1
|
Müller DR, Schindler P, Towbin H, Wirth U, Voshol H, Hoving S, Steinmetz MO. Isotope-tagged cross-linking reagents. A new tool in mass spectrometric protein interaction analysis. Anal Chem 2001; 73:1927-34. [PMID: 11354472 DOI: 10.1021/ac001379a] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In protein interaction analysis, one promising method to identify the involved proteins and to characterize interacting sites at the same time is the mass spectrometric analysis of enzymatic hydrolysates of covalently cross-linked complexes. While protein identification can be accomplished by the methodology developed for proteome analysis, the unequivocal detection and characterization of cross-linked sites remained involved without selection criteria for linked peptides in addition to mass. To provide such criteria, we incorporated cross-links with a distinct isotope pattern into the microtubule-destabilizing protein Op18/stathmin (Op18) and into complexes formed by Op18 with tubulin. The deuterium-labeled cross-linking reagents bis(sulfosuccinimidyl)-glutarate-d4, -pimelate-d4, and -sebacate-d4 were prepared together with their undeuterated counterparts and applied as a 1:1 mixture of the respective d0 and d4 isotopomers. The resulting d0/d4 isotope tags allowed a straightforward mass spectrometric detection of peptides carrying the linker even in complex enzymatic protein hydrolysates. In the structure elucidation of the linked peptides by MS/MS, the assignment of the linked amino acids was again greatly facilitated by the d0/d4 tag. By applying two cross-linkers with similar reactivity but different spacer length in parallel, even doublets with very low intensity could be assigned with high confidence in MS and MS/MS spectra. Since in the Op18-tubulin complexes only a limited number of peptides carried the linker, the identification of the involved proteins per se was not impeded, thus accomplishing both protein identification and characterization of interacting sites in the same experiment. This novel methodology allowed us to significantly refine the current view of the complex between Op18 and tubulin corroborating the tubulin "capping" activity of the N-terminal domain of Op18.
Collapse
|
Journal Article |
24 |
184 |
2
|
Zoeller M, Stingl N, Krischke M, Fekete A, Waller F, Berger S, Mueller MJ. Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. PLANT PHYSIOLOGY 2012; 160:365-78. [PMID: 22822212 PMCID: PMC3440211 DOI: 10.1104/pp.112.202846] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/17/2012] [Indexed: 05/19/2023]
Abstract
Lipid peroxidation (LPO) is induced by a variety of abiotic and biotic stresses. Although LPO is involved in diverse signaling processes, little is known about the oxidation mechanisms and major lipid targets. A systematic lipidomics analysis of LPO in the interaction of Arabidopsis (Arabidopsis thaliana) with Pseudomonas syringae revealed that LPO is predominantly confined to plastid lipids comprising galactolipid and triacylglyceride species and precedes programmed cell death. Singlet oxygen was identified as the major cause of lipid oxidation under basal conditions, while a 13-lipoxygenase (LOX2) and free radical-catalyzed lipid oxidation substantially contribute to the increase upon pathogen infection. Analysis of lox2 mutants revealed that LOX2 is essential for enzymatic membrane peroxidation but not for the pathogen-induced free jasmonate production. Despite massive oxidative modification of plastid lipids, levels of nonoxidized lipids dramatically increased after infection. Pathogen infection also induced an accumulation of fragmented lipids. Analysis of mutants defective in 9-lipoxygenases and LOX2 showed that galactolipid fragmentation is independent of LOXs. We provide strong in vivo evidence for a free radical-catalyzed galactolipid fragmentation mechanism responsible for the formation of the essential biotin precursor pimelic acid as well as of azelaic acid, which was previously postulated to prime the immune response of Arabidopsis. Our results suggest that azelaic acid is a general marker for LPO rather than a general immune signal. The proposed fragmentation mechanism rationalizes the pathogen-induced radical amplification and formation of electrophile signals such as phytoprostanes, malondialdehyde, and hexenal in plastids.
Collapse
|
research-article |
13 |
147 |
3
|
Mitchell CA, Yu L, Ward MD. Selective nucleation and discovery of organic polymorphs through epitaxy with single crystal substrates. J Am Chem Soc 2001; 123:10830-9. [PMID: 11686684 DOI: 10.1021/ja004085f] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crystallization of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (1), previously found to produce six conformational polymorphs from solution, on single-crystal pimelic acid (PA) substrates results in selective and oriented growth of the metastable "YN" (yellow needle) polymorph on the (101)(PA) faces of the substrate. Though the freshly cleaved substrate crystals expose (101)(PA) and (111)(PA) faces, which are both decorated with [101](PA) ledges that could serve as nucleation sites, crystal growth of YN occurs on only (101)(PA). Goniometry measurements performed with an atomic force microscope reveal that the (001)(YN) plane contacts (101)(PA) with a crystal orientation [100](YN)//[010](PA) and [010](YN)//[101](PA). A geometric lattice analysis using a newly developed program dubbed GRACE (geometric real-space analysis of crystal epitaxy) indicates that this interfacial configuration arises from optimal two-dimensional epitaxy and that among the six polymorphs of 1, only the YN polymorph, in the observed orientation, achieves reasonable epitaxial match to (101)(PA). The geometric analysis also reveals that none of the polymorphs, including YN, can achieve comparable epitaxial match with (111)(PA), consistent with the absence of nucleation on this crystal face. In contrast, sublimation of 1 on cleaved succinic acid (SA) substrates, which expose large (010)(SA) faces decorated with steps along [101](SA), affords growth of several polymorphs, each with multiple orientations, as well as oriented crystals of a new metastable polymorph on the (010)(SA) surfaces. The lack of polymorphic selectivity on (010)(SA) can be explained by the geometric lattice analysis, which reveals low-grade epitaxial matches between (010)(SA) and several polymorphs of 1 but no inherent selectivity toward a single polymorph. These observations demonstrate the sensitivity of crystal nucleation to substrate surface structure, the potential of crystalline substrates for selective nucleation and discovery of polymorphs, and the utility of geometric lattice modeling for screening of substrate libraries for controlling polymorphism.
Collapse
|
|
24 |
130 |
4
|
Xu C, Soragni E, Chou CJ, Herman D, Plasterer HL, Rusche JR, Gottesfeld JM. Chemical probes identify a role for histone deacetylase 3 in Friedreich's ataxia gene silencing. CHEMISTRY & BIOLOGY 2009; 16:980-9. [PMID: 19778726 PMCID: PMC2909763 DOI: 10.1016/j.chembiol.2009.07.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/06/2009] [Accepted: 07/31/2009] [Indexed: 02/05/2023]
Abstract
We recently identified a class of pimelic diphenylamide histone deacetylase (HDAC) inhibitors that show promise as therapeutics in the neurodegenerative diseases Friedreich's ataxia (FRDA) and Huntington's disease. Here, we describe chemical approaches to identify the HDAC enzyme target of these inhibitors. Incubation of a trifunctional activity-based probe with a panel of class I and class II recombinant HDAC enzymes, followed by click chemistry addition of a fluorescent dye and gel electrophoresis, identifies HDAC3 as a unique high-affinity target of the probe. Photoaffinity labeling in a nuclear extract prepared from human lymphoblasts with the trifunctional probe, followed by biotin addition through click chemistry, streptavidin enrichment, and Western blotting also identifies HDAC3 as the preferred cellular target of the inhibitor. Additional inhibitors with different HDAC specificity profiles were synthesized, and results from transcription experiments in FRDA cells point to a unique role for HDAC3 in gene silencing in Friedreich's ataxia.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
99 |
5
|
Uehara A, Sugawara Y, Kurata S, Fujimoto Y, Fukase K, Kusumoto S, Satta Y, Sasano T, Sugawara S, Takada H. Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via toll-like receptors, NOD1 and NOD2 in human oral epithelial cells. Cell Microbiol 2006; 7:675-86. [PMID: 15839897 DOI: 10.1111/j.1462-5822.2004.00500.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Peptidoglycan recognition proteins (PGRPs), a novel family of pattern recognition molecules (PRMs) in innate immunity conserved from insects to mammals, recognize bacterial cell wall peptidoglycan (PGN) and are suggested to act as anti-bacterial factors. In humans, four kinds of PGRPs (PGRP-L, -Ialpha, -Ibeta and -S) have been cloned and all four human PGRPs bind PGN. In this study, we examined the possible regulation of the expression of PGRPs in oral epithelial cells upon stimulation with chemically synthesized pathogen-associated molecular patterns (PAMPs) in bacterial cell surface components: Escherichia coli-type tryacyl lipopeptide (Pam3CSSNA), E. coli-type lipid A (LA-15-PP), diaminopimelic acid containing desmuramyl peptide (gamma-D-glutamyl-meso-DAP; iE-DAP), and muramyldipeptide (MDP). These synthetic PAMPs markedly upregulated the mRNA expression of the four PGRPs and cell surface expression of PGRP-Ialpha and -Ibeta, but did not induce either mRNA expression or secretion of inflammatory cytokines, in oral epithelial cells. Suppression of the expression of Toll-like receptor (TLR)2, TLR4, nucleotide-binding oligomerization domain (NOD)1 and NOD2 by RNA interference specifically inhibited the upregulation of PGRP mRNA expression induced by Pam3CSSNA, LA-15-PP, iE-DAP and MDP respectively. These PAMPs definitely activated nuclear factor (NF)-kappaB in the epithelial cells, and suppression of NF-kappaB activation clearly prevented the induction of PGRP mRNA expression induced by these PAMPs in the cells. These findings suggested that bacterial PAMPs induced the expression of PGRPs, but not proinflammatory cytokines, in oral epithelial cells, and the PGRPs might be involved in host defence against bacterial invasion without accompanying inflammatory responses.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
96 |
6
|
Abstract
Cytochrome p450(BioI)(CYP107H1) is believed to supply pimelic acid equivalents for biotin biosynthesis in Bacillus subtilis: we report here that the mechanistic pathway adopted by this multifunctional p450 for the in-chain cleavage of fatty acids is via consecutive formation of alcohol and threo-diol intermediates, with the likely absolute configuration of the intermediates also reported.
Collapse
|
Journal Article |
22 |
61 |
7
|
Manandhar M, Cronan JE. Pimelic acid, the first precursor of the Bacillus subtilis biotin synthesis pathway, exists as the free acid and is assembled by fatty acid synthesis. Mol Microbiol 2017; 104:595-607. [PMID: 28196402 PMCID: PMC5426962 DOI: 10.1111/mmi.13648] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biotin synthetic pathways are readily separated into two stages, synthesis of the seven carbon α, ω-dicarboxylic acid pimelate moiety and assembly of the fused heterocyclic rings. The biotin pathway genes responsible for pimelate moiety synthesis vary widely among bacteria whereas the ring synthesis genes are highly conserved. Bacillus subtilis seems to have redundant genes, bioI and bioW, for generation of the pimelate intermediate. Largely consistent with previous genetic studies it was found that deletion of bioW caused a biotin auxotrophic phenotype whereas deletion of bioI did not. BioW is a pimeloyl-CoA synthetase that converts pimelic acid to pimeloyl-CoA. The essentiality of BioW for biotin synthesis indicates that the free form of pimelic acid is an intermediate in biotin synthesis although this is not the case in E. coli. Since the origin of pimelic acid in Bacillus subtilis is unknown, 13 C-NMR studies were carried out to decipher the pathway for its generation. The data provided evidence for the role of free pimelate in biotin synthesis and the involvement of fatty acid synthesis in pimelate production. Cerulenin, an inhibitor of the key fatty acid elongation enzyme, FabF, markedly decreased biotin production by B. subtilis resting cells whereas a strain having a cerulenin-resistant FabF mutant produced more biotin. In addition, supplementation with pimelic acid fully restored biotin production in cerulenin-treated cells. These results indicate that pimelic acid originating from fatty acid synthesis pathway is a bona fide precursor of biotin in B. subtilis.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
42 |
8
|
Abstract
Biotin (1), a water-soluble B series vitamin, distributes widely in microorganisms, plants, and animals. Biosynthesis of 1 involves five steps sequence starting from pimelic acid. The last step, a transformation from dethiobiotin (DTB) to 1, includes an iron clusters-mediated radical process. The compound 1 is a cofactor of carboxylation enzymes and plays crucial roles in the metabolism of fatty acids, sugars, and alpha-amino acids. In addition to the increasing application to feed additives, recent reports have revealed that 1 enhances insulin secretion in animals, suggesting it for a promising therapeutic candidate for an anti-diabetes drug. The remarkably strong affinity of 1 with avidin and streptavidin has been extensively applied for such technologies as photoaffinity labeling. Among the number of approaches to 1 so far developed in 50 years, a synthesis using L-cysteine and thiolactone as a starting material and a key intermediate, respectively, represents one of the best routes leading to 1, because of short steps, high yield, use of inexpensive reagents, and ease of operation.
Collapse
|
|
19 |
35 |
9
|
Anderson JW, Pratt RF. Dipeptide binding to the extended active site of the Streptomyces R61 D-alanyl-D-alanine-peptidase: the path to a specific substrate. Biochemistry 2000; 39:12200-9. [PMID: 11015198 DOI: 10.1021/bi001295w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial cell walls are cross-linked in the final step of biosynthesis by specific D-alanyl-D-alanine(DD)-peptidases/transpeptidases. The natural substrates of these enzymes should therefore be segments of peptidoglycan, but high specificity for such structures has yet to be demonstrated. The binding of dipeptides to the extended substrate binding site of the Streptomyces R61 DD-peptidase has been studied by means of a fluorescent beta-lactam probe. It was found that dipeptides of structure Gly-L-Xaa have affinity for a subsite adjacent to the beta-lactam binding site. Hydrophobic peptides such as Gly-L-Met and Gly-L-aminocaprylic acid had the greatest affinity for this site, with dissociation constants in each case of 0.19 mM. A combination of this motif with the C-terminal D-alanyl-D-alanine moiety required of a DD-peptidase substrate yielded a new substrate, glycyl-L-alpha-amino-epsilon-pimelyl-D-alanyl-D-alanine. Steady-state kinetic measurements established this compound as the most specific peptide substrate yet discovered for a DD-peptidase by at least 3 orders of magnitude (k(cat) = 69 s(-1), K(m) = 7.9 microM, k(cat)/K(m) = 8.7 x 10(6) s(-1) M(-1)); acylation was rate-determining at saturation. This substrate, presumably not coincidentally, contains the acyl donor and acceptor moieties, appropriately separated, of the Streptomyces peptidoglycan structure. This general method of approach should be of value in the search for specific substrates and inhibitors (antibiotics) of other DD-peptidases.
Collapse
|
|
25 |
25 |
10
|
Kiefer PM, Copley SD. Characterization of the initial steps in the reductive dehalogenation catalyzed by tetrachlorohydroquinone dehalogenase. Biochemistry 2002; 41:1315-22. [PMID: 11802732 DOI: 10.1021/bi0117504] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrachlorohydroquinone dehalogenase catalyzes the reductive dehalogenation of tetrachlorohydroquinone and trichlorohydroquinone during the degradation of pentachlorophenol by Sphingbium chlorophenolicum. Remarkably, the same active site catalyzes the glutathione-dependent isomerization of a double bond in maleylacetone (an analogue of maleylacetoacetate and maleylpyruvate) [Anandarajah, K. et al. (2000) Biochemistry 39, 5303-5311]. The mechanism of the initial steps in the reaction has been probed using the C13S mutant enzyme, which catalyzes the reaction only to the point at which Cys13 is required. The reaction proceeds by a rapid equilibrium random sequential kinetic mechanism. Substrate analogues that lack a second hydroxyl group cannot be turned over to products, although they can bind to the active site. The rate of the reaction is strongly influenced by the number of electron-withdrawing substituents on the substrate. These findings are consistent with a mechanism that begins with ketonization of the deprotonated substrate to form 2,3,5,6-tetrachloro-4-hydroxycyclohexa-2,4-dienone, followed by 1,4-elimination of HCl to from trichlorobenzoquinone. Subsequently, trichlorobenzoquinone is attacked by glutathione to form a glutathione conjugate that, in the absence of Cys13, decomposes to a mixture of products, either at the active site or after release into solution. Possible similarities between this mechanism and the mechanism for isomerization of maleylacetoacetate and maleylpyruvate are discussed.
Collapse
|
|
23 |
24 |
11
|
Park M, Jeon Y, Jang HH, Ro HS, Park W, Madsen EL, Jeon CO. Molecular and biochemical characterization of 3-hydroxybenzoate 6-hydroxylase from Polaromonas naphthalenivorans CJ2. Appl Environ Microbiol 2007; 73:5146-52. [PMID: 17586666 PMCID: PMC1950974 DOI: 10.1128/aem.00782-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prior research revealed that Polaromonas naphthalenivorans CJ2 carries and expresses genes encoding the gentisate metabolic pathway for naphthalene. These metabolic genes are split into two clusters, comprising nagRAaGHAbAcAdBFCQEDJI'-orf1-tnpA and nagR2-orf2I''KL (C. O. Jeon, M. Park, H. Ro, W. Park, and E. L. Madsen, Appl. Environ. Microbiol. 72:1086-1095, 2006). BLAST homology searches of sequences in GenBank indicated that the orf2 gene from the small cluster likely encoded a salicylate 5-hydroxylase, presumed to catalyze the conversion of salicylate into gentisate. Here, we report physiological and genetic evidence that orf2 does not encode salicylate 5-hydroxylase. Instead, we have found that orf2 encodes 3-hydroxybenzoate 6-hydroxylase, the enzyme which catalyzes the NADH-dependent conversion of 3-hydroxybenzoate into gentisate. Accordingly, we have renamed orf2 nagX. After expression in Escherichia coli, the NagX enzyme had an approximate molecular mass of 43 kDa, as estimated by gel filtration, and was probably a monomeric protein. The enzyme was able to convert 3-hydroxybenzoate into gentisate without salicylate 5-hydroxylase activity. Like other 3-hydroxybenzoate 6-hydroxylases, NagX utilized both NADH and NADPH as electron donors and exhibited a yellowish color, indicative of a bound flavin adenine dinucleotide. An engineered mutant of P. naphthalenivorans CJ2 defective in nagX failed to grow on 3-hydroxybenzoate but grew normally on naphthalene. These results indicate that the previously described small catabolic cluster in strain CJ2 may be multifunctional and is essential for the degradation of 3-hydroxybenzoate. Because nagX and an adjacent MarR-type regulatory gene are both closely related to homologues in Azoarcus species, this study raises questions about horizontal gene transfer events that contribute to operon evolution.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
24 |
12
|
Wang R, Yin YJ, Wang F, Li M, Feng J, Zhang HM, Zhang JP, Liu SJ, Chang WR. Crystal structures and site-directed mutagenesis of a mycothiol-dependent enzyme reveal a novel folding and molecular basis for mycothiol-mediated maleylpyruvate isomerization. J Biol Chem 2007; 282:16288-294. [PMID: 17428791 DOI: 10.1074/jbc.m610347200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycothiol (MSH) is the major low molecular mass thiols in many Gram-positive bacteria such as Mycobacterium tuberculosis and Corynebacterium glutamicum. The physiological roles of MSH are believed to be equivalent to those of GSH in Gram-negative bacteria, but current knowledge of MSH is limited to detoxification of alkalating chemicals and protection from host cell defense/killing systems. Recently, an MSH-dependent maleylpyruvate isomerase (MDMPI) was discovered from C. glutamicum, and this isomerase represents one example of many putative MSH-dependent enzymes that take MSH as cofactor. In this report, fourteen mutants of MDMPI were generated. The wild type and mutant (H52A) MDMPIs were crystallized and their structures were solved at 1.75 and 2.05 A resolution, respectively. The crystal structures reveal that this enzyme contains a divalent metal-binding domain and a C-terminal domain possessing a novel folding pattern (alphabetaalphabetabetaalpha fold). The divalent metal-binding site is composed of residues His52, Glu144, and His148 and is located at the bottom of a surface pocket. Combining the structural and site-directed mutagenesis studies, it is proposed that this surface pocket including the metal ion and MSH moiety formed the putative catalytic center.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
23 |
13
|
Beaman TW, Vogel KW, Drueckhammer DG, Blanchard JS, Roderick SL. Acyl group specificity at the active site of tetrahydridipicolinate N-succinyltransferase. Protein Sci 2002; 11:974-9. [PMID: 11910040 PMCID: PMC2373531 DOI: 10.1110/ps.4310102] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2001] [Revised: 11/30/2001] [Accepted: 12/05/2001] [Indexed: 10/17/2022]
Abstract
Tetrahydrodipicolinate N-succinyltransferase (DapD) catalyzes the succinyl-CoA-dependent acylation of L-2-amino-6-oxopimelate to 2-N-succinyl-6-oxopimelate as part of the succinylase branch of the meso-diaminopimelate/lysine biosynthetic pathway of bacteria, blue-green algae, and plants. This pathway provides meso-diaminopimelate as a building block for cell wall peptidoglycan in most bacteria, and is regarded as a target pathway for antibacterial agents. We have solved the X-ray crystal structures of DapD in ternary complexes with pimelate/succinyl-CoA and L-2-aminopimelate with the nonreactive cofactor analog, succinamide-CoA. These structures define the binding conformation of the cofactor succinyl group and its interactions with the enzyme and place its thioester carbonyl carbon in close proximity to the nucleophilic 2-amino group of the acceptor, in support of a direct attack ternary complex mechanism. The acyl group specificity differences between homologous tetrahydrodipicolinate N-acetyl- and N-succinyltransferases can be rationalized with reference to at least three amino acids that interact with or give accessible active site volume to the cofactor succinyl group. These residues account at least in part for the substrate specificity that commits metabolic intermediates to either the succinylase or acetylase branches of the meso-diaminopimelate/lysine biosynthetic pathway.
Collapse
|
research-article |
23 |
16 |
14
|
Saraswathi NT, Roy S, Vijayan M. X-ray studies on crystalline complexes involving amino acids and peptides. XLI. Commonalities in aggregation and conformation revealed by the crystal structures of the pimelic acid complexes of L-arginine and DL-lysine. ACTA CRYSTALLOGRAPHICA SECTION B: STRUCTURAL SCIENCE 2003; 59:641-6. [PMID: 14586085 DOI: 10.1107/s0108768103013685] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2003] [Accepted: 06/18/2003] [Indexed: 11/10/2022]
Abstract
The complexes of L-arginine and DL-lysine with pimelic acid are made up of singly positively charged zwitterionic amino acid cations and doubly negatively charged pimelate ions in a 2:1 ratio. In both structures, the amino acid molecules form twofold symmetric or centrosymmetric pairs that are stabilized by hydrogen bonds involving α-amino and α-carboxylate groups. In the L-arginine complex, these pairs form columns along the shortest cell dimension, stabilized by intermolecular hydrogen bonds involving α-amino and α-carboxylate groups. The columns are connected by hydrogen bonds and water bridges to give rise to an amino acid layer. Adjacent layers are then connected by pimelate ions. Unlike molecular ions aggregate into alternating distinct layers in the DL-lysine complex. In the amino acid layer, hydrogen-bonded lysinium dimers related by a glide plane are connected by hydrogen bonds involving α-amino and α-carboxylate groups into head-to-tail sequences. Interestingly, the aggregation pattern observed in L-arginine hemipimelate monohydrate is very similar to those in DL-arginine formate dihydrate, DL-arginine acetate monohydrate and L-arginine hemiglutarate monohydrate. Similarly, the aggregation of amino acid molecules is very similar in DL-lysine hemipimelate 0.53-hydrate, DL-lysine formate and DL-lysine hydrochloride. The complexes thus demonstrate how, in related structures, the effects of a change in composition, and sometimes even those of reversal in chirality, can be accommodated by minor adjustments in essentially the same aggregation pattern. It also transpires that the conformation of the argininium ion is the same in the four argininium complexes; the same is true about the conformation of the lysinium ion in the three lysinium complexes. This result indicates a relation between, and mutual dependence of, conformation and aggregation.
Collapse
|
|
22 |
13 |
15
|
Flakus HT, Miros A. Infrared spectra of the hydrogen bond in pimelic acid crystals: polarization and temperature effects. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2001; 57:2391-2401. [PMID: 11767833 DOI: 10.1016/s1386-1425(01)00404-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This paper deals with the polarized IR spectra of the hydrogen bond in pimelic acid crystals and their quantitative interpretation. The spectra were measured for the vO-H and vO-D band frequency regions, at temperatures of 298 and 77 K, for the 'alpha' crystalline form of pimelic acid. Two kinds of transmission spectra were obtained, for the beam perpendicular to the two different crystalline faces: 'ac' and 'ab'. The spectra of the hydrogen and the deuterium bonded systems were quantitatively reproduced, with sufficient accuracy, on the basis of the 'strong-coupling' model, assuming the (COOH)2 cycles to be the structural units responsible for the basic spectral properties. It was found that the spectra could be reproduced only, when assuming spectral activity in the IR of the totally symmetric proton stretching vibrations in centrosymmetric cyclic dimers of hydrogen bonds. The polarization effects in the crystal spectra were interpreted as directly connected with the hydrogen bond orientation in the crystal. However, in the pimelic acid crystalline spectra there were not observed another polarization effects characteristic for another carboxylic acid crystals, depending on differentiation of the long- and of the short-wave branch properties of each of the vO-H and vO-D bands. The temperature variation only affect the intensity ratio between the lower- and the higher-frequency branches of the vO-H and vO-D bands. These spectral effects were ascribed to less strained hydrogen bond structures in the pimelic acid lattices of the alpha' crystalline form and a relatively low concentration of defects in the lattices.
Collapse
|
|
24 |
13 |
16
|
Huang L, Hu H, Tang H, Liu Y, Xu P, Shi J, Lin K, Luo Q, Cui C. Identification and Characterization of a Novel Gentisate 1,2-Dioxygenase Gene from a Halophilic Martelella Strain. Sci Rep 2015; 5:14307. [PMID: 26394696 PMCID: PMC4585797 DOI: 10.1038/srep14307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/24/2015] [Indexed: 01/27/2023] Open
Abstract
Halophilic Martelella strain AD-3, isolated from highly saline petroleum-contaminated soil, can efficiently degrade polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene and anthracene, in 3-5% salinity. Gentisic acid is a key intermediate in the microbial degradation of PAH compounds. However, there is little information on PAH degradation by moderately halophilic bacteria. In this study, a 1,077-bp long gene encoding gentisate 1,2-dioxygenase (GDO) from a halophilic Martelella strain AD-3 was cloned, sequenced, and expressed in Escherichia coli. The recombinant enzyme GDO was purified and characterized in detail. By using the (18)O isotope experiment and LC-MS analysis, the sources of the two oxygen atoms added onto maleylpyruvate were identified as H2O and O2, respectively. The Km and kcat values for gentisic acid were determined to be 26.64 μM and 161.29 s(-1), respectively. In addition, optimal GDO activity was observed at 30 °C, pH 7.0, and at 12% salinity. Site-directed mutagenesis demonstrated the importance of four highly conserved His residues at positions 155, 157, 167, and 169 for enzyme activity. This finding provides new insights into mechanism and variety of gentisate 1,2-dioxygenase for PAH degradation in high saline conditions.
Collapse
|
research-article |
10 |
13 |
17
|
Mumtaz A, Saeed K, Mahmood A, Zaib S, Saeed A, Pelletier J, Sévigny J, Iqbal J. Bisthioureas of pimelic acid and 4-methylsalicylic acid derivatives as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP) and intestinal alkaline phosphatase (IAP): Synthesis and molecular docking studies. Bioorg Chem 2020; 101:103996. [PMID: 32563965 DOI: 10.1016/j.bioorg.2020.103996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
Alkaline phosphatases (ALPs) are membrane bound metalloenzymes, distributed all over the body. Recent studies have revealed that by targeting ALPs can lead towards the treatment of many deadliest diseases including cardiac, cancerous and brain diseases. Thioureas and their derivatives are of considerable significance and are privileged scaffolds in medicinal chemistry. They show a wide range of pharmacological activities such as antibacterial, antiparasitic, anti-inflammatory and antioxidants etc. On the other hand, salicylic acid and its derivatives are known for its broad spectrum of activities. The work presented comprises of synthesis of N-acyl-N'-aryl substituted bisthioureas of pimelic acid (1-7) and 3,5-dimethyl pyrazole (11), 1-aroyl-3-aryl thiourea (12) and 1,3,4-oxadiazole (13) derivatives of 4-methyl salicylic acid. Structures of all the synthesized compounds were characterized by FT-IR and 1H NMR spectroscopic analysis. Synthesized compounds were evaluated for their alkaline phosphatases inhibition potential and exhibited high potency as well as selectivity towards h-TNAP and h-IAP. Compound 7 and 12 which were the bisthiourea derivative of pimmelic acid and thiourea derivative of 4-methyl salicylic acid, respectively, showed excellent selectivity against h-TNAP and h-IAP, respectively.
Collapse
|
|
5 |
4 |
18
|
Lévai F, Liu CM, Tse MM, Lin ET. Pre-column fluorescence derivatization using leucine-coumarnylamide for HPLC determination of mono- and dicarboxylic acids in plasma. ACTA PHYSIOLOGICA HUNGARICA 1995; 83:39-46. [PMID: 7660835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A sensitive HPLC assay utilising a simple fluorescence pre-column labelling technique was developed for plasma level monitoring of different types of mono- and dicarboxylic acids. Carboxylic acids form mixed anhydrides with ethyl chloroformate in the presence of triethylamine; the mixed anhydrides further react with L-leucine-4-methyl-7-coumarinylamide, forming highly fluorescent and stable amides. Drugs with no chromophore (azelaic acid, and its longer carbon chain analogues) or week UV absorption (artelinic acid, enalaprilat) were used as model compounds. The plasma samples were extracted using ion exchange solid phase cartridges. The separation was performed on an Axxiom C18 (5 microns, 4.6 x 250 mm) column. The detector wavelengths were set at 330 nm for excitation and 390 nm for emission.
Collapse
|
|
30 |
|