1
|
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WHW, DiDonato JA, Lusis AJ, Hazen SL. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472:57-63. [PMID: 21475195 PMCID: PMC3086762 DOI: 10.1038/nature09922] [Citation(s) in RCA: 4010] [Impact Index Per Article: 286.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 02/09/2011] [Indexed: 02/06/2023]
Abstract
Metabolomics studies hold promise for the discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. Here we used a metabolomics approach to generate unbiased small-molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine--choline, trimethylamine N-oxide (TMAO) and betaine--were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted upregulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary-choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases, an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidaemic mice. Discovery of a relationship between gut-flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for the development of new diagnostic tests and therapeutic approaches for atherosclerotic heart disease.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
4010 |
2
|
Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost HG, Fritsche A, Häring HU, Hrabě de Angelis M, Peters A, Roden M, Prehn C, Wang-Sattler R, Illig T, Schulze MB, Adamski J, Boeing H, Pischon T. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 2013; 62:639-48. [PMID: 23043162 PMCID: PMC3554384 DOI: 10.2337/db12-0495] [Citation(s) in RCA: 775] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolomic discovery of biomarkers of type 2 diabetes (T2D) risk may reveal etiological pathways and help to identify individuals at risk for disease. We prospectively investigated the association between serum metabolites measured by targeted metabolomics and risk of T2D in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. Variance of the metabolites was largely explained by two metabolite factors with opposing risk associations (factor 1 relative risk in extreme quintiles 0.31 [95% CI 0.21-0.44], factor 2 3.82 [2.64-5.52]). The metabolites significantly improved T2D prediction compared with established risk factors. They were further linked to insulin sensitivity and secretion in the Tübingen Family study and were partly replicated in the independent KORA (Cooperative Health Research in the Region of Augsburg) cohort. The data indicate that metabolic alterations, including sugar metabolites, amino acids, and choline-containing phospholipids, are associated early on with a higher risk of T2D.
Collapse
|
research-article |
12 |
775 |
3
|
Takayama M, Itoh S, Nagasaki T, Tanimizu I. A new enzymatic method for determination of serum choline-containing phospholipids. Clin Chim Acta 1977; 79:93-8. [PMID: 890967 DOI: 10.1016/0009-8981(77)90465-x] [Citation(s) in RCA: 772] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new enzymatic method is presented for the determination of serum choline-containing phospholipids with a combined enzymatic method using phospholipase D (from Streptomyces species), choline oxidase (from Arthrobacter species) and peroxidase. The method is reproducible, and the results correlate well with those obtained by the conventional digestion method (Hoeflmayr, J. and Fried, R. (1966) Med. Ernaehr. 7, 9-10). The method affords better specificity, requires a smaller quantity of the sample and shorter time than those previously reported, and has excellent precision.
Collapse
|
|
48 |
772 |
4
|
Abstract
New lipidic carriers suitable for the sustained drug release in vivo are presented. They consist of middle sized, compact phospholipid vesicles with one or up to few lipid bilayers which are sterically stabilized with a small amount of large-head phospholipids. As an example, phosphatidylcholine (PC) liposomes casted with up to 10 mol% of phosphatidylethanolamine with a covalently attached polyethyleneglycol 5000 headgroup (PE-PEG) are discussed. Such vesicles exhibit a very long circulation time after an i.v. administration in mice; the improvement over pure phosphatidylcholine liposomes within the first 24 h exceeds 8000%, at this point nearly 25% of the applied PE-PEG liposomes being still in the circulation. This advantage is a consequence of reduced phagocytosis of the lipidic carriers, as shown by an in vitro assay with blood monocyte cells in the flow cytometric experiments. For example, after 6 h incubation with THP-1 monocyte cells in human plasma the difference between the uptake of standard distearoylphosphatidylcholine (DSPC) and novel liposomes containing 10% distearoylphosphatidylethanolamine-PEG is by 1000%. Vesicles with 2.5 mol% DSPE-PEG are also taken-up via phagocytosis relatively slowly. But the latter vesicles, moreover, retain most of the enclosed model-drug carboxyfluorescein after an incubation in plasma. The rate of permeation of the encapsulated substance from such DSPE-PEG liposomes is below 2.4% per h. This is by approximately a factor of two less than for pure DSPC liposomes; vesicles with a higher PE-PEG content are inferior in this respect. Long circulation time and high retention of the newly developed liposomes open up ways for the future systemic use as such stabilized drug carriers for the therapeutic applications in vivo.
Collapse
|
|
35 |
498 |
5
|
Schaefer EJ, Bongard V, Beiser AS, Lamon-Fava S, Robins SJ, Au R, Tucker KL, Kyle DJ, Wilson PWF, Wolf PA. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. ACTA ACUST UNITED AC 2006; 63:1545-50. [PMID: 17101822 DOI: 10.1001/archneur.63.11.1545] [Citation(s) in RCA: 441] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Docosahexaenoic acid (DHA) is an abundant fatty acid in the brain. In the diet, DHA is found mostly in fatty fish. The content of DHA has been shown to be decreased in the brain and plasma of patients with dementia. OBJECTIVE To determine whether plasma phosphatidylcholine (PC) DHA content is associated with the risk of developing dementia. DESIGN, SETTING, AND PARTICIPANTS A prospective follow-up study in 899 men and women who were free of dementia at baseline, had a median age of 76.0 years, and were followed up for a mean of 9.1 years for the development of all-cause dementia and Alzheimer disease. MAIN OUTCOME MEASURES Plasma PC fatty acid levels were measured at baseline. Cox proportional regression analysis was used to assess relative risks of all-cause dementia and Alzheimer disease according to baseline plasma levels. RESULTS Ninety-nine new cases of dementia (including 71 of Alzheimer disease) occurred during the follow-up. After adjustment for age, sex, apolipoprotein E epsilon4 allele, plasma homocysteine concentration, and education level, subjects in the upper quartile of baseline plasma PC DHA levels, compared with subjects in the lower 3 quartiles, had a relative risk of 0.53 of developing all-cause dementia (95% confidence interval, 0.29-0.97; P=.04) and 0.61 of developing Alzheimer disease (95% confidence interval, 0.31-1.18; P=.14). Subjects in the upper quartile of plasma PC DHA levels had a mean DHA intake of 0.18 g/d and a mean fish intake of 3.0 servings per week (P<.001) in a subset of 488 participants. We found no other significant associations. CONCLUSION The top quartile of plasma PC DHA level was associated with a significant 47% reduction in the risk of developing all-cause dementia in the Framingham Heart Study.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
441 |
6
|
Juliano RL, Stamp D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun 1975; 63:651-8. [PMID: 1131256 DOI: 10.1016/s0006-291x(75)80433-5] [Citation(s) in RCA: 383] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
|
50 |
383 |
7
|
Bills TK, Smith JB, Silver MJ. Metabolism of [14C]arachidonic acid by human platelets. BIOCHIMICA ET BIOPHYSICA ACTA 1976; 424:303-14. [PMID: 1252495 DOI: 10.1016/0005-2760(76)90198-3] [Citation(s) in RCA: 382] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A time dependent incorporation of [1-14C] arachidonic acid into platelet phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, and phosphatidylserine was observed in platelet-rich plasma. When platelets, so labelled, were washed and treated with thrombin, there was a major decrease in the radioactivity of phosphatidylcholine and phosphatidylinositol. This decrease was accounted for by the appearance of several previously identified (Hamberg and Samuelsson (1974) Proc. Natl. Acad. Sci. U.S. 71, 3400) 14C-labelled oxygenated products of arachidonic acid.
Collapse
|
|
49 |
382 |
8
|
Toledo JB, Arnold M, Kastenmüller G, Chang R, Baillie RA, Han X, Thambisetty M, Tenenbaum JD, Suhre K, Thompson JW, John-Williams LS, MahmoudianDehkordi S, Rotroff DM, Jack JR, Motsinger-Reif A, Risacher SL, Blach C, Lucas JE, Massaro T, Louie G, Zhu H, Dallmann G, Klavins K, Koal T, Kim S, Nho K, Shen L, Casanova R, Varma S, Legido-Quigley C, Moseley MA, Zhu K, Henrion MYR, van der Lee SJ, Harms AC, Demirkan A, Hankemeier T, van Duijn CM, Trojanowski JQ, Shaw LM, Saykin AJ, Weiner MW, Doraiswamy PM, Kaddurah-Daouk R. Metabolic network failures in Alzheimer's disease: A biochemical road map. Alzheimers Dement 2017; 13:965-984. [PMID: 28341160 PMCID: PMC5866045 DOI: 10.1016/j.jalz.2017.01.020] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The Alzheimer's Disease Research Summits of 2012 and 2015 incorporated experts from academia, industry, and nonprofit organizations to develop new research directions to transform our understanding of Alzheimer's disease (AD) and propel the development of critically needed therapies. In response to their recommendations, big data at multiple levels are being generated and integrated to study network failures in disease. We used metabolomics as a global biochemical approach to identify peripheral metabolic changes in AD patients and correlate them to cerebrospinal fluid pathology markers, imaging features, and cognitive performance. METHODS Fasting serum samples from the Alzheimer's Disease Neuroimaging Initiative (199 control, 356 mild cognitive impairment, and 175 AD participants) were analyzed using the AbsoluteIDQ-p180 kit. Performance was validated in blinded replicates, and values were medication adjusted. RESULTS Multivariable-adjusted analyses showed that sphingomyelins and ether-containing phosphatidylcholines were altered in preclinical biomarker-defined AD stages, whereas acylcarnitines and several amines, including the branched-chain amino acid valine and α-aminoadipic acid, changed in symptomatic stages. Several of the analytes showed consistent associations in the Rotterdam, Erasmus Rucphen Family, and Indiana Memory and Aging Studies. Partial correlation networks constructed for Aβ1-42, tau, imaging, and cognitive changes provided initial biochemical insights for disease-related processes. Coexpression networks interconnected key metabolic effectors of disease. DISCUSSION Metabolomics identified key disease-related metabolic changes and disease-progression-related changes. Defining metabolic changes during AD disease trajectory and its relationship to clinical phenotypes provides a powerful roadmap for drug and biomarker discovery.
Collapse
|
research-article |
8 |
343 |
9
|
Carlson SE, Werkman SH, Peeples JM, Cooke RJ, Tolley EA. Arachidonic acid status correlates with first year growth in preterm infants. Proc Natl Acad Sci U S A 1993; 90:1073-7. [PMID: 8430076 PMCID: PMC45813 DOI: 10.1073/pnas.90.3.1073] [Citation(s) in RCA: 337] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Diets deficient in the omega-6 fatty acid linoleic acid reduce arachidonic acid (Ach) concentrations and retard growth of developing animals and humans. Nevertheless, plasma phosphatidylcholine Ach concentrations declined from 84 +/- 23 mg/liter at birth to a nadir of 38 +/- 11 mg/liter at 4 mo of age in preterm infants fed commercial formulas with linoleic acid, and weight normalized to that of term infants fell progressively beginning at 2 mo of age. The nadir of plasma phosphatidylcholine Ach (31 +/- 7 mg/liter) and growth were further reduced by formula containing marine oil compared with the commercial formulas. Ach status (defined as the mean plasma phosphatidylcholine Ach concentration at 2, 4, and 6.5 mo) correlated with one or more measures of normalized growth through 12 mo. Ach status and maternal height accounted for as much as 59% of the weight variance and 68% of the length variance in infants fed standard formulas. Better Ach status was not from higher energy intakes. A conditional Ach deficiency in preterm infants may contribute to growth over the first year of life. On the strength of the relationship between Ach status and growth, we hypothesize that dietary Ach could improve first year growth of preterm infants.
Collapse
|
research-article |
32 |
337 |
10
|
Conquer JA, Tierney MC, Zecevic J, Bettger WJ, Fisher RH. Fatty acid analysis of blood plasma of patients with Alzheimer's disease, other types of dementia, and cognitive impairment. Lipids 2000; 35:1305-12. [PMID: 11201991 DOI: 10.1007/s11745-000-0646-3] [Citation(s) in RCA: 333] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fatty acid differences, including docosahexaenoic acid (DHA; 22:6n-3) have been shown in the brains of Alzheimer's patients (AD) as compared with normal age-matched individuals. Furthermore, low serum DHA is a significant risk factor for the development of AD. The relative concentration of DHA and other fatty acids, however, in the plasma of AD patients compared with patients with other kinds of dementias (other dementias; OD), patients who are cognitively impaired but nondemented (CIND), or normal patients is not known. In this study we analyzed the total phospholipid, phosphatidylcholine (PC), phosphatidylethanolamine (PE), and lysophosphatidylcholine (lysoPC) fractions of plasma from patients diagnosed with AD, OD, or CIND and compared them with a group of elderly control subjects with normal cognitive functioning. Plasma phospholipid and PC levels of 20:5n-3, DHA, total n-3 fatty acids, and the n-3/n-6 ratio were lower in the AD, OD, and CIND groups. Plasma phospholipid 24:0 was lower in the AD, OD, and CIND groups as compared with the group of control patients, and total n-6 fatty acid levels were higher in the AD and CIND groups only. In the plasma PE fraction, levels of 20:5n-3, DHA, and the total n-3 fatty acid levels were significantly lower in the AD, OD, and CIND groups. DHA levels were lower in the lysoPC fraction of CIND individuals only. There were no other differences in the fatty acid compositions of the different phospholipid fractions. Therefore, in AD, OD, and CIND individuals, low levels of n-3 fatty acids in the plasma may be a risk factor for cognitive impairment and/or dementia. Interestingly, a decreased level of plasma DHA was not limited to the AD patients but appears to be common in cognitive impairment with aging.
Collapse
|
|
25 |
333 |
11
|
Jiang XC, Paultre F, Pearson TA, Reed RG, Francis CK, Lin M, Berglund L, Tall AR. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol 2000; 20:2614-8. [PMID: 11116061 DOI: 10.1161/01.atv.20.12.2614] [Citation(s) in RCA: 319] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Only a fraction of the clinical complications of atherosclerosis are explained by known risk factors. Animal studies have shown that plasma sphingomyelin (SM) levels are closely related to the development of atherosclerosis. SM carried into the arterial wall on atherogenic lipoproteins may be locally hydrolyzed by sphingomyelinase, promoting lipoprotein aggregation and macrophage foam cell formation. A novel, high-throughput, enzymatic method to measure plasma SM levels has been developed. Plasma SM levels were related to the presence of coronary artery disease (CAD) in a biethnic angiographic case-control study (279 cases and 277 controls). Plasma SM levels were higher in CAD patients than in control subjects (60+/-29 versus 49+/-21 mg/dL, respectively; P:<0. 0001). Moreover, the ratio of SM to SM+phosphatidylcholine (PC) was also significantly higher in cases than in controls (0.33+/-0.13 versus 0.29+/-0.10, respectively; P:<0.0001). Similar relationships were observed in African Americans and whites. Plasma SM levels showed a significant correlation with remnant cholesterol levels (r=0.51, P:<0.0001). By use of multivariate logistic regression analysis, plasma SM levels and the SM/(SM+PC) ratio were found to have independent predictive value for CAD after adjusting for other risk factors, including remnants. The odds ratio (OR) for CAD was significantly higher for the third and fourth quartiles of plasma SM levels (OR 2.81 [95% CI 1.66 to 4.80] and OR 2.33 [95% CI 1.38 to 3. 92], respectively) as well as the SM/(SM+PC) ratio (OR 1.95 [95% CI 1.10 to 3.45] and OR 2.33 [95% CI 1.34 to 4.05], respectively). The findings indicate that human plasma SM levels are positively and independently related to CAD. Plasma SM levels could be a marker for atherogenic remnant lipoprotein accumulation and may predict lipoprotein susceptibility to arterial wall sphingomyelinase.
Collapse
|
Clinical Trial |
25 |
319 |
12
|
Wilensky RL, Shi Y, Mohler ER, Hamamdzic D, Burgert ME, Li J, Postle A, Fenning RS, Bollinger JG, Hoffman BE, Pelchovitz DJ, Yang J, Mirabile RC, Webb CL, Zhang L, Zhang P, Gelb MH, Walker MC, Zalewski A, Macphee CH. Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development. Nat Med 2008; 14:1059-66. [PMID: 18806801 PMCID: PMC2885134 DOI: 10.1038/nm.1870] [Citation(s) in RCA: 297] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 08/21/2008] [Indexed: 12/13/2022]
Abstract
Increased lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) activity is associated with increased risk of cardiac events, but it is not known whether Lp-PLA(2) is a causative agent. Here we show that selective inhibition of Lp-PLA(2) with darapladib reduced development of advanced coronary atherosclerosis in diabetic and hypercholesterolemic swine. Darapladib markedly inhibited plasma and lesion Lp-PLA(2) activity and reduced lesion lysophosphatidylcholine content. Analysis of coronary gene expression showed that darapladib exerted a general anti-inflammatory action, substantially reducing the expression of 24 genes associated with macrophage and T lymphocyte functioning. Darapladib treatment resulted in a considerable decrease in plaque area and, notably, a markedly reduced necrotic core area and reduced medial destruction, resulting in fewer lesions with an unstable phenotype. These data show that selective inhibition of Lp-PLA(2) inhibits progression to advanced coronary atherosclerotic lesions and confirms a crucial role of vascular inflammation independent from hypercholesterolemia in the development of lesions implicated in the pathogenesis of myocardial infarction and stroke.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
297 |
13
|
Ferrannini E, Natali A, Camastra S, Nannipieri M, Mari A, Adam KP, Milburn MV, Kastenmüller G, Adamski J, Tuomi T, Lyssenko V, Groop L, Gall WE. Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes 2013; 62:1730-7. [PMID: 23160532 PMCID: PMC3636608 DOI: 10.2337/db12-0707] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metabolomic screening of fasting plasma from nondiabetic subjects identified α-hydroxybutyrate (α-HB) and linoleoyl-glycerophosphocholine (L-GPC) as joint markers of insulin resistance (IR) and glucose intolerance. To test the predictivity of α-HB and L-GPC for incident dysglycemia, α-HB and L-GPC measurements were obtained in two observational cohorts, comprising 1,261 nondiabetic participants from the Relationship between Insulin Sensitivity and Cardiovascular Disease (RISC) study and 2,580 from the Botnia Prospective Study, with 3-year and 9.5-year follow-up data, respectively. In both cohorts, α-HB was a positive correlate and L-GPC a negative correlate of insulin sensitivity, with α-HB reciprocally related to indices of β-cell function derived from the oral glucose tolerance test (OGTT). In follow-up, α-HB was a positive predictor (adjusted odds ratios 1.25 [95% CI 1.00-1.60] and 1.26 [1.07-1.48], respectively, for each standard deviation of predictor), and L-GPC was a negative predictor (0.64 [0.48-0.85] and 0.67 [0.54-0.84]) of dysglycemia (RISC) or type 2 diabetes (Botnia), independent of familial diabetes, sex, age, BMI, and fasting glucose. Corresponding areas under the receiver operating characteristic curve were 0.791 (RISC) and 0.783 (Botnia), similar in accuracy when substituting α-HB and L-GPC with 2-h OGTT glucose concentrations. When their activity was examined, α-HB inhibited and L-GPC stimulated glucose-induced insulin release in INS-1e cells. α-HB and L-GPC are independent predictors of worsening glucose tolerance, physiologically consistent with a joint signature of IR and β-cell dysfunction.
Collapse
|
Multicenter Study |
12 |
284 |
14
|
|
|
39 |
268 |
15
|
Drobnik W, Liebisch G, Audebert FX, Frohlich D, Gluck T, Vogel P, Rothe G, Schmitz G. Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients. J Lipid Res 2003; 44:754-61. [PMID: 12562829 DOI: 10.1194/jlr.m200401-jlr200] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent data indicate that ceramide (Cer) and lysophosphatidylcholine (LPC) regulate immune cell functions. Since these bioactive lipids are generated in blood plasma by inflammatory lipases, we hypothesized that they may be involved in the process of acute systemic sepsis. In order to provide support for this hypothesis, we analyzed the plasma levels of Cer and LPC by quantitative tandem mass spectrometry in 102 sepsis patients starting with the day at which the sepsis criteria were fulfilled for the first time, as well as on day 4 and day 11. The values were compared with 56 healthy controls and correlated with sepsis-related mortality within 30 days of study entry. Most Cer species were increased in sepsis patients, while all LPC species were markedly decreased. In addition, we determined the molar ratios with their precursor molecules sphingomyelin (SPM) and phosphatidylcholine (PC), which reflect the enzymatic reactions responsible for their formation. Species-specific as well as total Cer-SPM ratios were increased, whereas LPC-PC ratios were decreased in sepsis patients. The increased Cer-SPM ratios as well as the decreased LPC-PC ratios showed a strong predictive power for sepsis-related mortality. Together with existing data from in vitro experiments and animal models, the results provide the first ex vivo indication for the role of Cer and lysophospholipids in systemic inflammation in humans.
Collapse
|
|
22 |
266 |
16
|
Hojjati MR, Li Z, Zhou H, Tang S, Huan C, Ooi E, Lu S, Jiang XC. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J Biol Chem 2004; 280:10284-9. [PMID: 15590644 DOI: 10.1074/jbc.m412348200] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingolipids play a very important role in cell membrane formation, signal transduction, and plasma lipoprotein metabolism, all of which may well have an impact on the development of atherosclerosis. To investigate the relationship between sphingolipid metabolism and atherosclerosis, we utilized myriocin to inhibit mouse serine palmitoyl-CoA transferase (SPT), the key enzyme for sphingolipid biosynthesis. We injected 8-week-old apoE-deficient mice with myriocin (0.3 mg/kg/every other day, intraperitoneal) for 60 days. On a chow diet, myriocin treatment caused a significant decrease (50%) in liver SPT activity (p < 0.001), significant decreases in plasma sphingomyelin, ceramide, and sphingosine-1-phosphate levels (54, 32, and 73%, respectively) (p < 0.0001), and a significant increase in plasma phosphatidylcholine levels (91%) (p < 0.0001). Plasma total cholesterol and triglyceride levels demonstrated no significant changes, but there was a significant decrease in atherosclerotic lesion area (42% in root and 36% in en face assays) (p < 0.01). On a high fat diet, myriocin treatment caused marked decreases in plasma sphingomyelin, ceramide, and sphingosine-1-phosphate levels (59, 66, and 81%, respectively) (p < 0.0001), and a marked increase in plasma phosphatidylcholine levels (100%) (p < 0.0001). Total cholesterol and triglyceride demonstrated no significant changes, but there was a significant decrease in atherosclerotic lesion area (39% in root and 37% in en face assays) (p < 0.01). These results indicate that, apart from cholesterol levels, sphingolipids have an effect on atherosclerotic development and that SPT has proatherogenic properties. Thus, inhibition of SPT activity could be an alternative treatment for atherosclerosis.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
253 |
17
|
Liebisch G, Lieser B, Rathenberg J, Drobnik W, Schmitz G. High-throughput quantification of phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry coupled with isotope correction algorithm. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1686:108-17. [PMID: 15522827 DOI: 10.1016/j.bbalip.2004.09.003] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/16/2004] [Accepted: 09/01/2004] [Indexed: 10/26/2022]
Abstract
The choline head group containing phosphatidylcholine (PC) and sphingomyelin (SPM) are major eukaryotic lipid components playing an important role in forming membrane microdomains and serve as precursor of signaling molecules. Both lipids can be monitored by positive ion mode electrospray tandem mass spectrometry using a parent ion scan of m/z 184. Although PC species appear at even m/z and SPM species at odd m/z, there may be a significant overlap of their isotopes. In order to separate PC and SPM species, an isotope correction algorithm was established, which utilizes calculated isotope percentages to correct the measured peak intensities for their isotopic overlap. We could demonstrate that this approach was applicable to correct the isotope overlap resulting from spiked PC and SPM species. Quantification was achieved by addition of different PC and SPM species prior to lipid extraction. The developed assay showed a precision, detection limit and robustness sufficient for routine analysis. Furthermore, an analysis time of only 1.3 min combined with automated data analysis using self-programmed Excel Macros allows high-throughput analysis. In summary, this assay may be a valuable tool for detailed lipid analysis of PC and SPM species in a variety of sample materials.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
246 |
18
|
Schiller J, Arnhold J, Benard S, Müller M, Reichl S, Arnold K. Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: A methodological approach. Anal Biochem 1999; 267:46-56. [PMID: 9918654 DOI: 10.1006/abio.1998.3001] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whereas matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has gained high importance in the field of protein analysis, surprisingly few studies were published about the use of MALDI for lipid analysis. Lipids, however, are well-suited for MALDI since all experiments can be performed in a sole organic phase and, thus, extremely homogeneous matrix/analyte mixtures are formed. We report here for the first time the application of MALDI-TOF-MS for the analysis of diacylglycerols, phosphatidylcholines, and (poly)phosphoinositides. It is shown that in a matrix of 2,5-dihydroxybenzoic acid the molecular ions (M + 1) of phosphatidylcholines as well as the corresponding adducts of different phosphoinositides are easily detected even in complex mixtures, and thus, detailed data on the fatty acid composition are provided. In contrast, diacylglycerols are mainly detected as the corresponding sodium or potassium adducts, but not as the protonated forms. Fragmentation reactions of fatty acids on the double bonds and on the polar lipid head group are observed to a minor extent in the spectra of all investigated lipids. Generally, choline derivatives are most sensitive toward further fragmentation reactions. Due to its very high sensitivity (up to picomolar concentrations) MALDI-TOF-MS can be used for the direct investigation of biologically relevant lipid mixtures occurring, e.g. , in cell membranes. The analysis of the lipid composition of neutrophilic granulocytes is given as a representative example for future applications.
Collapse
|
|
26 |
226 |
19
|
Cooper RA. Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells. JOURNAL OF SUPRAMOLECULAR STRUCTURE 1978; 8:413-30. [PMID: 723275 DOI: 10.1002/jss.400080404] [Citation(s) in RCA: 215] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cholesterol and phospholipid are the two major lipids of the red cell membrane. Cholesterol is insoluble in water but is solubilized by phospholipids both in membranes and in plasma lipoproteins. Morever, cholesterol exchanges between membranes and lipoproteins. An equilibrium partition is established based on the amount of cholesterol relative to phospholipid (C/PL) in these two compartments. Increases in the C/PL of red cell membranes have been studied under three conditions: First, spontaneous increases in vivo have been observed in the spur red cells of patients with severe liver disease; second, similar red cell changes in vivo have been induced by the administration of cholesterol-enriched diets to rodents and dogs; third, increases in membrane cholesterol have been induced in vitro by enriching the C/PL of the lipoprotein environment with cholesterol-phospholipid dispersions (liposomes) having a C/PL of greater than 1.0. In each case, there is a close relationship between the C/PL of the plasma environment and the C/PL of the red cell membrane. In vivo, the C/PL mole ratio of red cell membranes ranges from a normal value of 0.09--1.0 to values which approach but do not reach 2.0. In vitro, this ratio approaches 3.0. Cholesterol enrichment of red cell membranes directly influences membrane lipid fluidity, as assessed by the rotational diffusion of hydrophobic fluorescent probes such as diphenyl hexatriene (DPH). A close correlation exists between increases in red cell membrane C/PL and decreases in membrane fluidity over the range of membrane C/PL from 1.0 to 2.0; however, little further change in fluidity occurs when membrane C/PL is increased to 2.0--3.0. Cholesterol enrichment of red cell membranes is associated with the transformation of cell contour to one which is redundant and folded, and this is associated with a decrease in red cell filterability in vitro. Circulation in vivo in the presence of the spleen further modifies cell shape to a spiny, irregular (spur) form, and the survival of cholesterol-rich red cells is decreased in the presence of the spleen. Although active Na-K transport is not influenced by cholesterol enrichment of human red cells, several carrier-mediated transport pathways are inhibited. We have demonstrated this effect for the cotransport of Na + K and similar results have been obtained by others in studies of organic acid transport and the transport of small neutral molecules such as erythritol and glycerol. Thus, red cell membrane C/PL is sensitive to the C/PL of the plasma environment. Increasing membrane C/PL causes a decrease in membrane fluidity, and these changes are associated with a reduction in membrane permeability, a distortion of cell contour and filterability and a shortening of the survival of red cells in vivo.
Collapse
|
|
47 |
215 |
20
|
Carlson SE, Werkman SH, Tolley EA. Effect of long-chain n-3 fatty acid supplementation on visual acuity and growth of preterm infants with and without bronchopulmonary dysplasia. Am J Clin Nutr 1996; 63:687-97. [PMID: 8615350 DOI: 10.1093/ajcn/63.5.687] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Healthy preterm infants fed formula with long-chain n-3 fatty acids (n-3 LCFAs) from marine oil have better early visual acuity but lower plasma phosphatidylcholine (PC) arachidonic acid (AA) and growth than infants fed formula containing linolenic acid (LLA) as the sole n-3 fatty acid. This randomized, double-blind trial was designed to study the effects of a different source of n-3 LCFAs and a shorter feeding interval on visual acuity (by Teller Acuity Card) and growth of preterm infants (n = 59; 747-1275 g birth wt), some of whom required long periods of supplemental oxygen and developed bronchopulmonary dysplasia (BPD). Infants were studied at 0, 2, 4, 6, 9, and 12 mo past term. Plasma PC AA, and normalized weight, length, and head circumference were not influenced by BPD or n-3 LCFAs except that n-3 LCFA-supplemented infants weighed less at 6 (P<0.05) and 9 (P<0.01) mo and had smaller head circumferences at 9 mo (P<0.05). Compared with control infants, however, those fed n-3 LCFAs had lower weight-for-length at 2, 6, 9, and 12 mo (P<0.0003, P<0.0114, P<0.0008, and P<0.006, respectively). n-3 LCFAs improved early (2-mo) but not later acuity among infants without BPD (P<0.02). Regardless of diet, infants with BPD had poorer grating acuity at 2 (P<0.0002) and 4 (P<0.04) mo but not thereafter.
Collapse
|
Clinical Trial |
29 |
199 |
21
|
Scherphof G, Roerdink F, Waite M, Parks J. Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high-density lipoproteins. Biochim Biophys Acta Gen Subj 1978; 542:296-307. [PMID: 210837 DOI: 10.1016/0304-4165(78)90025-9] [Citation(s) in RCA: 194] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. During in vitro incubation of liposomes or unilamellar vesicles prepared from egg-yolk or rat-liver phosphatidylcholine with human, monkey or rat plasma the phospholipid becomes associated with a high molecular weight protein-containing component. 2. The phosphatidylcholine . protein complex thus formed co-chromatographs with high-density lipoprotein on Ultrogel AcA34 and has the same immunoelectrophoretic properties as this lipoprotein. 3. Release of the phosphatidylcholine from liposomes was also observed when liposomes were incubated with pure monkey high-density lipoproteins. Under those conditions some transfer of protein from the lipoprotein to the liposomes was observed as well. 4. The observed release of phospholipid from the liposomes is a one-way process, as the specific radioactivity of liposome-associated phosphatidylcholine remained constant during incubation with plasma. 5. It is concluded that either the lipoprotein particle takes up additional phospholipid or that a new complex is formed from protein constituents of the lipoprotein and the liposomal phosphatidylcholine. 6. Massive release of entrapped 125I-labeled albumin from the liposome during incubation with plasma suggests that the observed release of phosphatidylcholine from the liposomes has a highly destructive influence on the liposomal structure. 7. Our results are discussed with special reference to the use of liposomes as intravenous carriers of drugs and enzymes.
Collapse
|
|
47 |
194 |
22
|
Redgrave TG, Small DM. Quantitation of the transfer of surface phospholipid of chylomicrons to the high density lipoprotein fraction during the catabolism of chylomicrons in the rat. J Clin Invest 1979; 64:162-71. [PMID: 221542 PMCID: PMC372102 DOI: 10.1172/jci109435] [Citation(s) in RCA: 188] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Small chylomicrons (CM) labeled with cholesterol, cholesterol ester, phospholipid, and, in some cases, protein, were used to study the fate of these constituents as the CM are catabolized in the circulations of the hepatectomized and intact rat. In the hepatectomized animal after (1/2) h, CM are greatly reduced in volume, surface area, and diameter. During this period, the CM lost >92% of the mass of their triacylglycerol, >77% of the mass of their phospholipid, and >39% of their protein. Compared to the injected CM, the chemically altered particles, called CM "remnants," have a reduction in volume of 96% and in surface area of 88%. The labeled cholesterol esters remain with the CM remnants but, strikingly, a major fraction of the labeled phospholipids and labeled soluble apoproteins leave the CM and are found in the high density lipoprotein (HDL) fraction. The chemical composition of this HDL fraction contains relatively more phospholipid and less cholesterol ester than normal rat HDL. Because of the difference in composition of HDL between normal rats and those given CM, we estimate that the HDL phospholipid pool increased by congruent with25% by the infusion of congruent with 4-5 mg of CM phospholipid. Approximately 5 mg of phospholipid is secreted on CM by a fed rat in 1 h. The findings in hepatectomized rats indicate that a major fraction of the phospholipid and a minor fraction of the protein (soluble non-B apoproteins) of newly secreted CM are transferred from the CM to the HDL fraction during remnant formation. The same process probably occurs in intact rats except that the remnant particles are rapidly removed from the plasma by the liver and a smaller fraction of the surface of the CM enters the HDL fraction.
Collapse
|
research-article |
46 |
188 |
23
|
Lopez A, Vial R, Balart L, Arroyave G. Effect of exercise and physical fitness on serum lipids and lipoproteins. Atherosclerosis 1974; 20:1-9. [PMID: 4376404 DOI: 10.1016/0021-9150(74)90073-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
|
51 |
186 |
24
|
Barberis E, Timo S, Amede E, Vanella VV, Puricelli C, Cappellano G, Raineri D, Cittone MG, Rizzi E, Pedrinelli AR, Vassia V, Casciaro FG, Priora S, Nerici I, Galbiati A, Hayden E, Falasca M, Vaschetto R, Sainaghi PP, Dianzani U, Rolla R, Chiocchetti A, Baldanzi G, Marengo E, Manfredi M. Large-Scale Plasma Analysis Revealed New Mechanisms and Molecules Associated with the Host Response to SARS-CoV-2. Int J Mol Sci 2020; 21:E8623. [PMID: 33207699 PMCID: PMC7696386 DOI: 10.3390/ijms21228623] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/08/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to nearly every continent, registering over 1,250,000 deaths worldwide. The effects of SARS-CoV-2 on host targets remains largely limited, hampering our understanding of Coronavirus Disease 2019 (COVID-19) pathogenesis and the development of therapeutic strategies. The present study used a comprehensive untargeted metabolomic and lipidomic approach to capture the host response to SARS-CoV-2 infection. We found that several circulating lipids acted as potential biomarkers, such as phosphatidylcholine 14:0_22:6 (area under the curve (AUC) = 0.96), phosphatidylcholine 16:1_22:6 (AUC = 0.97), and phosphatidylethanolamine 18:1_20:4 (AUC = 0.94). Furthermore, triglycerides and free fatty acids, especially arachidonic acid (AUC = 0.99) and oleic acid (AUC = 0.98), were well correlated to the severity of the disease. An untargeted analysis of non-critical COVID-19 patients identified a strong alteration of lipids and a perturbation of phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, aminoacyl-tRNA degradation, arachidonic acid metabolism, and the tricarboxylic acid (TCA) cycle. The severity of the disease was characterized by the activation of gluconeogenesis and the metabolism of porphyrins, which play a crucial role in the progress of the infection. In addition, our study provided further evidence for considering phospholipase A2 (PLA2) activity as a potential key factor in the pathogenesis of COVID-19 and a possible therapeutic target. To date, the present study provides the largest untargeted metabolomics and lipidomics analysis of plasma from COVID-19 patients and control groups, identifying new mechanisms associated with the host response to COVID-19, potential plasma biomarkers, and therapeutic targets.
Collapse
|
research-article |
5 |
184 |
25
|
Ma K, Cilingiroglu M, Otvos JD, Ballantyne CM, Marian AJ, Chan L. Endothelial lipase is a major genetic determinant for high-density lipoprotein concentration, structure, and metabolism. Proc Natl Acad Sci U S A 2003; 100:2748-53. [PMID: 12601178 PMCID: PMC151412 DOI: 10.1073/pnas.0438039100] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-density lipoprotein (HDL) protects against atherosclerosis. Endothelial lipase (EL) has been postulated to be involved in lipoprotein, and possibly HDL, metabolism, yet the evidence has been scarce and conflicting. We have inactivated EL in mice by gene targeting. EL(-/-) mice have elevated plasma and HDL cholesterol, and increased apolipoproteins A-I and E. NMR analysis reveals an abundance of large HDL particles. There is down-regulation of the transcripts for phospholipid transfer protein, but up-regulation of those for hepatic lipase and lipoprotein lipase. Plasma lecithin:cholesterol acyltransferase is unchanged despite an increase in hepatic mRNA; lecithin:cholesterol acyltransferase activity toward endogenous EL(-/-) substrate is, however, reduced by 50%. HDL clearance is decreased in EL(-/-) mice; both the structure of HDL and the presence of EL are factors that determine the rate of clearance. To determine EL's role in humans, we find a significant association between a single-nucleotide polymorphism 584C/T in the EL (LIPG) gene and HDL cholesterol in a well characterized population of 372 individuals. We conclude that EL is a major determinant of HDL concentration, structure, and metabolism in mice, and a major determinant of HDL concentration in humans.
Collapse
|
research-article |
22 |
177 |