1
|
Martin DM, Gershenzon J, Bohlmann J. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. PLANT PHYSIOLOGY 2003; 132:1586-99. [PMID: 12857838 PMCID: PMC167096 DOI: 10.1104/pp.103.021196] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Terpenoids are characteristic constitutive and inducible defense chemicals of conifers. The biochemical regulation of terpene formation, accumulation, and release from conifer needles was studied in Norway spruce [Picea abies L. (Karst)] saplings using methyl jasmonate (MeJA) to induce defensive responses without inflicting physical damage to terpene storage structures. MeJA treatment caused a 2-fold increase in monoterpene and sesquiterpene accumulation in needles without changes in terpene composition, much less than the 10- and 40-fold increases in monoterpenes and diterpenes, respectively, observed in wood tissue after MeJA treatment (D. Martin, D. Tholl, J. Gershenzon, J. Bohlmann [2002] Plant Physiol 129: 1003-1018). At the same time, MeJA triggered a 5-fold increase in total terpene emission from foliage, with a shift in composition to a blend dominated by oxygenated monoterpenes (e.g. linalool) and sesquiterpenes [e.g. (E)-beta-farnesene] that also included methyl salicylate. The rate of linalool emission increased more than 100-fold and that of sesquiterpenes increased more than 30-fold. Emission of these compounds followed a pronounced diurnal rhythm with the maximum amount released during the light period. The major MeJA-induced volatile terpenes appear to be synthesized de novo after treatment, rather than being released from stored terpene pools, because they are almost completely absent from needle oleoresin and are the major products of terpene synthase activity measured after MeJA treatment. Based on precedents in other species, the induced emission of terpenes from Norway spruce foliage may have ecological and physiological significance.
Collapse
|
research-article |
22 |
207 |
2
|
Zhu JY, Pan XJ, Wang GS, Gleisner R. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. BIORESOURCE TECHNOLOGY 2009; 100:2411-8. [PMID: 19119005 DOI: 10.1016/j.biortech.2008.10.057] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 10/21/2008] [Accepted: 10/23/2008] [Indexed: 05/05/2023]
Abstract
This study established a novel process using sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust and efficient bioconversion of softwoods. The process consists of sulfite treatment of wood chips under acidic conditions followed by mechanical size reduction using disk refining. The results indicated that after the SPORL pretreatment of spruce chips with 8-10% bisulfite and 1.8-3.7% sulfuric acid on oven dry (od) wood at 180 degrees C for 30 min, more than 90% cellulose conversion of substrate was achieved with enzyme loading of about 14.6 FPU cellulase plus 22.5 CBU beta-glucosidase per gram of od substrate after 48 h hydrolysis. Glucose yield from enzymatic hydrolysis of the substrate per 100 g of untreated od spruce wood (glucan content 43%) was about 37 g (excluding the dissolved glucose during pretreatment). Hemicellulose removal was found to be as critical as lignin sulfonation for cellulose conversion in the SPORL process. Pretreatment altered the wood chips, which reduced electric energy consumption for size reduction to about 19 Wh/kg od untreated wood, or about 19 g glucose/Wh electricity. Furthermore, the SPORL produced low amounts of fermentation inhibitors, hydroxymethyl furfural (HMF) and furfural, of about 5 and 1 mg/g of untreated od wood, respectively. In addition, similar results were achieved when the SPORL was applied to red pine. By building on the mature sulfite pulping and disk refining technologies already practiced in the pulp and paper industry, the SPORL has very few technological barriers and risks for commercialization.
Collapse
|
|
16 |
200 |
3
|
Martin D, Tholl D, Gershenzon J, Bohlmann J. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. PLANT PHYSIOLOGY 2002; 129:1003-18. [PMID: 12114556 PMCID: PMC166496 DOI: 10.1104/pp.011001] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2001] [Revised: 01/23/2002] [Accepted: 02/27/2002] [Indexed: 05/18/2023]
Abstract
Norway spruce (Picea abies L. Karst) produces an oleoresin characterized by a diverse array of terpenoids, monoterpenoids, sesquiterpenoids, and diterpene resin acids that can protect conifers against potential herbivores and pathogens. Oleoresin accumulates constitutively in resin ducts in the cortex and phloem (bark) of Norway spruce stems. De novo formation of traumatic resin ducts (TDs) is observed in the developing secondary xylem (wood) after insect attack, fungal elicitation, and mechanical wounding. Here, we characterize the methyl jasmonate-induced formation of TDs in Norway spruce by microscopy, chemical analyses of resin composition, and assays of terpenoid biosynthetic enzymes. The response involves tissue-specific differentiation of TDs, terpenoid accumulation, and induction of enzyme activities of both prenyltransferases and terpene synthases in the developing xylem, a tissue that constitutively lacks axial resin ducts in spruce. The induction of a complex defense response in Norway spruce by methyl jasmonate application provides new avenues to evaluate the role of resin defenses for protection of conifers against destructive pests such as white pine weevils (Pissodes strobi), bark beetles (Coleoptera, Scolytidae), and insect-associated tree pathogens.
Collapse
|
research-article |
23 |
160 |
4
|
Shuai L, Yang Q, Zhu JY, Lu FC, Weimer PJ, Ralph J, Pan XJ. Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. BIORESOURCE TECHNOLOGY 2010; 101:3106-14. [PMID: 20061141 DOI: 10.1016/j.biortech.2009.12.044] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 11/25/2009] [Accepted: 12/09/2009] [Indexed: 05/02/2023]
Abstract
The performance of two pretreatment methods, sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) and dilute acid (DA), was compared in pretreating softwood (spruce) for fuel ethanol production at 180 degrees Celsius for 30 min with a sulfuric acid loading of 5% on oven-dry wood and a 5:1 liquor-to-wood ratio. SPORL was supplemented with 9% sodium sulfite (w/w of wood). The recoveries of total saccharides (hexoses and pentoses) were 87.9% (SPORL) and 56.7% (DA), while those of cellulose were 92.5% (SPORL) and 77.7% (DA). The total of known inhibitors (furfural, 5-hydroxymethylfurfural, and formic, acetic and levulinic acids) formed in SPORL were only 35% of those formed in DA pretreatment. SPORL pretreatment dissolved approximately 32% of the lignin as lignosulfonate, which is a potential high-value co-product. With an enzyme loading of 15 FPU (filter paper units) per gram of cellulose, the cellulose-to-glucose conversion yields were 91% at 24h for the SPORL substrate and 55% at 48 h for the DA substrate, respectively.
Collapse
|
Comparative Study |
15 |
107 |
5
|
Fäldt J, Martin D, Miller B, Rawat S, Bohlmann J. Traumatic resin defense in Norway spruce (Picea abies): methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. PLANT MOLECULAR BIOLOGY 2003; 51:119-33. [PMID: 12602896 DOI: 10.1023/a:1020714403780] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Picea abies (L.) Karst. (Norway spruce) employs constitutive and induced resin terpenoids as major chemical and physical defense-shields against insects and pathogens. In recent work, we showed that a suite of terpenoids, monoterpenoids and diterpenoids was induced in stems of Norway spruce after treatment of trees with methyl jasmonate (MeJA) (Martin et al., 2002). Increase of enzyme activities of terpenoid biosynthesis and accumulation of terpenoids was associated with MeJA-induced de novo differentiation of xylem resin ducts. The formation of defense-related traumatic resin ducts was also found in Norway spruce after attack by stem boring insects or after infestation with fungal pathogens. In the present study, we analyzed the traumatic resin response in Norway spruce further at the molecular genetic level. Treatment of trees with MeJA induced transient transcript accumulation of monoterpenoid synthases and diterpenoid synthases in stem tissues of Norway spruce. In screening for defense-related terpenoid synthase (TPS) genes from Norway spruce, a full-length monoterpenoid synthase cDNA, PaJF67, was isolated and the recombinant enzyme expressed in E. coli and functionally characterized in vitro. The cloned PaJF67 cDNA represents a new monoterpenoid synthase gene and the gene product was identified as 3-carene synthase. The enzyme encoded by PaJF67 forms stereospecifically (+)-3-carene (78% of total product) together with minor acyclic and cyclic monoterpenes, including the mechanistically closely related terpinolene (11% of total product). (+)-3-Carene is a characteristic monoterpene of constitutive and induced oleoresin defense of Norway spruce and other members of the Pinaceae.
Collapse
|
|
22 |
105 |
6
|
Zeneli G, Krokene P, Christiansen E, Krekling T, Gershenzon J. Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. TREE PHYSIOLOGY 2006; 26:977-88. [PMID: 16651247 DOI: 10.1093/treephys/26.8.977] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
When conifers such as Picea abies Karst. (Norway spruce) are attacked by insects or pathogens, they often respond by producing increased quantities of terpenoid oleoresin. This response can be mimicked in young P. abies seedlings by treatment with methyl jasmonate (MJ). In this study, we determined the effects of MJ on terpenoids and other chemical defenses of mature P. abies, and investigated whether this treatment protected trees against attack by the blue-stain fungus Ceratocystis polonica (Siem.) C. Moreau, the most important fungal associate of the spruce bark beetle Ips typographus L. Methyl jasmonate treatment induced the formation of traumatic resin ducts in the developing xylem, enhanced resin flow and stimulated increased accumulation of monoterpenes, sesquiterpenes and diterpene resin acids. However, only minor changes were detected in terpene composition in response to MJ treatment and no changes in soluble phenolic concentration were measured. There was much variability in the timing and degree of response to MJ among clones. The observed chemical and anatomical changes in response to MJ treatment were correlated with increased resistance to C. polonica, suggesting that terpenoid oleoresin may function in defense against this pathogen.
Collapse
|
|
19 |
76 |
7
|
Wang Q, Kong L, Hao H, Wang X, Lin J, Samaj J, Baluska F. Effects of brefeldin A on pollen germination and tube growth. Antagonistic effects on endocytosis and secretion. PLANT PHYSIOLOGY 2005; 139:1692-703. [PMID: 16299176 PMCID: PMC1310552 DOI: 10.1104/pp.105.069765] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We assessed the effects of brefeldin A (BFA) on pollen tube development in Picea meyeri using fluorescent marker FM4-64 as a membrane-inserted endocytic/recycling marker, together with ultrastructural studies and Fourier transform infrared analysis of cell walls. BFA inhibited pollen germination and pollen tube growth, causing morphological changes in a dose-dependent manner, and pollen tube tip growth recovered after transferring into BFA-free medium. FM4-64 labeling showed typical bright apical staining in normally growing P. meyeri pollen tubes; this apical staining pattern differed from the V-formation pattern found in angiosperm pollen tubes. Confocal microscopy revealed that exocytosis was greatly inhibited in the presence of BFA. In contrast, the overall uptake of FM4-64 dye was about 2-fold that in the control after BFA (5 microg mL(-1)) treatment, revealing that BFA stimulated endocytosis in a manner opposite to the induced changes in exocytosis. Transmission electron microscopic observation showed that the number of secretory vesicles at the apical zone dramatically decreased, together with the disappearance of paramural bodies, while the number of vacuoles and other larger organelles increased. An acid phosphatase assay confirmed that the addition of BFA significantly inhibited secretory pathways. Importantly, Fourier transform infrared microspectroscopy documented significant changes in the cell wall composition of pollen tubes growing in the presence of BFA. These results suggest that enhanced endocytosis, together with inhibited secretion, is responsible for the retarded growth of pollen tubes induced by BFA.
Collapse
|
research-article |
20 |
74 |
8
|
Alriksson B, Cavka A, Jönsson LJ. Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. BIORESOURCE TECHNOLOGY 2011; 102:1254-63. [PMID: 20822900 DOI: 10.1016/j.biortech.2010.08.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 05/02/2023]
Abstract
Inhibitory lignocellulose hydrolysates were treated with the reducing agents dithionite and sulfite to achieve improved fermentability. Addition of these reducing agents (in the concentration range 5.0-17.5 mM) to enzymatic hydrolysates of spruce wood or sugarcane bagasse improved processes based on both SHF (simultaneous hydrolysis and fermentation) and SSF (simultaneous saccharification and fermentation). The approach was exemplified in ethanolic fermentations with Saccharomyces cerevisiae and by using hydrolysates with sugar concentrations>100 g/L (for SHF) and with 10% dry-matter content (for SSF). In the SHF experiments, treatments with dithionite raised the ethanol productivities of the spruce hydrolysate from 0.2 to 2.5 g×L(-1)×h(-1) and of the bagasse hydrolysate from 0.9 to 3.9 g×L(-1)×h(-1), values even higher than those of fermentations with reference sugar solutions without inhibitors. Benefits of the approach include that the addition of the reducing agent can be made in-situ directly in the fermentation vessel, that the treatment can be performed at a temperature and pH suitable for fermentation, and that the treatment results in dramatically improved fermentability without degradation of fermentable sugars. The many benefits and the simplicity of the approach offer a new way to achieve more efficient manufacture of fermentation products from lignocellulose hydrolysates.
Collapse
|
|
14 |
71 |
9
|
Vacek J, Klejdus B, Petrlová J, Lojková L, Kubán V. A hydrophilic interaction chromatography coupled to a mass spectrometry for the determination of glutathione in plant somatic embryos. Analyst 2006; 131:1167-74. [PMID: 17003866 DOI: 10.1039/b606432a] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrospray ionization mass spectrometric (ESI-MS) determination of glutathione (GSH), a sulfur-containing tripeptide (gamma-Glu-Cys-Gly) with regulation and detoxication functions in metabolisms of most living organisms, from nanomolar to micromolar levels is described. A hydrophilic interaction chromatography (HILIC) with an isocratic elution using a mobile phase containing acetonitrile and an aqueous 0.00005% solution of trifluoroacetic acid (60/40%, v/v) was applied for the separation of GSH. The peptide detection was achieved in the presence of L-ascorbic acid which significantly enhanced the signal intensity of the molecular ion GSH [M+H]+ (m/z 308). The calibration curve was linear (R2=0.9995) in the concentration range from 2 nM to 10 microM with a detection limit (LOD, S/N=3) of 0.5 nM. The excellent detection limit, and the excellent selectivity and high reproducibility of this method enabled determination of GSH in a single plant somatic embryo of a Norway spruce (Picea abies). The average amount of GSH in the single somatic embryos (n=18) was 9 pmol per embryo. Owing to our results, it can be supposed that the proposed HILIC/ESI-MS analysis might be used for GSH determination in microscopic cell structures and in single cell analyses.
Collapse
|
|
19 |
64 |
10
|
Stasolla C, van Zyl L, Egertsdotter U, Craig D, Liu W, Sederoff RR. The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos. PLANT PHYSIOLOGY 2003; 131:49-60. [PMID: 12529514 PMCID: PMC166786 DOI: 10.1104/pp.015214] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Revised: 10/01/2002] [Accepted: 10/01/2002] [Indexed: 05/22/2023]
Abstract
Somatic embryogenic cultures of white spruce (Picea glauca) represent a valuable system to study molecular mechanisms regulating embryo development because many embryos of defined developmental stages can be generated. The inclusion of polyethylene glycol (PEG) in the maturation medium can improve the number and quality of embryos produced. To learn more about the mechanism of action of PEG, we analyzed transcript profiles of stage-specific embryos matured without (control) or with (PEG treated) PEG. RNA extracted from maturing spruce embryos was analyzed on DNA microarrays containing 2,178 cDNAs from loblolly pine (Pinus taeda). The efficiency of heterologous hybridization between spruce and pine species on microarrays has been documented previously (L. van Zyl, S. von Arnold, P. Bozhkov, Y. Chen, U. Egertsdotter, J. MacKay, R. Sederoff, J. Shen, L. Zelena, D. Clapham [2002] Comp Funct Genomics 3: 306-318). Several pine genes, including the apparent homologs to the Arabidopsis genes ZWILLE, FIDDLEHEAD, FUSCA, and SCARECROW, increased in expression after PEG treatments. These genes are known to be involved in the formation of the embryo body plan and in the control of the shoot and root apical meristems. The increased transcript levels of these genes in immature PEG-treated embryos suggest that PEG may improve the quality of spruce somatic embryos by promoting normal differentiation of the embryonic shoot and root. Changes in the transcript levels of many genes involved in sucrose catabolism and nitrogen assimilation and utilization were also observed between control and PEG-treated embryos.
Collapse
|
research-article |
22 |
52 |
11
|
Uddenberg D, Valladares S, Abrahamsson M, Sundström JF, Sundås-Larsson A, von Arnold S. Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor. PLANTA 2011; 234:527-39. [PMID: 21541665 PMCID: PMC3162143 DOI: 10.1007/s00425-011-1418-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/12/2011] [Indexed: 05/06/2023]
Abstract
Somatic embryogenesis is used for vegetative propagation of conifers. Embryogenic cultures can be established from zygotic embryos; however, the embryogenic potential decreases during germination. In Arabidopsis, LEAFY COTYLEDON (LEC) genes are expressed during the embryonic stage, and must be repressed to allow germination. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) causes de-repression of LEC genes. ABSCISIC ACID3 (ABI3) and its Zea mays ortholog VIVIPAROUS1 (VP1) act together with the LEC genes to promote embryo maturation. In this study, we have asked the question whether TSA treatment in a conifer affects the embryogenic potential and the expression of embryogenesis-related genes. We isolated two conifer LEC1-type HAP3 genes, HAP3A and HAP3B, from Picea abies and Pinus sylvestris. A comparative phylogenetic analysis of plant HAP3 genes suggests that HAP3A and HAP3B are paralogous genes originating from a duplication event in the conifer lineage. The expression of HAP3A is high, in both somatic and zygotic embryos, during early embryo development, but decreases during late embryogeny. In contrast, the expression of VP1 is initially low but increases during late embryogeny. After exposure to TSA, germinating somatic embryos of P. abies maintain the competence to differentiate embryogenic tissue, and simultaneously the germination progression is partially inhibited. Furthermore, when embryogenic cultures of P. abies are exposed to TSA during embryo maturation, the maturation process is arrested and the expression levels of PaHAP3A and PaVP1 are maintained, suggesting a possible link between chromatin structure and expression of embryogenesis-related genes in conifers.
Collapse
|
research-article |
14 |
48 |
12
|
Chen T, Wu X, Chen Y, Li X, Huang M, Zheng M, Baluska F, Samaj J, Lin J. Combined proteomic and cytological analysis of Ca2+-calmodulin regulation in Picea meyeri pollen tube growth. PLANT PHYSIOLOGY 2009; 149:1111-26. [PMID: 19011005 PMCID: PMC2633844 DOI: 10.1104/pp.108.127514] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 11/11/2008] [Indexed: 05/22/2023]
Abstract
Ca2+-calmodulin (Ca2+-CaM) is a critical molecule that mediates cellular functions by interacting with various metabolic and signaling pathways. However, the protein expression patterns and accompanying serial cytological responses in Ca2+-CaM signaling deficiency remain enigmatic. Here, we provide a global analysis of the cytological responses and significant alterations in protein expression profiles after trifluoperazine treatment in Picea meyeri, which abrogates Ca2+-CaM signaling. Ninety-three differentially displayed proteins were identified by comparative proteomics at different development stages and were assigned to different functional categories closely related to tip growth machinery. The inhibition of Ca2+-CaM signaling rapidly induced an increase in extracellular Ca2+ influx, resulting in dramatically increased cytosolic Ca2+ concentrations and ultrastructural abnormalities in organelles as the primary responses. Secondary and tertiary alterations included actin filament depolymerization, disrupted patterns of endocytosis and exocytosis, and cell wall remodeling, ultimately resulting in perturbed pollen tube extension. In parallel with these cytological events, time-course experiments revealed that most differentially expressed proteins showed time-dependent quantitative changes (i.e. some signaling proteins and proteins involved in organelle functions and energy production changed first, followed by alterations in proteins related to cytoskeletal organization, secretory pathways, and polysaccharide synthesis). Taken together, Ca2+-CaM dysfunction induced serial cytological responses and temporal changes in protein expression profiles, indicating the pivotal role of Ca2+-CaM in the regulation of tip growth machinery.
Collapse
|
research-article |
16 |
45 |
13
|
Palovaara J, Hallberg H, Stasolla C, Hakman I. Comparative expression pattern analysis of WUSCHEL-related homeobox 2 (WOX2) and WOX8/9 in developing seeds and somatic embryos of the gymnosperm Picea abies. THE NEW PHYTOLOGIST 2010; 188:122-35. [PMID: 20561212 DOI: 10.1111/j.1469-8137.2010.03336.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
• In seed plants, current knowledge concerning embryonic pattern formation by polar auxin transport (PAT) and WUSCHEL-related homeobox (WOX) gene activity is primarily derived from studies on angiosperms, while less is known about these processes in gymnosperms. In view of the differences in their embryogeny, and the fact that somatic embryogenesis is used for mass propagation of conifers, a better understanding of embryo development is vital. • The expression patterns of PaWOX2 and PaWOX8/9 were followed with quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH) during seed and somatic embryo development in Norway spruce (Picea abies), and in somatic embryos treated with the PAT inhibitor N-1-naphthylphthalamic acid (NPA). • Both PaWOX2 and PaWOX8/9 were highly expressed at the early growth stages of zygotic and somatic embryos, and shared a similar expression pattern over the entire embryo. At later embryo stages, high expression of PaWOX8/9 became restricted to cotyledon primordia, epidermis, procambium and root apical meristem (RAM), which became most evident in NPA-treated somatic embryos, while expression of PaWOX2 was much lower. • Our results suggest an ancestral role of WOX in seed plant embryo development, and strengthen the proposed connection between PAT, PIN-FORMED (PIN) and WOX in the regulation of embryo patterning in seed plants.
Collapse
|
Comparative Study |
15 |
43 |
14
|
Di Guardo A, Zaccara S, Cerabolini B, Acciarri M, Terzaghi G, Calamari D. Conifer needles as passive biomonitors of the spatial and temporal distribution of DDT from a point source. CHEMOSPHERE 2003; 52:789-797. [PMID: 12757779 DOI: 10.1016/s0045-6535(03)00256-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Needles of two conifer species, Picea abies and Pinus nigra, were used as passive samplers for monitoring air contamination by sampling at increasing distances from a suspected point source of DDT. Needle concentrations declined with increasing distance downwind of the point source allowing to identify spatial and temporal trends of accumulation. This suggested that conifer needles are effective biomonitors of contamination levels in areas characterized by the presence of semi-volatile substances. Differences in uptake were apparent between the species. Needle morphology and structure were studied with scanning electron microscope (SEM) as were dimensional parameters (surface area, volume). The results suggest that the concentrations depend on a mechanism involving the inner structure of the needles, specifically the number and accessibility of resin channels rather than their surface area. Pine needles have more channels with greater accessibility than spruce. The results suggest that spruce is more suitable for short term measurement while pine for determining long term cumulative exposure.
Collapse
|
Comparative Study |
22 |
42 |
15
|
Persson P, Larsson S, Jönsson LJ, Nilvebrant NO, Sivik B, Munteanu F, Thörneby L, Gorton L. Supercritical fluid extraction of a lignocellulosic hydrolysate of spruce for detoxification and to facilitate analysis of inhibitors. Biotechnol Bioeng 2002; 79:694-700. [PMID: 12209817 DOI: 10.1002/bit.10324] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This work describes a novel approach to detoxify lignocellulosic hydrolysates and facilitate the analysis of inhibitory compounds, namely supercritical fluid extraction (SFE). The efficiency of the fermentation of lignocellulosic dilute-acid hydrolysates depends upon the composition of the hydrolysate and the organism used. Furthermore, it has been shown that inhibitors in the hydrolysate reduce the fermentation yield. This knowledge has given rise to the need to identify and remove the inhibiting compounds. Sample clean-up or work-up steps, to provide a clean and concentrated sample for the analytical system, facilitate the characterization of inhibitors, or indeed any compound in the hydrolysates. Removal of inhibitors was performed with countercurrent flow supercritical fluid extraction of liquid hydrolysates. Three different groups of inhibitors (furan derivatives, phenolic compounds, and aliphatic acids) and sugars were subsequently analyzed in the hydrolysate, extracted hydrolysate, and extract. The effect of the SFE treatment was examined with respect to fermentability with Saccharomyces cerevisiae. Not only did the extraction provide a clean and concentrated sample (extract) for analysis, but also a hydrolysate with increased fermentability as well as lower concentrations of inhibitors such as phenolics and furan derivatives.
Collapse
|
|
23 |
42 |
16
|
Hudgins JW, Christiansen E, Franceschi VR. Methyl jasmonate induces changes mimicking anatomical defenses in diverse members of the Pinaceae. TREE PHYSIOLOGY 2003; 23:361-371. [PMID: 12642238 DOI: 10.1093/treephys/23.6.361] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Conifers have defenses such as the production of phenolic compounds and resins that can be induced by bark beetles and other invading organisms, but the signaling agents involved are unknown. The anatomical effects of methyl jasmonate (MJ), a potent inducer of certain plant defenses, were compared with wounding of the bark of 12-15-year-old trees of five conifer species. Wounding in all species resulted in tissue necrosis and wound periderm development immediately around the wound site. One cm from the wound, swelling of phloem polyphenolic parenchyma cells and phenolic accumulation were observed in Pseudotsuga menziesii (Mirb.) Franco, Picea pungens Engelman, Larix occidentalis Nutt. and Pinus monticola Douglas ex D. Don, but not in Taxus brevifolia Nutt. Traumatic resin ducts were formed in response to wounding in three species of Pinaceae, but not in P. monticola, which formed irregular clusters of cells rather than ducts. Taxus brevifolia did not form resin ducts in response to either wounding or MJ treatment. In the Pinaceae species studied, surface application of 100 mM MJ caused similar anatomical changes to those observed in response to wounding, including phenolic accumulation, cell swelling and traumatic resin duct formation, but it did not induce a wound periderm. Traumatic resin ducts differed in size among the study species, ranging from small in L. occidentalis to very large in P. menziesii. In P. menziesii, P. pungens and L. occidentalis, traumatic resin ducts were more abundant after MJ treatment than after wounding. We conclude that the octadecanoid pathway is likely involved in defense responses in stems of the Pinaceae, but not necessarily in other taxa.
Collapse
|
|
22 |
42 |
17
|
Mathias JM, Thomas RB. Disentangling the effects of acidic air pollution, atmospheric CO 2 , and climate change on recent growth of red spruce trees in the Central Appalachian Mountains. GLOBAL CHANGE BIOLOGY 2018; 24:3938-3953. [PMID: 29781219 DOI: 10.1111/gcb.14273] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 05/24/2023]
Abstract
In the 45 years after legislation of the Clean Air Act, there has been tremendous progress in reducing acidic air pollutants in the eastern United States, yet limited evidence exists that cleaner air has improved forest health. Here, we investigate the influence of recent environmental changes on the growth and physiology of red spruce (Picea rubens Sarg.) trees, a key indicator species of forest health, spanning three locations along a 100 km transect in the Central Appalachian Mountains. We incorporated a multiproxy approach using 75-year tree ring chronologies of basal tree growth, carbon isotope discrimination (∆13 C, a proxy for leaf gas exchange), and δ15 N (a proxy for ecosystem N status) to examine tree and ecosystem level responses to environmental change. Results reveal the two most important factors driving increased tree growth since ca. 1989 are reductions in acidic sulfur pollution and increases in atmospheric CO2 , while reductions in pollutant emissions of NOx and warmer springs played smaller, but significant roles. Tree ring ∆13 C signatures increased significantly since 1989, concurrently with significant declines in tree ring δ15 N signatures. These isotope chronologies provide strong evidence that simultaneous changes in C and N cycling, including greater photosynthesis and stomatal conductance of trees and increases in ecosystem N retention, were related to recent increases in red spruce tree growth and are consequential to ecosystem recovery from acidic pollution. Intrinsic water use efficiency (iWUE) of the red spruce trees increased by ~51% across the 75-year chronology, and was driven by changes in atmospheric CO2 and acid pollution, but iWUE was not linked to recent increases in tree growth. This study documents the complex environmental interactions that have contributed to the recovery of red spruce forest ecosystems from pervasive acidic air pollution beginning in 1989, about 15 years after acidic pollutants started to decline in the United States.
Collapse
|
|
7 |
37 |
18
|
Dyachok JV, Wiweger M, Kenne L, von Arnold S. Endogenous Nod-factor-like signal molecules promote early somatic embryo development in Norway spruce. PLANT PHYSIOLOGY 2002; 128:523-33. [PMID: 11842156 PMCID: PMC148915 DOI: 10.1104/pp.010547] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2001] [Revised: 09/12/2001] [Accepted: 11/12/2001] [Indexed: 05/20/2023]
Abstract
Embryogenic cultures of Norway spruce (Picea abies) are composed of pro-embryogenic masses (PEMs) and somatic embryos of various developmental stages. Auxin is important for PEM formation and proliferation. In this report we show that depletion of auxin blocks PEM development and causes large-scale cell death. Extracts of the media conditioned by embryogenic cultures stimulate development of PEM aggregates in auxin-deficient cultures. Partial characterization of the conditioning factor shows that it is a lipophilic, low-molecular-weight molecule, which is sensitive to chitinase and contains GlcNAc residues. On the basis of this information, we propose that the factor is a lipophilic chitin oligosaccharide (LCO). The amount of LCO correlates to the developmental stages of PEMs and embryos, with the highest level in the media conditioned by developmentally blocked cultures. LCO is not present in nonembryogenic cultures. Cell death, induced by withdrawal of auxin, is suppressed by extra supply of endogenous LCO or Nod factor from Rhizobium sp. NGR234. The effect can be mimicked by a chitotetraose or chitinase from Streptomyces griseus. Taken together, our data suggest that endogenous LCO acts as a signal molecule stimulating PEM and early embryo development in Norway spruce.
Collapse
|
research-article |
23 |
35 |
19
|
Duan B, Yang Y, Lu Y, Korpelainen H, Berninger F, Li C. Interactions between water deficit, ABA, and provenances in Picea asperata. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:3025-36. [PMID: 17901194 DOI: 10.1093/jxb/erm160] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The effects of exogenous abscisic acid (ABA) on the acclimation of Picea asperata to water deficit were investigated in two populations originating from wet and dry climate regions of China. Exogenous ABA was sprayed onto the leaves, and changes in plant growth and structure, gas exchange, water use efficiency (WUE), endogenous ABA content, and antioxidant enzyme levels were monitored. The results demonstrated that ABA application affected the two P. asperata populations in different ways during the water deficit. ABA application resulted in significantly lower CO(2) assimilation rates (A) under water deficit in plants from the wet climate population, whereas there were no significant changes in this parameter in the dry climate population. On the other hand, ABA application significantly decreased the dry shoot biomass, stomatal conductance (g(s)), transpiration rate (E), and malondialdehyde (MDA) content, and it significantly increased the leaf mass per area (LMA), root/shoot ratio (Rs), fine root/total root ratio (Ft), WUE, ABA content, and the superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) activities under water-deficit conditions in the dry climate population, whereas ABA application did not significantly affect these parameters in the wet climate population. The results clearly demonstrated that sensitivity to an exogenous ABA application is population-dependent in P. asperata. Direct evidence is presented that variation in physiological mechanisms rather than different rates of ABA absorption explain the population differentiation in the sensitivity to exogenous ABA, and that the physiological basis for the amplified response to water deficit caused by exogenous ABA, present mainly in the dry climate population, is related to internal ABA accumulation. These results provide evidence for adaptive differentiation between populations of P. asperata, and they support the expected relationship between environmental heterogeneity and the magnitude of plastic responses in plant populations.
Collapse
|
Comparative Study |
18 |
34 |
20
|
Pashkovskiy PP, Vankova R, Zlobin IE, Dobrev P, Ivanov YV, Kartashov AV, Kuznetsov VV. Comparative analysis of abscisic acid levels and expression of abscisic acid-related genes in Scots pine and Norway spruce seedlings under water deficit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:105-112. [PMID: 31091491 DOI: 10.1016/j.plaphy.2019.04.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Abscisic acid (ABA) is one of the main participants in the regulation of plant responses to water deficiency. Knowledge of the ABA signal transduction pathways in gymnosperms is rather limited, especially in comparison with those in angiosperms. Seedlings of Scots pine and Norway spruce are known for their contrasting behaviour strategies under water deficit. To characterize the possible role of ABA in these differences, ABA dynamics were investigated under conditions of water deficit in seedlings of these two species. The content of ABA and its catabolites was followed in the roots and needles of seedlings of Pinus sylvestris and Picea abies under conditions of polyethylene glycol (PEG)-induced water deficiency (-0.15 and -0.5 MPa) for 10 days. The expression of the main genes for ABA-biosynthetic enzymes was also analysed. ABA showed more pronounced stress-dependent dynamics in pine roots than in spruce roots, whereas in needles, the response was greater for spruce than pine. The ABA increase during drought was mainly due to de novo synthesis and the shift in the balance between ABA synthesis and catabolism towards synthesis. The ABA-glucosyl ester did not serve as a reserve for the release of free ABA under water deficiency. The expression levels of the main ABA biosynthetic genes showed a weak or no correlation with changes in ABA content under water stress, i.e., the ABA content in the seedlings of both species was not directly linked to the transcript levels of the main ABA biosynthetic genes. Less-pronounced stress-induced changes in ABA in pine needles than in spruce needles may be related to pine seedlings having a less conservative strategy of growth and maintenance of water balance under water deficit.
Collapse
|
|
6 |
32 |
21
|
Cavka A, Jönsson LJ. Detoxification of lignocellulosic hydrolysates using sodium borohydride. BIORESOURCE TECHNOLOGY 2013; 136:368-76. [PMID: 23567704 DOI: 10.1016/j.biortech.2013.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 05/12/2023]
Abstract
Addition of sodium borohydride to a lignocellulose hydrolysate of Norway spruce affected the fermentability when cellulosic ethanol was produced using Saccharomyces cerevisiae. Treatment of the hydrolysate with borohydride improved the ethanol yield on consumed sugar from 0.09 to 0.31 g/g, the balanced ethanol yield from 0.02 to 0.30 g/g, and the ethanol productivity from 0.05 to 0.57 g/(L×h). Treatment of a sugarcane bagasse hydrolysate gave similar results, and the experiments indicate that sodium borohydride is suitable for chemical in situ detoxification. The model inhibitors coniferyl aldehyde, p-benzoquinone, 2,6-dimethoxybenzoquinone, and furfural were efficiently reduced by treatment with sodium borohydride, even under mild reaction conditions (20 °C and pH 6.0). While addition of sodium dithionite to pretreatment liquid from spruce improved enzymatic hydrolysis of cellulose, addition of sodium borohydride did not. This result indicates that the strong hydrophilicity resulting from sulfonation of inhibitors by dithionite treatment was particularly important for alleviating enzyme inhibition.
Collapse
|
|
12 |
31 |
22
|
Lazzaro MD, Cardenas L, Bhatt AP, Justus CD, Phillips MS, Holdaway-Clarke TL, Hepler PK. Calcium gradients in conifer pollen tubes; dynamic properties differ from those seen in angiosperms. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2619-28. [PMID: 16118258 DOI: 10.1093/jxb/eri256] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pollen tubes are an established model system for examining polarized cell growth. The focus here is on pollen tubes of the conifer Norway spruce (Picea abies, Pinaceae); examining the relationship between cytosolic free Ca2+, tip elongation, and intracellular motility. Conifer pollen tubes show important differences from their angiosperm counterparts; they grow more slowly and their organelles move in an unusual fountain pattern, as opposed to reverse fountain, in the tip. Ratiometric ion imaging of growing pollen tubes, microinjected with fura-2-dextran, reveals a tip-focused [Ca2+]i gradient extending from 450 nM at the extreme apex to 225 nM at the base of the tip clear zone. Injection of 5,5' dibromo-BAPTA does not dissipate the apical gradient, but stops cell elongation and uniquely causes rapid, transient increases of apical free Ca2+. The [Ca2+]i gradient is, however, dissipated by reversible perfusion of extracellular caffeine. When the basal cytosolic free Ca2+ concentration falls below 150 nM, again a large increase in apical [Ca2+]i occurs. An external source of calcium is not required for germination but significantly enhances elongation. However, both germination and elongation are significantly inhibited by the inclusion of calcium channels blockers, including lanthanum, gadolinium, or verapamil. Modulation of intracellular calcium also affects organelle position and motility. Extracellular perfusion of lanthanides reversibly depletes the apical [Ca2+]i gradient, altering organelle positioning in the tip. Later, during recovery from lanthanide perfusion, organelle motility switches direction to a reverse fountain. When taken together these data show a unique interplay in Picea abies pollen tubes between intracellular calcium and the motile processes controlling cellular organization.
Collapse
|
Comparative Study |
20 |
30 |
23
|
Chen Y, Chen T, Shen S, Zheng M, Guo Y, Lin J, Baluska F, Samaj J. Differential display proteomic analysis of Picea meyeri pollen germination and pollen-tube growth after inhibition of actin polymerization by latrunculin B. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:174-95. [PMID: 16771841 DOI: 10.1111/j.1365-313x.2006.02783.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
To investigate roles of the actin cytoskeleton in growth of the pollen tube of Picea meyeri, we used the actin polymerization inhibitor latrunculin B (LATB) under quantitatively controlled conditions. At low concentrations, LATB inhibited polymerization of the actin cytoskeleton in the growing pollen tube, which rapidly inhibited tip growth. The proteomic approach was used to analyse protein expression-profile changes during pollen germination and subsequent pollen-tube development with disturbed organization of the actin cytoskeleton. Two-dimensional electrophoresis and staining with Coomassie Brilliant Blue revealed nearly 600 protein spots. A total of 84 of these were differentially displayed at different hours with varying doses of LATB, and 53 upregulated or downregulated proteins were identified by mass spectrometry. These proteins were grouped into distinct functional categories including signalling, actin cytoskeleton organization, cell expansion and carbohydrate metabolism. Moreover, actin disruption affected the morphology of Golgi stacks, mitochondria and amyloplasts, along with a differential expression of proteins involved in their functions. These findings provide new insights into the multifaceted mechanism of actin cytoskeleton functions and its interaction with signalling, cell-expansion machinery and energy-providing pathways.
Collapse
|
|
19 |
29 |
24
|
Muzika RM, Guyette RP, Zielonka T, Liebhold AM. The influence of O3, NO2 and SO2 on growth of Picea abies and Fagus sylvatica in the Carpathian Mountains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2004; 130:65-71. [PMID: 15046841 DOI: 10.1016/j.envpol.2003.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 10/17/2003] [Indexed: 05/24/2023]
Abstract
At 17 long-term pollution monitoring sites throughout the Carpathian Mountains, tree growth patterns and variation in growth rate were examined to determine relationship of tree growth to specific pollutants. Canopy dominant Picea abies and Fagus sylvatica were selected at each site. Basal area increment (BAI) values were calculated from raw ring widths and used as an estimate of tree growth. Across all sites, BAI chronologies were highly variable, therefore local conditions and forest structure accounted for considerable variation. Several significant relationships, however, implicated a role of pollutants on tree growth. Average levels (1997-1999) of NO(2) and SO(2) were inversely related to BAI means (1989-1999). Although average O(3) alone was not related to growth, the maximum O(3) value reported at the sites was negatively correlated with overall growth. A variable representing the combined effect of O(3), NO(2) and SO(2) was negatively correlated with both P. abies and F. sylvatica growth. Pollution data were used to categorize all sites into 'high' or 'low' pollution sites. Difference chronologies based on these categories indicated trends of decline in the 'high' pollution sites relative to 'low' pollution site. In the more heavily polluted sites, the BAI of Fagus sylvatica has declined approximately 50% and Picea abies has declined 20% over the past 45 years.
Collapse
|
|
21 |
27 |
25
|
Pullman GS, Zhang Y, Phan BH. Brassinolide improves embryogenic tissue initiation in conifers and rice. PLANT CELL REPORTS 2003; 22:96-104. [PMID: 12879262 DOI: 10.1007/s00299-003-0674-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 06/07/2003] [Accepted: 06/10/2003] [Indexed: 05/24/2023]
Abstract
Somatic embryogenesis (SE), the most promising technology for the large-scale production of high-value coniferous trees from advanced breeding and genetic engineering programs, is expected to play an important role in increasing productivity, sustainability, and the uniformity of future U.S. forests. To be successful for commercial use, SE technology must work with a variety of genetically diverse trees. Initiation in loblolly pine ( Pinus taeda L.), our main focus species, is often recalcitrant for desirable genotypes. Initiation percentages of loblolly pine, Douglas-fir [ Pseudotsuga menziesii (Mirb.) Franco], and Norway spruce ( Picea abies L., Karst.) were improved through the use of brassinolide. Brassinosteroids, which include brassinolide, are a relatively new group of natural plant growth regulators that are found in many plant species. They have been shown to have diverse, tissue-specific, and species-specific effects, including the stimulation of cell elongation and ethylene production and increasing resistance to abiotic stress. In our media, brassinolide was effective at concentrations ranging from 0.005-0.25 micro M. Using control medium (no brassinolide) and brassinolide-supplemented (0.1 micro M) medium, we achieved improved initiation percentages in loblolly pine, Douglas-fir, Norway spruce, and rice-15.0% to 30.1%, 16.1% to 36.3%, 34.6% to 47.4%, and 10%, respectively. Brassinolide increased the weight of loblolly pine embryogenic tissue by 66% and stimulated initiation in the more recalcitrant families of loblolly pine and Douglas-fir, thus compensating somewhat for genotypic differences in initiation. Initiation percentages in loblolly pine were improved through the combination of modified 1/2-P6 salts, 50 mg/l activated carbon (AC), adjusted levels of Cu and Zn (to compensate for adsorption by AC), 1.5% maltose, 2% myo-inositol (to raise the osmotic level, partially simulating the megagametophyte environment), 500 mg/l casamino acids, 450 mg/l glutamine, 2 mg/l alpha-naphthaleneacetic acid, 0.63 mg/l 6-benzylaminopurine, 0.61 mg/l kinetin, 3.4 mg/l silver nitrate, 10 micro M cGMP, 0.1 micro M brassinolide, and 2 g/l Gelrite. Across 12 open-pollinated families of loblolly pine, initiation percentages ranged from 2.5% to 50.7%, averaging 22.5%.
Collapse
|
|
22 |
27 |