1
|
Leipe DD, Koonin EV, Aravind L. Evolution and classification of P-loop kinases and related proteins. J Mol Biol 2003; 333:781-815. [PMID: 14568537 DOI: 10.1016/j.jmb.2003.08.040] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sequences and structures of all P-loop-fold proteins were compared with the aim of reconstructing the principal events in the evolution of P-loop-containing kinases. It is shown that kinases and some related proteins comprise a monophyletic assemblage within the P-loop NTPase fold. An evolutionary classification of these proteins was developed using standard phylogenetic methods, analysis of shared sequence and structural signatures, and similarity-based clustering. This analysis resulted in the identification of approximately 40 distinct protein families within the P-loop kinase class. Most of these enzymes phosphorylate nucleosides and nucleotides, as well as sugars, coenzyme precursors, adenosine 5'-phosphosulfate and polynucleotides. In addition, the class includes sulfotransferases, amide bond ligases, pyrimidine and dihydrofolate reductases, and several other families of enzymes that have acquired new catalytic capabilities distinct from the ancestral kinase reaction. Our reconstruction of the early history of the P-loop NTPase fold includes the initial split into the common ancestor of the kinase and the GTPase classes, and the common ancestor of ATPases. This was followed by the divergence of the kinases, which primarily phosphorylated nucleoside monophosphates (NMP), but could have had broader specificity. We provide evidence for the presence of at least two to four distinct P-loop kinases, including distinct forms specific for dNMP and rNMP, and related enzymes in the last universal common ancestor of all extant life forms. Subsequent evolution of kinases seems to have been dominated by the emergence of new bacterial and, to a lesser extent, archaeal families. Some of these enzymes retained their kinase activity but evolved new substrate specificities, whereas others acquired new activities, such as sulfate transfer and reduction. Eukaryotes appear to have acquired most of their kinases via horizontal gene transfer from Bacteria, partly from the mitochondrial and chloroplast endosymbionts and partly at later stages of evolution. A distinct superfamily of kinases, which we designated DxTN after its sequence signature, appears to have evolved in selfish replicons, such as bacteriophages, and was subsequently widely recruited by eukaryotes for multiple functions related to nucleic acid processing and general metabolism. In the course of this analysis, several previously undetected groups of predicted kinases were identified, including widespread archaeo-eukaryotic and archaeal families. The results could serve as a framework for systematic experimental characterization of new biochemical and biological functions of kinases.
Collapse
|
Journal Article |
22 |
232 |
2
|
Barabote RD, Saier MH. Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol Mol Biol Rev 2005; 69:608-34. [PMID: 16339738 PMCID: PMC1306802 DOI: 10.1128/mmbr.69.4.608-634.2005] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report analyses of 202 fully sequenced genomes for homologues of known protein constituents of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS). These included 174 bacterial, 19 archaeal, and 9 eukaryotic genomes. Homologues of PTS proteins were not identified in archaea or eukaryotes, showing that the horizontal transfer of genes encoding PTS proteins has not occurred between the three domains of life. Of the 174 bacterial genomes (136 bacterial species) analyzed, 30 diverse species have no PTS homologues, and 29 species have cytoplasmic PTS phosphoryl transfer protein homologues but lack recognizable PTS permeases. These soluble homologues presumably function in regulation. The remaining 77 species possess all PTS proteins required for the transport and phosphorylation of at least one sugar via the PTS. Up to 3.2% of the genes in a bacterium encode PTS proteins. These homologues were analyzed for family association, range of protein types, domain organization, and organismal distribution. Different strains of a single bacterial species often possess strikingly different complements of PTS proteins. Types of PTS protein domain fusions were analyzed, showing that certain types of domain fusions are common, while others are rare or prohibited. Select PTS proteins were analyzed from different phylogenetic standpoints, showing that PTS protein phylogeny often differs from organismal phylogeny. The results document the frequent gain and loss of PTS protein-encoding genes and suggest that the lateral transfer of these genes within the bacterial domain has played an important role in bacterial evolution. Our studies provide insight into the development of complex multicomponent enzyme systems and lead to predictions regarding the types of protein-protein interactions that promote efficient PTS-mediated phosphoryl transfer.
Collapse
|
Comparative Study |
20 |
212 |
3
|
Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, Karunanandaa B, Baszis SR, Norris SR, Savidge B, Gruys KJ, Last RL. The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. THE PLANT CELL 2006; 18:212-24. [PMID: 16361393 PMCID: PMC1323494 DOI: 10.1105/tpc.105.037077] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/03/2005] [Accepted: 11/14/2005] [Indexed: 05/05/2023]
Abstract
We report the identification and characterization of a low tocopherol Arabidopsis thaliana mutant, vitamin E pathway gene5-1 (vte5-1), with seed tocopherol levels reduced to 20% of the wild type. Map-based identification of the responsible mutation identified a G-->A transition, resulting in the introduction of a stop codon in At5g04490, a previously unannotated gene, which we named VTE5. Complementation of the mutation with the wild-type transgene largely restored the wild-type tocopherol phenotype. A knockout mutation of the Synechocystis sp PCC 6803 VTE5 homolog slr1652 reduced Synechocystis tocopherol levels by 50% or more. Bioinformatic analysis of VTE5 and slr1652 indicated modest similarity to dolichol kinase. Analysis of extracts from Arabidopsis and Synechocystis mutants revealed increased accumulation of free phytol. Heterologous expression of these genes in Escherichia coli supplemented with free phytol and in vitro assays of recombinant protein produced phytylmonophosphate, suggesting that VTE5 and slr1652 encode phytol kinases. The phenotype of the vte5-1 mutant is consistent with the hypothesis that chlorophyll degradation-derived phytol serves as an important intermediate in seed tocopherol synthesis and forces reevaluation of the role of geranylgeranyl diphosphate reductase in tocopherol biosynthesis.
Collapse
|
research-article |
19 |
153 |
4
|
Zhang S, Chen C, Li L, Meng L, Singh J, Jiang N, Deng XW, He ZH, Lemaux PG. Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family. PLANT PHYSIOLOGY 2005; 139:1107-24. [PMID: 16286450 PMCID: PMC1283751 DOI: 10.1104/pp.105.069005] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The wall-associated kinase (WAK) gene family, one of the receptor-like kinase (RLK) gene families in plants, plays important roles in cell expansion, pathogen resistance, and heavy-metal stress tolerance in Arabidopsis (Arabidopsis thaliana). Through a reiterative database search and manual reannotation, we identified 125 OsWAK gene family members from rice (Oryza sativa) japonica cv Nipponbare; 37 (approximately 30%) OsWAKs were corrected/reannotated from earlier automated annotations. Of the 125 OsWAKs, 67 are receptor-like kinases, 28 receptor-like cytoplasmic kinases, 13 receptor-like proteins, 12 short genes, and five pseudogenes. The two-intron gene structure of the Arabidopsis WAK/WAK-Likes is generally conserved in OsWAKs; however, extra/missed introns were observed in some OsWAKs either in extracellular regions or in protein kinase domains. In addition to the 38 OsWAKs with full-length cDNA sequences and the 11 with rice expressed sequence tag sequences, gene expression analyses, using tiling-microarray analysis of the 20 OsWAKs on chromosome 10 and reverse transcription-PCR analysis for five OsWAKs, indicate that the majority of identified OsWAKs are likely expressed in rice. Phylogenetic analyses of OsWAKs, Arabidopsis WAK/WAK-Likes, and barley (Hordeum vulgare) HvWAKs show that the OsWAK gene family expanded in the rice genome due to lineage-specific expansion of the family in monocots. Localized gene duplications appear to be the primary genetic event in OsWAK gene family expansion and the 125 OsWAKs, present on all 12 chromosomes, are mostly clustered.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
125 |
5
|
Galperin MY, Bairoch A, Koonin EV. A superfamily of metalloenzymes unifies phosphopentomutase and cofactor-independent phosphoglycerate mutase with alkaline phosphatases and sulfatases. Protein Sci 1998; 7:1829-35. [PMID: 10082381 PMCID: PMC2144072 DOI: 10.1002/pro.5560070819] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sequence analysis of the probable archaeal phosphoglycerate mutase resulted in the identification of a superfamily of metalloenzymes with similar metal-binding sites and predicted conserved structural fold. This superfamily unites alkaline phosphatase, N-acetylgalactosamine-4-sulfatase, and cerebroside sulfatase, enzymes with known three-dimensional structures, with phosphopentomutase, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase, phosphoglycerol transferase, phosphonate monoesterase, streptomycin-6-phosphate phosphatase, alkaline phosphodiesterase/nucleotide pyrophosphatase PC-1, and several closely related sulfatases. In addition to the metal-binding motifs, all these enzymes contain a set of conserved amino acid residues that are likely to be required for the enzymatic activity. Mutational changes in the vicinity of these residues in several sulfatases cause mucopolysaccharidosis (Hunter, Maroteaux-Lamy, Morquio, and Sanfilippo syndromes) and metachromatic leucodystrophy.
Collapse
|
research-article |
27 |
120 |
6
|
Boisson-Dernier A, Kessler SA, Grossniklaus U. The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1581-91. [PMID: 21252257 DOI: 10.1093/jxb/erq445] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In plants, organ formation and cell elongation require the constant adjustment of the dynamic and adaptable cell wall in response to environmental cues as well as internal regulators, such as light, mechanical stresses, pathogen attacks, phytohormones, and other signaling molecules. The molecular mechanisms that perceive these cues and translate them into cellular responses to maintain integrity and remodelling of the carbohydrate-rich cell wall for the coordination of cell growth are still poorly understood. In the last 3 years, the function of six membrane-localized receptor-like kinases (RLKs) belonging to the CrRLK1L family has been linked to the control of cell elongation in vegetative and reproductive development. Moreover, the presence of putative carbohydrate-binding domains in the extracellular domains of these CrRLK1Ls makes this receptor family an excellent candidate for coordinating cell growth, cell-cell communication, and constant cell wall remodelling during the plant life cycle.
Collapse
|
Review |
14 |
113 |
7
|
Cheek S, Ginalski K, Zhang H, Grishin NV. A comprehensive update of the sequence and structure classification of kinases. BMC STRUCTURAL BIOLOGY 2005; 5:6. [PMID: 15771780 PMCID: PMC1079889 DOI: 10.1186/1472-6807-5-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 03/16/2005] [Indexed: 12/02/2022]
Abstract
Background A comprehensive update of the classification of all available kinases was carried out. This survey presents a complete global picture of this large functional class of proteins and confirms the soundness of our initial kinase classification scheme. Results The new survey found the total number of kinase sequences in the protein database has increased more than three-fold (from 17,310 to 59,402), and the number of determined kinase structures increased two-fold (from 359 to 702) in the past three years. However, the framework of the original two-tier classification scheme (in families and fold groups) remains sufficient to describe all available kinases. Overall, the kinase sequences were classified into 25 families of homologous proteins, wherein 22 families (~98.8% of all sequences) for which three-dimensional structures are known fall into 10 fold groups. These fold groups not only include some of the most widely spread proteins folds, such as the Rossmann-like fold, ferredoxin-like fold, TIM-barrel fold, and antiparallel β-barrel fold, but also all major classes (all α, all β, α+β, α/β) of protein structures. Fold predictions are made for remaining kinase families without a close homolog with solved structure. We also highlight two novel kinase structural folds, riboflavin kinase and dihydroxyacetone kinase, which have recently been characterized. Two protein families previously annotated as kinases are removed from the classification based on new experimental data. Conclusion Structural annotations of all kinase families are now revealed, including fold descriptions for all globular kinases, making this the first large functional class of proteins with a comprehensive structural annotation. Potential uses for this classification include deduction of protein function, structural fold, or enzymatic mechanism of poorly studied or newly discovered kinases based on proteins in the same family.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
90 |
8
|
Daugherty M, Vonstein V, Overbeek R, Osterman A. Archaeal shikimate kinase, a new member of the GHMP-kinase family. J Bacteriol 2001; 183:292-300. [PMID: 11114929 PMCID: PMC94878 DOI: 10.1128/jb.183.1.292-300.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shikimate kinase (EC 2.7.1.71) is a committed enzyme in the seven-step biosynthesis of chorismate, a major precursor of aromatic amino acids and many other aromatic compounds. Genes for all enzymes of the chorismate pathway except shikimate kinase are found in archaeal genomes by sequence homology to their bacterial counterparts. In this study, a conserved archaeal gene (gi1500322 in Methanococcus jannaschii) was identified as the best candidate for the missing shikimate kinase gene by the analysis of chromosomal clustering of chorismate biosynthetic genes. The encoded hypothetical protein, with no sequence similarity to bacterial and eukaryotic shikimate kinases, is distantly related to homoserine kinases (EC 2.7.1.39) of the GHMP-kinase superfamily. The latter functionality in M. jannaschii is assigned to another gene (gi591748), in agreement with sequence similarity and chromosomal clustering analysis. Both archaeal proteins, overexpressed in Escherichia coli and purified to homogeneity, displayed activity of the predicted type, with steady-state kinetic parameters similar to those of the corresponding bacterial kinases: K(m,shikimate) = 414 +/- 33 microM, K(m,ATP) = 48 +/- 4 microM, and k(cat) = 57 +/- 2 s(-1) for the predicted shikimate kinase and K(m,homoserine) = 188 +/- 37 microM, K(m,ATP) = 101 +/- 7 microM, and k(cat) = 28 +/- 1 s(-1) for the homoserine kinase. No overlapping activity could be detected between shikimate kinase and homoserine kinase, both revealing a >1,000-fold preference for their own specific substrates. The case of archaeal shikimate kinase illustrates the efficacy of techniques based on reconstruction of metabolism from genomic data and analysis of gene clustering on chromosomes in finding missing genes.
Collapse
|
research-article |
24 |
71 |
9
|
Mikkelsen R, Baunsgaard L, Blennow A. Functional characterization of alpha-glucan,water dikinase, the starch phosphorylating enzyme. Biochem J 2004; 377:525-32. [PMID: 14525539 PMCID: PMC1223868 DOI: 10.1042/bj20030999] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Revised: 09/12/2003] [Accepted: 10/02/2003] [Indexed: 11/17/2022]
Abstract
GWD (alpha-glucan,water dikinase) is the enzyme that catalyses the phosphorylation of starch by a dikinase-type reaction in which the beta-phosphate of ATP is transferred to either the C-6 or the C-3 position of the glycosyl residue of amylopectin. GWD shows similarity in both sequence and reaction mechanism to bacterial PPS (pyruvate,water dikinase) and PPDK (pyruvate,phosphate dikinase). Amino acid sequence alignments identified a conserved histidine residue located in the putative phosphohistidine domain of potato GWD. Site-directed mutagenesis of this histidine residue resulted in an inactive enzyme and loss of autophosphorylation. Native GWD is a homodimer and shows a strict requirement for the presence of alpha-1,6 branch points in its polyglucan substrate, and exhibits a sharp 20-fold increase in activity when the degree of polymerization is increased from 27.8 to 29.5. In spite of the high variability in the degree of starch phosphorylation, GWD proteins are ubiquitous in plants. The overall reaction mechanism of GWD is similar to that of PPS and PPDK, but the GWD family appears to have arisen after divergence of the plant kingdom. The nucleotide-binding domain of GWD exhibits a closer phylogenetic relationship to prokaryotic PPSs than to PPDKs.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
66 |
10
|
Mertens E, Ladror US, Lee JA, Miretsky A, Morris A, Rozario C, Kemp RG, Müller M. The pyrophosphate-dependent phosphofructokinase of the protist, Trichomonas vaginalis, and the evolutionary relationships of protist phosphofructokinases. J Mol Evol 1998; 47:739-50. [PMID: 9847416 DOI: 10.1007/pl00006433] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pyrophosphate-dependent phosphofructokinase (PPi-PFK) of the amitochondriate protist Trichomonas vaginalis has been purified. The enzyme is a homotetramer of about 50 kDa subunits and is not subject to allosteric regulation. The protein was fragmented and a number of peptides were sequenced. Based on this information a PCR product was obtained from T. vaginalis gDNA and used to isolate corresponding cDNA and gDNA clones. Southern analysis indicated the presence of five genes. One open reading frame (ORF) was completely sequenced and for two others the 5' half of the gene was determined. The sequences were highly similar. The complete ORF corresponded to a polypeptide of about 46 kDa. All the peptide sequences obtained were present in the derived sequences. The complete ORF was highly similar to that of other PFKs, primarily in its amino-terminal half. The T. vaginalis enzyme was most similar to PPi-PFK of the mitochondriate heterolobosean, Naegleria fowleri. Most of the residues shown or assumed to be involved in substrate binding in other PPi-PFKs were conserved in the T. vaginalis enzyme. Direct comparison and phylogenetic reconstruction revealed a significant divergence among PPi-PFKs and related enzymes, which can be assigned to at least four distantly related groups, three of which contain enzymes of protists. The separation of these groups is supported with a high percentage of bootstrap proportions. The short T. vaginalis PFK shares a most recent common ancestor with the enzyme from N. fowleri. This pair is clearly separated from a group comprising the long (>60-kDa) enzymes from Giardia lamblia, Entamoeba histolytica pfk2, the spirochaetes Borrelia burgdorferi and Trepomena pallidum, as well as the alpha- and beta-subunits of plant PPi-PFKs. The third group ("X") containing protist sequences includes the glycosomal ATP-PFK of Trypanosoma brucei, E. histolytica pfk1, and a second sequence from B. burgdorferi. The fourth group ("Y") comprises cyanobacterial and high-G + C, Gram-positive eubacterial sequences. The well-studied PPi-PFK of Propionibacterium freudenreichii is highly divergent and cannot be assigned to any of these groups. These four groups are well separated from typical ATP-PFKs, the phylogenetic analysis of which confirmed relationships established earlier. These findings indicate a complex history of a key step of glycolysis in protists with several early gene duplications and possible horizontal gene transfers.
Collapse
|
Comparative Study |
27 |
42 |
11
|
Daiyasu H, Kuma KI, Yokoi T, Morii H, Koga Y, Toh H. A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2006; 1:399-410. [PMID: 16243780 PMCID: PMC2685579 DOI: 10.1155/2005/452563] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cellular membrane lipids, of which phospholipids are the major constituents, form one of the characteristic features that distinguish Archaea from other organisms. In this study, we focused on the steps in archaeal phospholipid synthetic pathways that generate polar lipids such as archaetidylserine, archaetidylglycerol, and archaetidylinositol. Only archaetidylserine synthase (ASS), from Methanothermobacter thermautotrophicus, has been experimentally identified. Other enzymes have not been fully examined. Through database searching, we detected many archaeal hypothetical proteins that show sequence similarity to members of the CDP alcohol phosphatidyltransferase family, such as phosphatidylserine synthase (PSS), phosphatidylglycerol synthase (PGS) and phosphatidylinositol synthase (PIS) derived from Bacteria and Eukarya. The archaeal hypothetical proteins were classified into two groups, based on the sequence similarity. Members of the first group, including ASS from M. thermautotrophicus, were closely related to PSS. The rough agreement between PSS homologue distribution within Archaea and the experimentally identified distribution of archaetidylserine suggested that the hypothetical proteins are ASSs. We found that an open reading frame (ORF) tends to be adjacent to that of ASS in the genome, and that the order of the two ORFs is conserved. The sequence similarity of phosphatidylserine decarboxylase to the product of the ORF next to the ASS gene, together with the genomic context conservation, suggests that the ORF encodes archaetidylserine decarboxylase, which may transform archaetidylserine to archaetidylethanolamine. The second group of archaeal hypothetical proteins was related to PGS and PIS. The members of this group were subjected to molecular phylogenetic analysis, together with PGSs and PISs and it was found that they formed two distinct clusters in the molecular phylogenetic tree. The distribution of members of each cluster within Archaea roughly corresponded to the experimentally identified distribution of archaetidylglycerol or archaetidylinositol. The molecular phylogenetic tree patterns and the correspondence to the membrane compositions suggest that the two clusters in this group correspond to archaetidylglycerol synthases and archaetidylinositol synthases. No archaeal hypothetical protein with sequence similarity to known phosphatidylcholine synthases was detected in this study.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
41 |
12
|
Koike A, Kobayashi Y, Takagi T. Kinase pathway database: an integrated protein-kinase and NLP-based protein-interaction resource. Genome Res 2003; 13:1231-43. [PMID: 12799355 PMCID: PMC403651 DOI: 10.1101/gr.835903] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein kinases play a crucial role in the regulation of cellular functions. Various kinds of information about these molecules are important for understanding signaling pathways and organism characteristics. We have developed the Kinase Pathway Database, an integrated database involving major completely sequenced eukaryotes. It contains the classification of protein kinases and their functional conservation, ortholog tables among species, protein-protein, protein-gene, and protein-compound interaction data, domain information, and structural information. It also provides an automatic pathway graphic image interface. The protein, gene, and compound interactions are automatically extracted from abstracts for all genes and proteins by natural-language processing (NLP). The method of automatic extraction uses phrase patterns and the GENA protein, gene, and compound name dictionary, which was developed by our group. With this database, pathways are easily compared among species using data with more than 47,000 protein interactions and protein kinase ortholog tables. The database is available for querying and browsing at http://kinasedb.ontology.ims.u-tokyo.ac.jp/.
Collapse
|
research-article |
22 |
41 |
13
|
Carreras J, Bartrons R, Grisolía S. Vanadate inhibits 2,3-bisphosphoglycerate dependent phosphoglycerate mutases but does not affect the 2,3-bisphosphoglycerate independent phosphoglycerate mutases. Biochem Biophys Res Commun 1980; 96:1267-73. [PMID: 6254527 DOI: 10.1016/0006-291x(80)90088-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
|
45 |
38 |
14
|
Prien O. Target-Family-Oriented Focused Libraries for Kinases-Conceptual Design Aspects and Commercial Availability. Chembiochem 2005; 6:500-5. [PMID: 15742385 DOI: 10.1002/cbic.200400117] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
20 |
34 |
15
|
Müller M, Lee JA, Gordon P, Gaasterland T, Sensen CW. Presence of prokaryotic and eukaryotic species in all subgroups of the PP(i)-dependent group II phosphofructokinase protein family. J Bacteriol 2001; 183:6714-6. [PMID: 11673446 PMCID: PMC95507 DOI: 10.1128/jb.183.22.6714-6716.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inorganic pyrophosphate-dependent phosphofructokinase (PP(i)-PFK) of the amitochondriate eukaryote Mastigamoeba balamuthi was sequenced and showed about 60% identity to PP(i)-PFKs from two eubacteria, Propionibacterium freudenreichii and Sinorhizobium meliloti. These gene products represent a newly recognized lineage of PFKs. All four lineages of group II PFKs, as defined by phylogenetic analysis, contained both prokaryotic and eukaryotic species, underlining the complex evolutionary history of this enzyme.
Collapse
|
research-article |
24 |
28 |
16
|
Smoly I, Shemesh N, Ziv-Ukelson M, Ben-Zvi A, Yeger-Lotem E. An Asymmetrically Balanced Organization of Kinases versus Phosphatases across Eukaryotes Determines Their Distinct Impacts. PLoS Comput Biol 2017; 13:e1005221. [PMID: 28135269 PMCID: PMC5279721 DOI: 10.1371/journal.pcbi.1005221] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
Protein phosphorylation underlies cellular response pathways across eukaryotes and is governed by the opposing actions of phosphorylating kinases and de-phosphorylating phosphatases. While kinases and phosphatases have been extensively studied, their organization and the mechanisms by which they balance each other are not well understood. To address these questions we performed quantitative analyses of large-scale 'omics' datasets from yeast, fly, plant, mouse and human. We uncovered an asymmetric balance of a previously-hidden scale: Each organism contained many different kinase genes, and these were balanced by a small set of highly abundant phosphatase proteins. Kinases were much more responsive to perturbations at the gene and protein levels. In addition, kinases had diverse scales of phenotypic impact when manipulated. Phosphatases, in contrast, were stable, highly robust and flatly organized, with rather uniform impact downstream. We validated aspects of this organization experimentally in nematode, and supported additional aspects by theoretic analysis of the dynamics of protein phosphorylation. Our analyses explain the empirical bias in the protein phosphorylation field toward characterization and therapeutic targeting of kinases at the expense of phosphatases. We show quantitatively and broadly that this is not only a historical bias, but stems from wide-ranging differences in their organization and impact. The asymmetric balance between these opposing regulators of protein phosphorylation is also common to opposing regulators of two other post-translational modification systems, suggesting its fundamental value. Protein phosphorylation is a reversible modification that underlies cellular responses to stimuli across organisms. Historically, the study of protein phosphorylation concentrated on the role of kinases, which introduce the phosphate, at the expense of phosphatases, which remove it. Many kinases have been associated with specific phenotypes and considered attractive drug targets, while phosphatases remained far less characterized. It has been unclear whether this discrepancy is due to historical biases or reflects real systemic differences between these enzymes. By analyzing large-scale ‘omics’ datasets across genes, transcripts, proteins, interactions, and organisms, we uncovered an asymmetric architecture of kinases versus phosphatases that balances between them, determines their distinct impact patterns, and affects their therapeutic potential. This architecture is conserved from yeast to human and is partially shared by two other protein modification systems, suggesting it is a general feature of these systems.
Collapse
|
Journal Article |
8 |
23 |
17
|
Yazdani M, Zallot R, Tunc-Ozdemir M, de Crécy-Lagard V, Shintani DK, Hanson AD. Identification of the thiamin salvage enzyme thiazole kinase in Arabidopsis and maize. PHYTOCHEMISTRY 2013; 94:68-73. [PMID: 23816351 DOI: 10.1016/j.phytochem.2013.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 05/06/2023]
Abstract
The breakdown of thiamin (vitamin B1) and its phosphates releases a thiazole moiety, 4-methyl-5-(2-hydroxyethyl)thiazole (THZ), that microorganisms and plants are able to salvage for re-use in thiamin synthesis. The salvage process starts with the ATP-dependent phosphorylation of THZ, which in bacteria is mediated by ThiM. The Arabidopsis and maize genomes encode homologs of ThiM (At3g24030 and GRMZM2G094558, respectively). Plasmid-driven expression of either plant homolog restored the ability of THZ to rescue Escherichia coli thiM deletant strains, showing that the plant proteins have ThiM activity in vivo. Enzymatic assays with purified recombinant proteins confirmed the presence of THZ kinase activity. Furthermore, ablating the Arabidopsis At3g24030 gene in a thiazole synthesis mutant severely impaired rescue by THZ. Collectively, these results show that ThiM homologs are the main source of THZ kinase activity in plants and are consequently crucial for thiamin salvage.
Collapse
|
|
12 |
21 |
18
|
Fernandez-Fuentes N, Hermoso A, Espadaler J, Querol E, Aviles FX, Oliva B. Classification of common functional loops of kinase super-families. Proteins 2004; 56:539-55. [PMID: 15229886 DOI: 10.1002/prot.20136] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A structural classification of loops has been obtained from a set of 141 protein structures classified as kinases. A total of 1813 loops was classified into 133 subclasses (9 betabeta(links), 15 betabeta(hairpins), 31 alpha-alpha, 46 alpha-beta and 32 beta-alpha). Functional information and specific features relating subclasses and function were included in the classification. Functional loops such as the P-loop (shared by different folds) or the Gly-rich-loop, among others, were classified into structural motifs. As a result, a common mechanism of catalysis and substrate binding was proved for most kinases. Additionally, the multiple-alignment of loop sequences made within each subclass was shown to be useful for comparative modeling of kinase loops. The classification is summarized in a kinase loop database located at http://sbi.imim.es/archki.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
18 |
19
|
Sonkar C, Verma T, Chatterji D, Jain AK, Jha HC. Status of kinases in Epstein-Barr virus and Helicobacter pylori Coinfection in gastric Cancer cells. BMC Cancer 2020; 20:925. [PMID: 32993565 PMCID: PMC7523314 DOI: 10.1186/s12885-020-07377-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) and Epstein - Barr virus (EBV) plays a significant role in aggressive gastric cancer (GC). The investigation of genes associated with these pathogens and host kinases may be essential to understand the early and dynamic progression of GC. AIM The study aimed to demonstrate the coinfection of EBV and H. pylori in the AGS cells through morphological changes, expression of the kinase and the probable apoptotic pathways. METHODS Genomic DNA isolation of H. pylori and its characterization from clinical samples were performed. RT-qPCR of kinases was applied to scrutinize the gene expression of kinases in co-infected GC in a direct and indirect (separated through insert size 0.45 μm) H. pylori infection set up. Morphological changes in co-infected GC were quantified by measuring the tapering ends of gastric epithelial cells. Gene expression profiling of apoptotic genes was assessed through RT-qPCR. RESULTS An interleukin-2-inducible T-cell kinase (ITK) showed significant upregulation with indirect H. pylori infection. Moreover, Ephrin type-B receptor six precursors (EPHB6) and Tyrosine-protein kinase Fyn (FYN) showed significant upregulation with direct coinfection. The tapering ends in AGS cells were found to be extended after 12 h. A total of 24 kinase genes were selected, out of which EPHB6, ITK, FYN, and TYK2 showed high expression as early as 12 h. These kinases may lead to rapid morphological changes in co-infected gastric cells. Likewise, apoptotic gene expression such as APAF-1 and Bcl2 family genes such as BAD, BID, BIK, BIM, BAX, AND BAK were significantly down-regulated in co-infected AGS cells. CONCLUSION All the experiments were performed with novel isolates of H. pylori isolated from central India, for the functional assessment of GC. The effect of coinfection with EBV was more profoundly observed on morphological changes in AGS cells at 12 h as quantified by measuring the tapering of ends. This study also identifies the kinase and apoptotic genes modulated in co-infected cells, through direct and indirect approaches. We report that ITK, EPHB6, TYK2, FYN kinase are enhanced, whereas apoptotic genes such as APAF-1, BIK, FASL, BAX are significantly down-regulated in AGS cells coinfected with EBV and H. pylori.
Collapse
|
research-article |
5 |
17 |
20
|
Zakarian RJ, Dunphy GB, Rau ME, Albert PJ. Kinases, intracellular calcium, and apolipophorin-III influence the adhesion of larval hemocytes of the lepidopterous insect, Galleria mellonella. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2003; 53:158-171. [PMID: 12886514 DOI: 10.1002/arch.10097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Based on the results from the use of selective inhibitors and activators, active protein kinase A, protein tyrosine kinase, and protein kinase C (PKC) isoforms decreased the adhesion of larval Galleria mellonella hemocytes to glass slides. The protein kinase A inhibitor at all concentrations increased granular cell adhesion only whereas protein tyrosine kinase elevated both granular and plasmatocyte attachment at the lowest concentration. Active, Ca(2+)- and lipid-dependent PKC isoforms limited plasmatocyte and granular cell adhesion whereas PKC that was inhibited by selected compounds (with differed modes of PKC inhibition) enhanced hemocyte attachment. The granular cells were more sensitive to the PKC inhibitors than were plasmatocytes. Phospholipase C and its diacylglyceride product were necessary to reduce hemocyte adhesion and maintain PKC activity. Extracellular Ca(2+), possibly transported through L-channels, was required for plasmatocyte attachment. In contrast, lowering the levels of cytosolic Ca(2+) was associated with decreased PKC activity and was required for hemocyte adhesion.
Collapse
|
|
22 |
9 |
21
|
Strain E, Muse SV. Positively selected sites in the Arabidopsis receptor-like kinase gene family. J Mol Evol 2005; 61:325-32. [PMID: 16044247 DOI: 10.1007/s00239-004-0308-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Accepted: 02/22/2005] [Indexed: 11/27/2022]
Abstract
We analyze members of the receptor-like kinase (RLK) gene family in Arabidopsis thaliana for positive selection. Likelihood analyses find evidence for positive selection in 12 of the 52 RLK family sequences groups. These 12 groups represent 97 of the 403 sequences analyzed. The majority of genes in groups subject to positive selection have not been functionally characterized, but sites under selection are predominantly located in the extracellular region. The pattern of selection in the extracellular leucine-rich repeat (LRR) motif of groups 14 and 51 is similar to previous studies where positively selected positions are located in a solvent exposed beta-strand that may determine disease specificity, raising the possibility that some RLK genes function in a similar role.
Collapse
|
Journal Article |
20 |
9 |
22
|
Valsasina B, Kalisz HM, Isacchi A. Kinase selectivity profiling by inhibitor affinity chromatography. Expert Rev Proteomics 2014; 1:303-15. [PMID: 15966827 DOI: 10.1586/14789450.1.3.303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As new drugs rapidly advance into clinical trials, comprehensive identification of their intracellular targets becomes fundamental for the full understanding of the molecular basis of their efficacy and toxicity. This is particularly important when the targets belong to a large family and the inhibitors recognize a conserved site among different members of the class. A typical example is the kinase family, where efforts are aimed at the development of inhibitors of distinct kinases for therapeutic applications in oncology, inflammation and other disease areas. In this case, inhibitors targeting the ATP pocket may cross react with different kinases, as well as with other proteins that bind ATP. This review critically discusses the available approaches for kinase selectivity profiling. It also reviews some examples of inhibitor affinity chromatography applied to inhibitors of kinases and other protein families as a tool to identify and characterize their intracellular targets.
Collapse
|
|
11 |
8 |
23
|
Saier MH, Wu LF, Baker ME, Sweet G, Reizer A, Reizer J. Evolution of permease diversity and energy-coupling mechanisms with special reference to the bacterial phosphotransferase system. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1018:248-51. [PMID: 2168212 DOI: 10.1016/0005-2728(90)90259-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Different classes of apparently unrelated permeases couple different forms of energy to solute transport. While the energy coupling mechanisms utilized by the different permease classes are clearly distinct, it is proposed, based on structural comparisons, that many of these permeases possess transmembrane, hydrophobic domains which are evolutionarily related. Carriers may have arisen from transmembrane pore-forming proteins, and the protein constituents or domains which are specifically responsible for energy coupling may have had distinct origins. Thus, complex permeases may possess mosaic structures. This suggestion is substantiated by recent findings regarding the evolutionary origins of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS). Mechanistic implications of this proposal are presented.
Collapse
|
Review |
35 |
5 |
24
|
Huang KP, Singh TJ, Akatsuka A, Shapiro SG, Vandenheede JR, Merlevede W. Phosphorylation and inactivation of rabbit skeletal muscle glycogen synthase: distinction between kinase Fa-, phosphorylase kinase-, and glycogen synthase (casein) kinase-1-catalyzed reactions. Arch Biochem Biophys 1984; 232:111-7. [PMID: 6331316 DOI: 10.1016/0003-9861(84)90526-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rabbit skeletal muscle glycogen synthase was phosphorylated by kinase Fa, phosphorylase kinase, and cAMP-independent synthase (casein) kinase-1 to determine the differences among these kinase-catalyzed reactions. The stoichiometry of phosphate incorporation, the extent of inactivation, and the sites of phosphorylation were compared. Synthase (casein) kinase-1 catalyzes the highest level of synthase phosphorylation (4 mol/subunit) and inactivation (reduction of the activity ratio to below 0.05). The sites, defined by characteristic tryptic peptides, phosphorylated by synthase (casein) kinase-1 are distinguishable from those by kinase Fa and phosphorylase kinase. In addition, synthase (casein) kinase-1, unlike kinase Fa, does not activate ATP X Mg2+-dependent protein phosphatase. These results demonstrate that synthase (casein) kinase-1 is a distinct glycogen synthase kinase.
Collapse
|
Comparative Study |
41 |
5 |
25
|
Reshetnikov AS, Mustakhimov II, Khmelenina VN, Beschastny AP, Trotsenko YA. Identification and cloning of the gene encoding pyrophosphate-dependent 6-phosphofructokinase of Methylomonas methanica. DOKL BIOCHEM BIOPHYS 2006; 405:468-70. [PMID: 16480155 DOI: 10.1007/s10628-005-0142-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
Journal Article |
19 |
4 |