf.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Chlorophyll/metabolism
- Chloroplasts/genetics
- Chloroplasts/physiology
- DNA, Plant/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Mutation
- Phenotype
- Phloem/genetics
- Phloem/metabolism
- Plant Epidermis/genetics
- Plant Epidermis/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Promoter Regions, Genetic
- RNA, Plant/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
|
|
17 |
170 |
12
|
Kobayashi NI, Yamaji N, Yamamoto H, Okubo K, Ueno H, Costa A, Tanoi K, Matsumura H, Fujii-Kashino M, Horiuchi T, Nayef MA, Shabala S, An G, Ma JF, Horie T. OsHKT1;5 mediates Na + exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:657-670. [PMID: 28488420 DOI: 10.1111/tpj.13595] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 05/18/2023]
Abstract
Salt tolerance quantitative trait loci analysis of rice has revealed that the SKC1 locus, which is involved in a higher K+ /Na+ ratio in shoots, corresponds to the OsHKT1;5 gene encoding a Na+ -selective transporter. However, physiological roles of OsHKT1;5 in rice exposed to salt stress remain elusive, and no OsHKT1;5 gene disruption mutants have been characterized to date. In this study, we dissected two independent T-DNA insertional OsHKT1;5 mutants. Measurements of ion contents in tissues and 22 Na+ tracer imaging experiments showed that loss-of-function of OsHKT1;5 in salt-stressed rice roots triggers massive Na+ accumulation in shoots. Salt stress-induced increases in the OsHKT1;5 transcript were observed in roots and basal stems, including basal nodes. Immuno-staining using an anti-OsHKT1;5 peptide antibody indicated that OsHKT1;5 is localized in cells adjacent to the xylem in roots. Additionally, direct introduction of 22 Na+ tracer to leaf sheaths also demonstrated the involvement of OsHKT1;5 in xylem Na+ unloading in leaf sheaths. Furthermore, OsHKT1;5 was indicated to be present in the plasma membrane and found to localize also in the phloem of diffuse vascular bundles in basal nodes. Together with the characteristic 22 Na+ allocation in the blade of the developing immature leaf in the mutants, these results suggest a novel function of OsHKT1;5 in mediating Na+ exclusion in the phloem to prevent Na+ transfer to young leaf blades. Our findings further demonstrate that the function of OsHKT1;5 is crucial over growth stages of rice, including the protection of the next generation seeds as well as of vital leaf blades under salt stress.
Collapse
|
|
8 |
149 |
13
|
Durand M, Porcheron B, Hennion N, Maurousset L, Lemoine R, Pourtau N. Water Deficit Enhances C Export to the Roots in Arabidopsis thaliana Plants with Contribution of Sucrose Transporters in Both Shoot and Roots. PLANT PHYSIOLOGY 2016; 170:1460-79. [PMID: 26802041 PMCID: PMC4775148 DOI: 10.1104/pp.15.01926] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/21/2016] [Indexed: 05/20/2023]
Abstract
Root high plasticity is an adaptation to its changing environment. Water deficit impairs growth, leading to sugar accumulation in leaves, part of which could be available to roots via sucrose (Suc) phloem transport. Phloem loading is widely described in Arabidopsis (Arabidopsis thaliana), while unloading in roots is less understood. To gain information on leaf-to-root transport, a soil-based culture system was developed to monitor root system architecture in two dimensions. Under water deficit (50% of soil water-holding capacity), total root length was strongly reduced but the depth of root foraging and the shape of the root system were less affected, likely to improve water uptake. (14)CO2 pulse-chase experiments confirmed that water deficit enhanced carbon (C) export to the roots, as suggested by the increased root-to-shoot ratio. The transcript levels of AtSWEET11 (for sugar will eventually be exported transporter), AtSWEET12, and AtSUC2 (for Suc carrier) genes, all three involved in Suc phloem loading, were significantly up-regulated in leaves of water deficit plants, in accordance with the increase in C export from the leaves to the roots. Interestingly, the transcript levels of AtSUC2 and AtSWEET11 to AtSWEET15 were also significantly higher in stressed roots, underlying the importance of Suc apoplastic unloading in Arabidopsis roots and a putative role for these Suc transporters in Suc unloading. These data demonstrate that, during water deficit, plants respond to growth limitation by allocating relatively more C to the roots to maintain an efficient root system and that a subset of Suc transporters is potentially involved in the flux of C to and in the roots.
Collapse
|
research-article |
9 |
141 |
14
|
Ohashi-Ito K, Bergmann DC. Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. Development 2007; 134:2959-68. [PMID: 17626058 PMCID: PMC3145339 DOI: 10.1242/dev.006296] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Complex organisms consist of a multitude of cell types arranged in a precise spatial relation to each other. Arabidopsis roots generally exhibit radial tissue organization; however, within a tissue layer, cells are not identical. Specific vascular cell types are arranged in diametrically opposed longitudinal files that maximize the distance between them and create a bilaterally symmetric (diarch) root. Mutations in the LONESOME HIGHWAY (LHW) gene eliminate bilateral symmetry and reduce the number of cells in the center of the root, resulting in roots with only single xylem and phloem poles. LHW does not appear to be required for the creation of any specific cell type, but coordinately controls the number of all vascular cell types by regulating the size of the pool of cells from which they arise. We cloned LHW and found that it encodes a protein with weak sequence similarity to basic helix-loop-helix (bHLH)-domain proteins. LHW is a transcriptional activator in vitro. In plants, LHW is nuclear-localized and is expressed in the root meristems, where we hypothesize it acts independently of other known root-patterning genes to promote the production of stele cells, but might also indirectly feed into established regulatory networks for the maintenance of the root meristem.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
127 |
15
|
Zheng L, Yamaji N, Yokosho K, Ma JF. YSL16 is a phloem-localized transporter of the copper-nicotianamine complex that is responsible for copper distribution in rice. THE PLANT CELL 2012; 24:3767-82. [PMID: 23012434 PMCID: PMC3480301 DOI: 10.1105/tpc.112.103820] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 08/26/2012] [Accepted: 09/05/2012] [Indexed: 05/19/2023]
Abstract
Cu is an essential element for plant growth, but the molecular mechanisms of its distribution and redistribution within the plants are unknown. Here, we report that Yellow stripe-like16 (YSL16) is involved in Cu distribution and redistribution in rice (Oryza sativa). Rice YSL16 was expressed in the roots, leaves, and unelongated nodes at the vegetative growth stage and highly expressed in the upper nodes at the reproductive stage. YSL16 was expressed at the phloem of nodes and vascular tissues of leaves. Knockout of this gene resulted in a higher Cu concentration in the older leaves but a lower concentration in the younger leaves at the vegetative stage. At the reproductive stage, a higher Cu concentration was found in the flag leaf and husk, but less Cu was present in the brown rice, resulting in a significant reduction in fertility in the knockout line. Isotope labeling experiments with (65)Cu showed that the mutant lost the ability to transport Cu-nicotianamine from older to younger leaves and from the flag leaf to the panicle. Rice YSL16 transported the Cu-nicotianamine complex in yeast. Taken together, our results indicate that Os-YSL16 is a Cu-nicotianamine transporter that is required for delivering Cu to the developing young tissues and seeds through phloem transport.
Collapse
|
research-article |
13 |
125 |
16
|
Deeken R, Ache P, Kajahn I, Klinkenberg J, Bringmann G, Hedrich R. Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:746-59. [PMID: 18485061 DOI: 10.1111/j.1365-313x.2008.03555.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phloem-mobile signals play a major role in plant nutrition, development and communication. In the latter context, phloem-mobile RNAs have been associated with signalling between plant tissues. In this study, we focused on the identification of transcripts in the shoot phloem of the model plant Arabidopsis thaliana. To isolate transcripts expressed in phloem parenchyma cells and in companion cell-sieve element complexes, we used laser microdissection coupled to laser pressure catapulting (LMPC). Mobile transcripts in sieve elements were isolated from leaf phloem exudates. After optimization of sampling and fixation, RNA of high quality was isolated from both sources. The modifications to the RNA amplification procedure described here were well suited to production of RNA of sufficient yield and quality for microarray experiments. Microarrays hybridized with LMPC-derived phloem tissue or phloem sap RNA allowed differentiation between phloem-expressed and mobile transcript species. Using this set of phloem transcripts and comparing them with microarrays derived from databases of light, hormone and nutrient treatment experiments, we identified phloem-derived RNAs as mobile, potential long-distance signals. Our dataset thus provides a search criterion for phloem-based signals hidden in the complex datasets of microarray experiments. The availability of these comprehensive phloem transcript profiles will facilitate reverse-genetic studies and forward-genetic screens for phloem and long-distance RNA signalling mutants.
Collapse
|
|
17 |
113 |
17
|
Abstract
The plant vascular system plays a central role in coordinating physiological and developmental events through delivery of both essential nutrients and long-distance signaling agents. The enucleate phloem sieve tube system of the angiosperms contains a broad spectrum of RNA species. Grafting and transcriptomics studies have indicated that several thousand mRNAs move long distances from source organs to meristematic sink tissues. Ribonucleoprotein complexes play a pivotal role as stable RNA-delivery systems for systemic translocation of cargo RNA. In this review, we assess recent progress in the characterization of phloem and plasmodesmal transport as an integrated local and systemic communication network. We discuss the roles of phloem-mobile small RNAs in epigenetic events, including meristem development and genome stability, and the delivery of mRNAs to specific tissues in response to environmental inputs. A large body of evidence now supports a model in which phloem-mobile RNAs act as critical components of gene regulatory networks involved in plant growth, defense, and crop yield at the whole-plant level.
Collapse
|
Review |
8 |
103 |
18
|
Hunt E, Gattolin S, Newbury HJ, Bale JS, Tseng HM, Barrett DA, Pritchard J. A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:55-64. [PMID: 19755569 PMCID: PMC2791111 DOI: 10.1093/jxb/erp274] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 05/18/2023]
Abstract
The aim of this study was to investigate the role of the amino acid permease gene AAP6 in regulating phloem amino acid composition and then to determine the effects of this altered diet on aphid performance. A genotype of Arabidopsis thaliana (L.) was produced in which the function of the amino acid permease gene AAP6 (At5g49630) was abolished. Plants homozygous for the insertionally inactivated AAP6 gene had a significantly larger mean rosette width than the wild type and a greater number of cauline leaves. Seeds from the aap6 mutant were also significantly larger than those from the wild-type plants. Sieve element (SE) sap was collected by aphid stylectomy and the amino acids derivatized, separated, and quantified using Capillary Electrophoresis with Laser Induced Fluorescence (CE-LIF). In spite of the large variation across samples, the total amino acid concentration of SE sap of the aap6 mutant plants was significantly lower than that of the wild-type plants. The concentrations of lysine, phenylalanine, leucine, and aspartic acid were all significantly lower in concentration in the aap6 mutant plants compared with wild-type plants. This is the first direct demonstration of a physiological role for an amino acid transporter in regulating SE composition in vivo. The amino acid availability in sieve element sap is thought to be the major limiting factor for aphid growth and reproduction. Despite the changes in their diet, the aphid Myzus persicae (Sulzer) displayed only small changes in feeding behaviour on mutant plants when measured using the Electronic Penetration Graph (EPG) technique. Salivation by the aphid into the SE (E1 phase) was increased on mutant plants but there was no significant effect on other feeding EPG behaviours, or in the rate of honeydew production. Consistent with the small effect on aphid feeding behaviour, there was only a small effect of reduced sieve element amino acid concentration on aphid reproduction. The data are discussed in relation to the regulation of phloem composition and the role of phloem amino acids in regulating aphid performance.
Collapse
|
research-article |
15 |
101 |
19
|
Santiago JP, Tegeder M. Connecting Source with Sink: The Role of Arabidopsis AAP8 in Phloem Loading of Amino Acids. PLANT PHYSIOLOGY 2016; 171:508-21. [PMID: 27016446 PMCID: PMC4854717 DOI: 10.1104/pp.16.00244] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/24/2016] [Indexed: 05/18/2023]
Abstract
Allocation of large amounts of nitrogen to developing organs occurs in the phloem and is essential for plant growth and seed development. In Arabidopsis (Arabidopsis thaliana) and many other plant species, amino acids represent the dominant nitrogen transport forms in the phloem, and they are mainly synthesized in photosynthetically active source leaves. Following their synthesis, a broad spectrum of the amino nitrogen is actively loaded into the phloem of leaf minor veins and transported within the phloem sap to sinks such as developing leaves, fruits, or seeds. Controlled regulation of the source-to-sink transport of amino acids has long been postulated; however, the molecular mechanism of amino acid phloem loading was still unknown. In this study, Arabidopsis AMINO ACID PERMEASE8 (AAP8) was shown to be expressed in the source leaf phloem and localized to the plasma membrane, suggesting its function in phloem loading. This was further supported by transport studies with aap8 mutants fed with radiolabeled amino acids and by leaf exudate analyses. In addition, biochemical and molecular analyses revealed alterations in leaf nitrogen pools and metabolism dependent on the developmental stage of the mutants. Decreased amino acid phloem loading and partitioning to sinks led to decreased silique and seed numbers, but seed protein levels were unchanged, demonstrating the importance of AAP8 function for sink development rather than seed quality. Overall, these results show that AAP8 plays an important role in source-to-sink partitioning of nitrogen and that its function affects source leaf physiology and seed yield.
Collapse
|
research-article |
9 |
100 |
20
|
Li J, Zhu L, Hull JJ, Liang S, Daniell H, Jin S, Zhang X. Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1956-75. [PMID: 26923339 PMCID: PMC5042180 DOI: 10.1111/pbi.12554] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 05/19/2023]
Abstract
The whitefly (Bemisia tabaci) causes tremendous damage to cotton production worldwide. However, very limited information is available about how plants perceive and defend themselves from this destructive pest. In this study, the transcriptomic differences between two cotton cultivars that exhibit either strong resistance (HR) or sensitivity (ZS) to whitefly were compared at different time points (0, 12, 24 and 48 h after infection) using RNA-Seq. Approximately one billion paired-end reads were obtained by Illumina sequencing technology. Gene ontology and KEGG pathway analysis indicated that the cotton transcriptional response to whitefly infestation involves genes encoding protein kinases, transcription factors, metabolite synthesis, and phytohormone signalling. Furthermore, a weighted gene co-expression network constructed from RNA-Seq datasets showed that WRKY40 and copper transport protein are hub genes that may regulate cotton defenses to whitefly infestation. Silencing GhMPK3 by virus-induced gene silencing (VIGS) resulted in suppression of the MPK-WRKY-JA and ET pathways and lead to enhanced whitefly susceptibility, suggesting that the candidate insect resistant genes identified in this RNA-Seq analysis are credible and offer significant utility. Taken together, this study provides comprehensive insights into the cotton defense system to whitefly infestation and has identified several candidate genes for control of phloem-feeding pests.
Collapse
|
research-article |
9 |
100 |
21
|
Harig L, Beinecke FA, Oltmanns J, Muth J, Müller O, Rüping B, Twyman RM, Fischer R, Prüfer D, Noll GA. Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:908-21. [PMID: 22889438 DOI: 10.1111/j.1365-313x.2012.05125.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Flowering is an important agronomic trait that often depends on the integration of photoperiod, vernalization, gibberellin and/or autonomous signaling pathways by regulatory proteins such as FLOWERING LOCUS T (FT), a member of the phosphatidylethanolamine-binding protein (PEBP) family. Six PEBP family proteins control flowering in the model plant Arabidopsis thaliana, and their regulatory functions are well established, but variation in the number and structural diversity of PEBPs in different species means their precise functions must be determined on a case-by-case basis. We isolated four novel FT-like genes from Nicotiana tabacum (tobacco), and determined their expression profiles in wild-type plants and their overexpression phenotypes in transgenic plants. We found that all four genes were expressed in leaves under short-day conditions, and at least NtFT3 expression was restricted to phloem companion cells. We also found that the NtFT1, NtFT2 and NtFT3 proteins are floral inhibitors (atypical for FT-like proteins), whereas only NtFT4 is a floral inducer. We were unable to detect the expression of these genes under long-day conditions, suggesting that all four tobacco FT-like proteins may control flowering in response to short days. Phylogenetic analysis of PEBP family proteins and their functions in different solanaceous species confirmed that gene duplication and divergence within the FT-like clade has led to the evolution of antagonistic regulators that may help to fine-tune floral initiation in response to environmental cues.
Collapse
|
|
13 |
96 |
22
|
Vincill ED, Clarin AE, Molenda JN, Spalding EP. Interacting glutamate receptor-like proteins in Phloem regulate lateral root initiation in Arabidopsis. THE PLANT CELL 2013; 25:1304-13. [PMID: 23590882 PMCID: PMC3663269 DOI: 10.1105/tpc.113.110668] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/29/2013] [Accepted: 04/04/2013] [Indexed: 05/18/2023]
Abstract
Molecular, genetic, and electrophysiological evidence indicates that at least one of the plant Glu receptor-like molecules, GLR3.4, functions as an amino acid-gated Ca²⁺channel at the plasma membrane. The aspect of plant physiology, growth, or development to which GLR3.4 contributes is an open question. Protein localization studies performed here provide important information. In roots, GLR3.4 and the related GLR3.2 protein were present primarily in the phloem, especially in the vicinity of the sieve plates. GLR3.3 was expressed in most cells of the growing primary root but was not enriched in the phloem, including the sieve plate area. GLR3.2 and GLR3.4 physically interacted with each other better than with themselves as evidenced by a biophotonic assay performed in human embryonic kidney cells and Nicotiana benthamiana leaf cells. GLR3.3 interacted poorly with itself or the other two GLRs. Mutations in GLR3.2, GLR3.4, or GLR3.2 and GLR3.4 caused the same and equally severe phenotype, namely, a large overproduction and aberrant placement of lateral root primordia. Loss of GLR3.3 did not affect lateral root primordia. These results support the hypothesis that apoplastic amino acids acting through heteromeric GLR3.2/GLR3.4 channels affect lateral root development via Ca²⁺ signaling in the phloem.
Collapse
|
research-article |
12 |
96 |
23
|
Yordanov YS, Regan S, Busov V. Members of the LATERAL ORGAN BOUNDARIES DOMAIN transcription factor family are involved in the regulation of secondary growth in Populus. THE PLANT CELL 2010; 22:3662-77. [PMID: 21097711 PMCID: PMC3015109 DOI: 10.1105/tpc.110.078634] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/04/2010] [Accepted: 10/26/2010] [Indexed: 05/18/2023]
Abstract
Regulation of secondary (woody) growth is of substantial economic and environmental interest but is poorly understood. We identified and subsequently characterized an activation-tagged poplar (Populus tremula × Populus alba) mutant with enhanced woody growth and changes in bark texture caused primarily by increased secondary phloem production. Molecular characterization of the mutation through positioning of the tag and retransformation experiments shows that the phenotype is conditioned by activation of an uncharacterized gene that encodes a novel member of the LATERAL ORGAN BOUNDARIES DOMAIN (LBD) family of transcription factors. Homology analysis showed highest similarity to an uncharacterized LBD1 gene from Arabidopsis thaliana, and we consequently named it Populus tremula × Populus alba (Pta) LBD1. Dominant-negative suppression of Pta LBD1 via translational fusion with the repressor SRDX domain caused decreased diameter growth and suppressed and highly irregular phloem development. In wild-type plants, LBD1 was most highly expressed in the phloem and cambial zone. Two key Class I KNOTTED1-like homeobox genes that promote meristem identity in the cambium were downregulated, while an Altered Phloem Development gene that is known to promote phloem differentiation was upregulated in the mutant. A set of four LBD genes, including the LBD1 gene, was predominantly expressed in wood-forming tissues, suggesting a broader regulatory role of these transcription factors during secondary woody growth in poplar.
Collapse
|
research-article |
15 |
96 |
24
|
Omid A, Keilin T, Glass A, Leshkowitz D, Wolf S. Characterization of phloem-sap transcription profile in melon plants. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:3645-56. [PMID: 17928373 DOI: 10.1093/jxb/erm214] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phloem's role as a tissue responsible for the distribution of photoassimilates and nutrients among the various organs of higher plants has long been recognized. Recent studies have established that numerous proteins and mRNA molecules are also present in the phloem translocation stream; however, limited information is available on the identity of transcripts present within the phloem sap. In this study, a genomic approach was taken to produce a transcription profile of melon phloem sap. A cDNA library was constructed from mRNAs extracted from melon phloem sap and 1900 clones were randomly selected for sequencing. Selection of high-quality sequences resulted in 986 unique transcripts corresponding to 1830 ESTs. A comparison between the phloem-sap library and publicly available libraries from leaves and fruits indicated that the transcript profile of phloem sap is unique, with a substantially higher proportion of genes associated with biotic stimulus, response to stress, and metal-ion binding. Manual functional analyses revealed that over 40% of the transcripts are related to stress and defence responses, while over 15% of them are related to signal transduction. Out of the 1830 ESTs, only three were characterized as coding for chlorophyll-binding protein or ribulose bisphosphate carboxylase. Heterografting experiments established that six out of 43 examined transcripts are capable of long-distance trafficking from melon stocks to pumpkin scions. Annotation of these six transcripts revealed that three of them are associated with auxin-signal transduction while the other three were not identified. The potential role of the expressed transcripts in the phloem sap is discussed.
Collapse
|
|
18 |
94 |
25
|
Gao LL, Anderson JP, Klingler JP, Nair RM, Edwards OR, Singh KB. Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:82-93. [PMID: 17249425 DOI: 10.1094/mpmi-20-0082] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Aphids are major insect pests of plants that feed directly from the phloem. We used the model legume Medicago truncatula Gaert. (barrel medic) to elucidate host resistance to aphids and identified a single dominant gene which confers resistance to Acyrthosiphon kondoi Shinji (bluegreen aphid). To understand how this gene conditions resistance to bluegreen aphid, transcription profiling of 23 defense-related genes representing various signaling pathways was undertaken using a pair of near-isogenic lines that are susceptible or resistant to bluegreen aphid. All salicylic acid- and ethylene-responsive genes tested were induced by bluegreen aphid in resistant and susceptible plants, although there were some differences in the magnitude and kinetics of the induction. In contrast, 10 of 13 genes associated with the octadecanoid pathway were induced exclusively in the resistant plants following bluegreen aphid infestation. These results are in contrast to plant-pathogen interactions where similar sets of defense genes typically are induced in compatible interactions, but to a lesser degree and later than in incompatible interactions. Treatment of susceptible plants with methyl jasmonate reduced bluegreen aphid infestation but not to the same levels as the resistant line. Together, these results strongly suggest that the octadecanoid pathway is important for this naturally derived aphid resistance trait.
Collapse
|
|
18 |
93 |