1
|
Besseling E, Wegner A, Foekema EM, van den Heuvel-Greve MJ, Koelmans AA. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:593-600. [PMID: 23181424 DOI: 10.1021/es302763x] [Citation(s) in RCA: 599] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
It has been speculated that marine microplastics may cause negative effects on benthic marine organisms and increase bioaccumulation of persistent organic pollutants (POPs). Here, we provide the first controlled study of plastic effects on benthic organisms including transfer of POPs. The effects of polystyrene (PS) microplastic on survival, activity, and bodyweight, as well as the transfer of 19 polychlorinated biphenyls (PCBs), were assessed in bioassays with Arenicola marina (L.). PS was pre-equilibrated in natively contaminated sediment. A positive relation was observed between microplastic concentration in the sediment and both uptake of plastic particles and weight loss by A. marina. Furthermore, a reduction in feeding activity was observed at a PS dose of 7.4% dry weight. A low PS dose of 0.074% increased bioaccumulation of PCBs by a factor of 1.1-3.6, an effect that was significant for ΣPCBs and several individual congeners. At higher doses, bioaccumulation decreased compared to the low dose, which however, was only significant for PCB105. PS had statistically significant effects on the organisms' fitness and bioaccumulation, but the magnitude of the effects was not high. This may be different for sites with different plastic concentrations, or plastics with a higher affinity for POPs.
Collapse
|
|
12 |
599 |
2
|
Yang M, Zhang X. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10868-76. [PMID: 24024886 DOI: 10.1021/es401841t] [Citation(s) in RCA: 407] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Using seawater for toilet flushing may introduce high levels of bromide and iodide into a city's sewage treatment works, and result in the formation of brominated and iodinated disinfection byproducts (DBPs) during chlorination to disinfect sewage effluents. In a previous study, the authors' group has detected the presence of many brominated DBPs and identified five new aromatic brominated DBPs in chlorinated saline sewage effluents. The presence of brominated DBPs in chlorinated saline effluents may pose adverse implications for marine ecology. In this study, besides the detection and identification of another seven new aromatic halogenated DBPs in a chlorinated saline sewage effluent, their developmental toxicity was evaluated using the marine polychaete Platynereis dumerilii. For comparison, the developmental toxicity of some commonly known halogenated DBPs was also examined. The rank order of the developmental toxicity of 20 halogenated DBPs was 2,5-dibromohydroquinone > 2,6-diiodo-4-nitrophenol ≥ 2,4,6-triiodophenol > 4-bromo-2-chlorophenol ≥ 4-bromophenol > 2,4-dibromophenol ≥ 2,6-dibromo-4-nitrophenol > 2-bromo-4-chlorophenol > 2,6-dichloro-4-nitrophenol > 2,4-dichlorophenol > 2,4,6-tribromophenol > 3,5-dibromo-4-hydroxybenzaldehyde > bromoform ≥ 2,4,6-trichlorophenol > 2,6-dibromophenol > 2,6-dichlorophenol > iodoacetic acid ≥ tribromoacetic acid > bromoacetic acid > chloroacetic acid. On the basis of developmental toxicity data, a quantitative structure-activity relationship (QSAR) was established. The QSAR involved two physical-chemical property descriptors (log P and pKa) and two electronic descriptors (the lowest unoccupied molecular orbital energy and the highest occupied molecular orbital energy) to indicate the transport, biouptake, and biointeraction of these DBPs. It can well predict the developmental toxicity of most of the DBPs tested.
Collapse
|
Comparative Study |
12 |
407 |
3
|
Green DS, Boots B, Sigwart J, Jiang S, Rocha C. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:426-34. [PMID: 26552519 DOI: 10.1016/j.envpol.2015.10.010] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 05/06/2023]
Abstract
Effects of microplastic pollution on benthic organisms and ecosystem services provided by sedimentary habitats are largely unknown. An outdoor mesocosm experiment was done to realistically assess the effects of three different types of microplastic pollution (one biodegradable type; polylactic acid and two conventional types; polyethylene and polyvinylchloride) at increasing concentrations (0.02, 0.2 and 2% of wet sediment weight) on the health and biological activity of lugworms, Arenicola marina (Linnaeus, 1758), and on nitrogen cycling and primary productivity of the sediment they inhabit. After 31 days, A. marina produced less casts in sediments containing microplastics. Metabolic rates of A. marina increased, while microalgal biomass decreased at high concentrations, compared to sediments with low concentrations or without microplastics. Responses were strongest to polyvinylchloride, emphasising that different materials may have differential effects. Each material needs to be carefully evaluated in order to assess their risks as microplastic pollution. Overall, both conventional and biodegradable microplastics in sandy sediments can affect the health and behaviour of lugworms and directly or indirectly reduce primary productivity of these habitats.
Collapse
|
|
9 |
247 |
4
|
Buffet PE, Tankoua OF, Pan JF, Berhanu D, Herrenknecht C, Poirier L, Amiard-Triquet C, Amiard JC, Bérard JB, Risso C, Guibbolini M, Roméo M, Reip P, Valsami-Jones E, Mouneyrac C. Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. CHEMOSPHERE 2011; 84:166-174. [PMID: 21354594 DOI: 10.1016/j.chemosphere.2011.02.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/28/2011] [Accepted: 02/02/2011] [Indexed: 05/30/2023]
Abstract
Engineered nano-sized Cu oxide particles are extensively used in diverse applications. Because aquatic environments are the ultimate "sink" for all contaminants, it is expected that nanoparticles (NP) will follow the same fate. In this study, two marine invertebrates Scrobicularia plana and Hediste diversicolor were chosen as ecotoxicological models. The aim was to evaluate behavioural (burrowing kinetics, feeding rate) and biochemical (biomarkers) responses of S. plana and H. diversicolor exposed in the laboratory to Cu (10 μg L(-1)) added in natural seawater either in the form of engineered nanoparticles (NPs) of CuO or as dissolved Cu in 2% HNO(3). Exposure was characterized by considering (i) the physico-chemical fate of NP (ii) the fraction of labile Cu in experimental media and (iii) Cu bioaccumulation. Results showed high aggregation of CuO NPs in seawater and no additional bioavailable Cu concentrations. Behavioural impairments were observed in S. plana exposed to CuO NPs or soluble Cu whereas in H. diversicolor, only the exposure to soluble Cu led to a burrowing decrease. No obvious neurotoxicity effects were revealed since in both species, no changes in cholinesterasic activity occurred in response to both forms of Cu exposure. Biomarkers of oxidative-stress catalase and glutathione-S-transferase were enhanced in both species whereas superoxide dismutase was increased only in S. plana exposed to CuO NPs. Metallothionein-like protein was increased in bivalves exposed to both forms of Cu. Since, no detectable release of soluble Cu from CuO NPs occurred during the time of experiment, ecotoxicity effects seem to be related to CuO NPs themselves.
Collapse
|
|
14 |
173 |
5
|
Galloway T, Lewis C, Dolciotti I, Johnston BD, Moger J, Regoli F. Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1748-1755. [PMID: 19962802 DOI: 10.1016/j.envpol.2009.11.013] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/06/2009] [Accepted: 11/12/2009] [Indexed: 05/28/2023]
Abstract
The ecotoxicology of manufactured nanoparticles (MNPs) in estuarine environments is not well understood. Here we explore the hypothesis that nanoTiO(2) and single walled nanotubes (SWNT) cause sublethal impacts to the infaunal species Arenicola marina (lugworm) exposed through natural sediments. Using a 10 day OECD/ASTM 1990 acute toxicity test, no significant effects were seen for SWNT up to 0.03 g/kg and no uptake of SWNTs into tissues was observed. A significant decrease in casting rate (P = 0.018), increase in cellular damage (P = 0.04) and DNA damage in coelomocytes (P = 0.008) was measured for nanoTiO(2), with a preliminary LOEC of 1 g/kg. Coherent anti-stokes Raman scattering microscopy (CARS) located aggregates of TiO(2) of >200 nm within the lumen of the gut and adhered to the outer epithelium of the worms, although no visible uptake of particles into tissues was detected.
Collapse
|
|
15 |
130 |
6
|
Moreira SM, Lima I, Ribeiro R, Guilhermino L. Effects of estuarine sediment contamination on feeding and on key physiological functions of the polychaete Hediste diversicolor: Laboratory and in situ assays. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 78:186-201. [PMID: 16621062 DOI: 10.1016/j.aquatox.2006.03.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 03/03/2006] [Accepted: 03/04/2006] [Indexed: 05/08/2023]
Abstract
This study aimed at integrating postexposure feeding and some biochemical parameters in the responses of the estuarine polychaeta, Hediste diversicolor, to controlled laboratory exposure conditions and to in situ exposures scenario of sediment contamination. Since H. diversicolor feeding may be considered as a major rate-limiting step in the processing of detritus in European estuaries, a reduction in feeding activity may have implications not only at the individual and population level of the species but also in detritus processing and in organic matter decomposition rates at the ecosystem level. The biochemical parameters were chosen as indicators of four key physiological functions: neurotransmission, metabolic condition, detoxification processes and antioxidant defences. The Mira and Sado estuaries, located in the Southwest coast of Portugal and classified as undisturbed and impacted, respectively, were selected as sites for this study. A significant depression in H. diversicolor postexposure feeding (from 30 to 70%) was consistently detected in all impacted sediments, supporting the sensitivity and responsiveness of feeding as a sublethal toxicity endpoint. Alongside with a reduced energy intake, an increased rate of organisms' anaerobic metabolism, as evidenced by an enhancement of lactate dehydrogenase activity (up to 1.5-fold), suggested a rapid need of additional energy to ameliorate chemical stress. Moreover, oxidative stress was shown to be an important mechanism of toxicity of the impacted sediments in H. diversicolor, as evidenced by a marked reduction in the glutathione redox status (up to 6.5-fold) and an increase in lipid peroxides levels (up to 2.3-fold) in organisms exposed to the most impacted sediments. Results of the in situ assay, conducted to assess the ecological relevance of sediment laboratory toxicity estimates and their application to make valid field extrapolations, revealed a lack of agreement in the response of catalase in organisms exposed to moderate impacted sediments. Our results support the utility of integrating responses at individual and sub-individual level to evaluate potential toxicant-induced changes in key physiological functions of H. diversicolor and to interpret their potential ecological consequences.
Collapse
|
Comparative Study |
19 |
114 |
7
|
Solé M, Kopecka-Pilarczyk J, Blasco J. Pollution biomarkers in two estuarine invertebrates, Nereis diversicolor and Scrobicularia plana, from a Marsh ecosystem in SW Spain. ENVIRONMENT INTERNATIONAL 2009; 35:523-531. [PMID: 19010546 DOI: 10.1016/j.envint.2008.09.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 09/05/2008] [Accepted: 09/24/2008] [Indexed: 05/27/2023]
Abstract
The polychaete worm Nereis diversicolor and the clam Scrobicularia plana were collected from several sites, affected by different types of contamination, in a littoral enclosure in the SW Spain (Caño Sancti-Petri and Rio San Pedro). N. diversicolor was present in 6 sampling sites whereas S. plana in 4 of them. The aim of our study was to relate several pollution biomarkers to chemical sources (metals and organic pollutants e.g. PCB, PAH) in these species, thereby confirming their adequacy as sentinels for this habitat. The biomarkers surveyed in the two invertebrates were the activities of the antioxidant enzyme catalase (CAT), the phase II detoxifying enzyme glutathione S-transferase (GST) and the neurotoxicity marker acetylcholinesterase (AChE). Metallothionein (MT) levels were measured as a biomarker of exposure to metals. The results suggested a different response in the two sediment-dwelling organisms, the sediment-eating polychaete and the water-filtering clam, probably as a consequence of different contamination exposures. The results also suggested that samples from the "Caño Sancti-Petri" were exposed to biologically active compounds that altered some of their biochemical responses. Of all the biomarkers tested, AChE was the most sensitive one and N. diversicolor the potentially most robust sentinel in this ecosystem. In this low to moderately polluted environment, the biochemical approach better reflected temporal trends than site-related differences although it was also able to detect punctual chemical insults.
Collapse
|
|
16 |
104 |
8
|
Oumi T, Ukena K, Matsushima O, Ikeda T, Fujita T, Minakata H, Nomoto K. Annetocin, an annelid oxytocin-related peptide, induces egg-laying behavior in the earthworm, Eisenia foetida. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1996; 276:151-6. [PMID: 8900077 DOI: 10.1002/(sici)1097-010x(19961001)276:2<151::aid-jez8>3.0.co;2-n] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Annetocin, an oxytocin-related peptide which we isolated from the earthworm Eisenia foetida, induced a series of egg-laying-related behaviors in the earthworms. These stereotyped behaviors consisted of well-defined rotatory movements, characteristic body-shape changes, and mucous secretion from the clitellum. Each of these behaviors is known to be associated with formation of the cocoon in which eggs are deposited. In fact, some of the earthworms injected with annetocin (> 5 nmol) laid eggs. Such egg-laying-related behaviors except for oviposition were also induced by oxytocin, but not by Arg-vasopressin and some other bioactive peptides isolated from E. foetida. Furthermore, annetocin also induced these egg-laying-like behaviors in the leech Whitmania pigra, but not in the polychaete Perinereis vancaurica. These results suggest that annetocin plays some key role in triggering stereotyped egg-laying behaviors in terrestrial or fresh-water annelids that have the clitella.
Collapse
|
|
29 |
85 |
9
|
Li Y, Zhang X, Yang M, Liu J, Li W, Graham NJD, Li X, Yang B. Three-step effluent chlorination increases disinfection efficiency and reduces DBP formation and toxicity. CHEMOSPHERE 2017; 168:1302-1308. [PMID: 27919529 DOI: 10.1016/j.chemosphere.2016.11.137] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/25/2016] [Accepted: 11/27/2016] [Indexed: 05/15/2023]
Abstract
Chlorination is extensively applied for disinfecting sewage effluents, but it unintentionally generates disinfection byproducts (DBPs). Using seawater for toilet flushing introduces a high level of bromide into domestic sewage. Chlorination of sewage effluent rich in bromide causes the formation of brominated DBPs. The objectives of achieving a disinfection goal, reducing disinfectant consumption and operational costs, as well as diminishing adverse effects to aquatic organisms in receiving water body remain a challenge in sewage treatment. In this study, we have demonstrated that, with the same total chlorine dosage, a three-step chlorination (dosing chlorine by splitting it into three equal portions with a 5-min time interval for each portion) was significantly more efficient in disinfecting a primary saline sewage effluent than a one-step chlorination (dosing chlorine at one time). Compared to one-step chlorination, three-step chlorination enhanced the disinfection efficiency by up to 0.73-log reduction of Escherichia coli. The overall DBP formation resulting from one-step and three-step chlorination was quantified by total organic halogen measurement. Compared to one-step chlorination, the DBP formation in three-step chlorination was decreased by up to 23.4%. The comparative toxicity of one-step and three-step chlorination was evaluated in terms of the development of embryo-larva of a marine polychaete Platynereis dumerilii. The results revealed that the primary sewage effluent with three-step chlorination was less toxic than that with one-step chlorination, indicating that three-step chlorination could reduce the potential adverse effects of disinfected sewage effluents to aquatic organisms in the receiving marine water.
Collapse
|
|
8 |
81 |
10
|
Freitas R, Costa E, Velez C, Santos J, Lima A, Oliveira C, Maria Rodrigues A, Quintino V, Figueira E. Looking for suitable biomarkers in benthic macroinvertebrates inhabiting coastal areas with low metal contamination: comparison between the bivalve Cerastoderma edule and the Polychaete Diopatra neapolitana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 75:109-118. [PMID: 21890202 DOI: 10.1016/j.ecoenv.2011.08.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/16/2011] [Accepted: 08/20/2011] [Indexed: 05/31/2023]
Abstract
Metals accumulated in marine sediments are often a threat to benthic communities. With the recognized importance and wide use of stress biochemical responses as indicators of metal contamination it becomes essential to compare these markers between different species and verify their ubiquity and accuracy. Using wild Diopatra neapolitana and Cerastoderma edule, collected at several areas differing in metal contamination, this study aimed to assess the use of these two macrobenthic species as sentinel organisms and to determine the applicability of currently used biomarkers in benthic species exposed to a range of low metal and As concentrations. Total metal accumulation and intracellular partitioning was analyzed and metal-induced alterations were assessed through the analysis of several biochemical parameters in both organisms, including stress-induced reactive oxygen species (ROS), lipid peroxidation and protein content, the activity of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and of glutathione S-transferase (GST). Metal chelation by Metallothioneins (MTs) was also determined. Results revealed that D. neapolitana accumulated higher levels of metals when compared to C. edule, independently of the sediment concentration. Results also showed strong species-specific responses to metals and differences in the ability to sequester metals. Overall, C. edule showed to be more efficient metal chelator and precipitatior than D. neapolitana, which was less tolerant and presented oxidative stress. MTs proved to be a good predictor of metal accumulation in both species, even under low metal exposures. On the other hand, lipid peroxidation was a good indicator of oxidative damage, only observed in D. neapolitana, which was a result of higher metal retention in the soluble fraction.
Collapse
|
Comparative Study |
13 |
68 |
11
|
Dobretsov S, Dahms HU, Yili H, Wahl M, Qian PY. The effect of quorum-sensing blockers on the formation of marine microbial communities and larval attachment. FEMS Microbiol Ecol 2007; 60:177-88. [PMID: 17371321 DOI: 10.1111/j.1574-6941.2007.00285.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We studied the effect of the quorum-sensing (QS) blockers 5-hydroxy-3[(1R)-1-hydroxypropyl]-4-methylfuran-2(5H)-one (FUR1), (5R)-3,4-dihydroxy-5-[(1S)-1,2-dihydroxyethyl]furan-2(5H)-one (FUR2) and triclosan (TRI) on the formation of bacterial biofilms, and the effect of these biofilms on the larval attachment of the polychaete Hydroides elegans and the bryozoan Bugula neritina. 14-day-old subtidal biofilms were harvested from artificial substrata and were allowed to develop in the laboratory with and without QS blockers. QS blockers inhibited the production of violacein by the QS reporter strain Chromobacterium violaceum CV026 and did not affect the metabolic activity of bacteria in multispecies biofilms. At a concentration of 10(-3) M all three tested compounds inhibited the establishment of microbial communities, but at one of 10(-4) M only FUR2 inhibited establishment. The tested QS blockers caused changes in bacterial density and bacterial community structure, as revealed by terminal restriction fragment length polymorphism and FISH. The groups most affected by QS blockers were Alphaproteobacteria, Gammaproteobacteria and the Cytophagales. Larvae of H. elegans and B. neritina avoided settling on biofilms that had developed in the presence of QS blockers. Our results suggest that QS blockers directly control the formation of multi-species biofilms, and indirectly - by means of biofilm properties - affect larval attachment on these modified biofilms.
Collapse
|
|
18 |
65 |
12
|
Campbell AL, Mangan S, Ellis RP, Lewis C. Ocean acidification increases copper toxicity to the early life history stages of the polychaete Arenicola marina in artificial seawater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9745-9753. [PMID: 25033036 DOI: 10.1021/es502739m] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The speciation and therefore bioavailability of the common pollutant copper is predicted to increase within the pH range anticipated under near-future ocean acidification (OA), hence the potential exists for copper toxicity to marine organisms to also increase. We investigated the impact of OA (seawater pH values of 7.77 (pCO2 1400 μatm) and 7.47 (pCO2 3000 μatm)) upon copper toxicity responses in early life history stages of the polychaete Arenicola marina and found both synergistic and additive toxicity effects of combined exposures depending on life history stage. The toxicity of copper on sperm DNA damage and early larval survivorship was synergistically increased under OA conditions. Larval survival was reduced by 24% when exposed to both OA and copper combined compared to single OA or copper exposures. Sperm motility was negatively affected by both OA and copper singularly with additive toxicity effects of the two stressors when combined. Fertilization success was also negatively affected by both OA and copper individually, but no additive effects when exposed as combined stressors were present for this stage. These findings add to the growing body of evidence that OA will act to increase the toxicity of copper to marine organisms, which has clear implications for coastal benthic ecosystems suffering chronic metal pollution as pCO2 levels rise and drive a reduction in seawater pH.
Collapse
|
|
11 |
65 |
13
|
Ferreira-Cravo M, Piedras FR, Moraes TB, Ferreira JLR, de Freitas DPS, Machado MD, Geracitano LA, Monserrat JM. Antioxidant responses and reactive oxygen species generation in different body regions of the estuarine polychaeta Laeonereis acuta (Nereididae). CHEMOSPHERE 2007; 66:1367-74. [PMID: 16884763 DOI: 10.1016/j.chemosphere.2006.06.050] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/14/2006] [Accepted: 06/16/2006] [Indexed: 05/11/2023]
Abstract
The aim of this study was to analyze the total antioxidant capacity (TOSC), generation of reactive oxygen species (ROS) and lipid peroxidation (LPO) in the different body regions of the estuarine polychaeta Laeonereis acuta (Nereididae) sampled at non-polluted (NOPOL) and polluted (POL) sites from Lagoa dos Patos (Southern Brazil). Organisms collected at POL during summer showed similar (p>0.05) TOSC values along the body, but worms collected at NOPOL presented higher (p<0.05) TOSC values in the posterior (P) region in respect of anterior (A) region and middle (M) region. TOSC in the P region at NOPOL was higher (p<0.05) compared with the same body region of worms at POL. In summer, ROS concentration was higher in A and M regions of worms at POL in respect of the organisms at NOPOL. During winter all the regions showed higher ROS in worms sampled at POL. It was registered absence of season influence on LPO content, but in the P region at NOPOL in summer there were lower LPO levels compared with the others regions (p<0.05). In vitro assays showed that P region, despite a higher basal ROS, presented a higher competence to cope with pro-oxidants compared with A and M regions (p<0.05), corroborating the field results. A lower proteic sulfhydril content was observed in P in respect of the other regions (p<0.05) supporting the idea of a highest oxidant condition in this region. The results indicate that worms collected at the POL site are confronted to higher ROS concentrations, affecting its antioxidant capacity, a result that depends of body regions.
Collapse
|
|
18 |
64 |
14
|
Yang M, Liu J, Zhang X, Richardson SD. Comparative Toxicity of Chlorinated Saline and Freshwater Wastewater Effluents to Marine Organisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14475-14483. [PMID: 26505276 DOI: 10.1021/acs.est.5b03796] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Toilet flushing with seawater results in saline wastewater, which may contain approximately 33-50% seawater. Halogenated disinfection byproducts (DBPs), especially brominated and iodinated DBPs, have recently been found in chlorinated saline wastewater effluents. With the occurrence of brominated and iodinated DBPs, the adverse effects of chlorinated saline wastewater effluents to marine ecology have been uncertain. By evaluating the developmental effects in the marine polychaete Platynereis dumerilii directly exposed to chlorinated saline/freshwater wastewater effluents, we found surprisingly that chlorinated saline wastewater effluents were less toxic than a chlorinated freshwater wastewater effluent. This was also witnessed by the marine alga Tetraselmis marina. The toxicity of a chlorinated wastewater effluent to the marine species was dominated by its relatively low salinity compared to the salinity in seawater. The organic matter content in a chlorinated wastewater effluent might be partially responsible for the toxicity. The adverse effects of halogenated DBPs on the marine species were observed pronouncedly only in the "concentrated" chlorinated wastewater effluents. pH and ammonia content in a wastewater effluent caused no adverse effects on the marine species. The results suggest that using seawater to replace freshwater for toilet flushing might mitigate the "direct" acute detrimental effect of wastewater to the marine organisms.
Collapse
|
Comparative Study |
10 |
61 |
15
|
García-Alonso J, Khan FR, Misra SK, Turmaine M, Smith BD, Rainbow PS, Luoma SN, Valsami-Jones E. Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:4630-4636. [PMID: 21517067 DOI: 10.1021/es2005122] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used which may result in environmental impacts, notably within aquatic ecosystems. As estuarine sediments are sinks for numerous pollutants, but also habitat and food for deposit feeders such as Nereis diversicolor, ingested sediments must be investigated as an important route of uptake for NPs. N. diversicolor were fed sediment spiked with either citrate capped AgNPs (30 ± 5 nm) or aqueous Ag for 10 days. Postexposure AgNPs were observed in the lumen of exposed animals, and three lines of evidence indicated direct internalization of AgNPs into the gut epithelium. With TEM, electron-dense particles resembling AgNPs were observed associated with the apical plasma membrane, in endocytotic pits and in endosomes. Energy dispersive X-ray analysis (EDX) confirmed the presence of Ag in these particles, which were absent in controls. Subcellular fractionation revealed that Ag accumulated from AgNPs was predominantly associated with inorganic granules, organelles, and the heat denatured proteins; whereas dissolved Ag was localized to the metallothionein fraction. Collectively, these results indicate separate routes of cellular internalization and differing in vivo fates of Ag delivered in dissolved and NP form. For AgNPs an endocytotic pathway appears to be a key route of cellular uptake.
Collapse
|
|
14 |
55 |
16
|
Völkel S, Grieshaber MK. Mitochondrial sulfide oxidation in Arenicola marina. Evidence for alternative electron pathways. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:231-7. [PMID: 8631334 DOI: 10.1111/j.1432-1033.1996.00231.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sulfide is oxidized in the mitochondria of the lugworm Arenicola marina. Mitochondrial sulfide oxidation is coupled with oxygen consumption and with an equimolar production of thiosulfate [Völkel, S. & Grieshaber, M. K. (1994) Mar. Biol. 118, 137-147]. Mitochondrial respiration in the presence of malate (or succinate) and ADP but without sulfide could be completely inhibited by rotenone, antimycin, cyanide, and sulfide. Only 40% inhibition was achieved by salicylhydroxamic acid. Sulfide oxidation (with sulfide as the only substrate) was fully inhibited by antimycin and by salicylhydroxamic acid but not by rotenone or sulfide. Moreover, sulfide oxidation was 3-4-fold less sensitive to cyanide as compared to normal respiration. The data indicate that sulfide oxidation in A. marina is linked to the respiratory electron transport chain. We suggest that electrons from sulfide enter the respiratory chain via ubiquinone or at the ubiquinol-cytochrome-c oxidoreductase. At sulfide concentrations higher than 10 microM, the cytochrome-c oxidase is blocked and electrons from sulfide are transferred to oxygen via an alternative terminal oxidase.
Collapse
|
|
29 |
51 |
17
|
Ryu J, Khim JS, Kang SG, Kang D, Lee CH, Koh CH. The impact of heavy metal pollution gradients in sediments on benthic macrofauna at population and community levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2622-2629. [PMID: 21684642 DOI: 10.1016/j.envpol.2011.05.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 05/24/2011] [Accepted: 05/29/2011] [Indexed: 05/30/2023]
Abstract
The effect of sediment pollution on benthos was investigated in the vicinity of a large sewage treatment outflow at Incheon North Harbor, Korea. Animal size, vertical distribution and standard community parameters were analyzed along a 3 km transect line (n = 7). Univariate parameters showed a general trend of increasing species diversity with increasing distance from the pollution source. Multi-dimensional scaling analysis led to the clear separation of 3 locational groups, supporting gradient-dependent faunal composition. The innermost location was dominated by small sub-surface dwellers while the outer locations by large mid to deep burrowers. Looking for the size-frequency distribution, most abundance species (Heteromastus filiformis) showed the presence of larger size animals with increasing proximity to the pollution source. Meanwhile, species-specific vertical distributions, regardless of the pollution gradient, indicated that such shifts were due to species replacement resulting from a higher tolerance to pollutants over some species.
Collapse
|
|
14 |
49 |
18
|
Bao VWW, Leung KMY, Kwok KWH, Zhang AQ, Lui GCS. Synergistic toxic effects of zinc pyrithione and copper to three marine species: Implications on setting appropriate water quality criteria. MARINE POLLUTION BULLETIN 2008; 57:616-623. [PMID: 18495176 DOI: 10.1016/j.marpolbul.2008.03.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 03/17/2008] [Accepted: 03/29/2008] [Indexed: 05/26/2023]
Abstract
Zinc pyrithione (ZnPT) is widely applied in conjunction with copper (Cu) in antifouling paints as a substitute for tributyltin. The combined effects of ZnPT and Cu on marine organisms, however, have not been fully investigated. This study examined the toxicities of ZnPT alone and in combination with Cu to the diatom Thalassiosira pseudonana, polychaete larvae Hydroides elegans and amphipod Elasmopus rapax. Importantly, ZnPT and Cu resulted in a strong synergistic effect with isobologram interaction parameter lambda>1 for all test species. The combined toxicity of ZnPT and Cu was successfully modelled using the non-parametric response surface and its contour. Such synergistic effects may be partly due to the formation of copper pyrithione. It is, therefore, inadequate to assess the ecological risk of ZnPT to marine organisms solely based on the toxicity data generated from the biocide alone. To better protect precious marine resources, it is advocated to develop appropriate water quality criteria for ZnPT with the consideration of its compelling synergistic effects with Cu at environmentally realistic concentrations.
Collapse
|
|
17 |
48 |
19
|
Coffin S, Lee I, Gan J, Schlenk D. Simulated digestion of polystyrene foam enhances desorption of diethylhexyl phthalate (DEHP) and In vitro estrogenic activity in a size-dependent manner. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:452-462. [PMID: 30583153 DOI: 10.1016/j.envpol.2018.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 05/06/2023]
Abstract
Marine polychaetes and fish are known to ingest polystyrene microparticles in the environment. Laboratory microplastic feeding experiments have demonstrated that plastic may release endocrine-disrupting compounds such as diethylhexyl phthalate (DEHP), which can cause adverse effects in both vertebrates and invertebrates. In order to determine the influence of size and digestive conditions on the desorption of DEHP and other plasticizers to polychaetes and fish, we exposed polystyrene particles of various sizes under invertebrate and vertebrate digestive conditions (vertebrate mimic; pepsin, pH = 2.0, 24 °C, invertebrate mimic; Na taurocholate pH = 7, 18 °C). Estrogen receptor activation and concentrations of 12 plasticizers were measured in the extracts. DEHP, bisphenol S and 4-tert-octylphenol were the only compounds detected. Simulated vertebrate gut digestion did not significantly enhance the release of chemicals nor estrogenic activity. However, a 6.3 ± 2.0-fold increase in the concentration of DEHP was observed in extracts from invertebrate gut conditions (Mean ± SD; N = 24, p < 0.0001). Additionally, estimated particle surface area was positively correlated with estrogenic activity across all treatment types (r = 0.85, p < 0.0001). Overall, these data indicate an elevated bioaccessibility of DEHP may occur in invertebrates, and size-dependent desorption of uncharacterized estrogenic compounds from plastic suggest additional complexity when considering the risks of MP to aquatic organisms.
Collapse
|
|
6 |
46 |
20
|
Buffet PE, Amiard-Triquet C, Dybowska A, Risso-de Faverney C, Guibbolini M, Valsami-Jones E, Mouneyrac C. Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 84:191-198. [PMID: 22858103 DOI: 10.1016/j.ecoenv.2012.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/29/2012] [Accepted: 07/09/2012] [Indexed: 06/01/2023]
Abstract
Although it is reported that metal and metal oxide nanoparticles, which are among the most rapidly commercialized materials, can cause toxicity to organisms, their fate in the environment and toxicity to marine organisms are not well understood. In this study, we used a stable isotope labelling approach to trace the fate of nanoparticles (NPs) in sediments and also investigated bio-uptake in two estuarine intra-sedimentary invertebrates Scrobicularia plana and Nereis diversicolor. We selected exposure to 3 mg kg(-1) sediment ZnO NPs since this level is a realistic prediction of the environmental concentration in sediments. 67ZnO NPs (DLS: 21-34 nm, positively charged: 31.3 mV) suspensions were synthesised in diethylene glycol (DEG). We explored the fate of 67ZnO NPs in sediment, 67Zn bioaccumulation and the biochemical (biomarkers of defence and damage) and behavioural (burrowing kinetics and feeding rates) biomarkers in both species to 67ZnO NPs and DEG on its own during a 16 d laboratory exposure. After exposure, 67Zn concentrations in sediment showed higher levels in the upper section (1cm: 2.59 mg kg(-1)) decreasing progressively (2 cm: 1.63 mg kg(-1), 3 cm: 0.90 mg kg(-1), 4 cm: 0.67 mg kg(-1)) to a minimum value at the bottom (5 cm: 0.31 mg kg(-1)). 67Zn bioaccumulation was observed in both organisms exposed to 67ZnO NPs in DEG but no major inter-species differences were found. At the biochemical level, 67ZnO NPs exposure significantly induced increased glutathione-S-transferase activity in worms and catalase activity in clams whereas superoxide dismutase activity and thiobarbituric acid reactive substance levels were not affected in any species. Exposure to DEG on its own leads to a significant increase of metallothionein-like protein levels in clams compared with those exposed to 67ZnO NPs or controls. Burrowing behaviour as well as feeding rate were significantly impaired in both species exposed to 67ZnO NPs. Concerning exposure to DEG on its own, burrowing behaviour impairments were also shown in both species and feeding rate was impaired in bivalves. At environmentally realistic concentration of 67ZnO NPs in sediment, there is no strong evidence for a severe nanoparticle effect since most effects were also observed in the presence of DEG alone.
Collapse
|
|
13 |
46 |
21
|
Jang M, Shim WJ, Han GM, Song YK, Hong SH. Formation of microplastics by polychaetes (Marphysa sanguinea) inhabiting expanded polystyrene marine debris. MARINE POLLUTION BULLETIN 2018; 131:365-369. [PMID: 29886959 DOI: 10.1016/j.marpolbul.2018.04.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Fragmentation of large plastic debris into smaller particles results in increasing microplastic concentrations in the marine environment. In plastic debris fragmentation processes, the influence of biological factors remains largely unknown. This study investigated the fragmentation of expanded polystyrene (EPS) debris by polychaetes (Marphysa sanguinea) living on the debris. A large number of EPS particles (131 ± 131 particles/individual, 0.2-3.8 mm in length) were found in the digestive tracts of burrowing polychaetes living on EPS debris. To confirm the formation of microplastics by polychaetes and identify the quantity and morphology of produced microplastics, polychaetes were exposed to EPS blocks in filtered seawater under laboratory conditions. Polychaetes burrowed into the blocks and created numerous EPS microplastic particles, indicating that a single polychaete can produce hundreds of thousands of microplastic particles per year. These results reveal the potential role of marine organisms as microplastic producers in the marine environment.
Collapse
|
|
7 |
46 |
22
|
Moses DN, Mattoni MA, Slack NL, Waite JH, Zok FW. Role of melanin in mechanical properties of Glycera jaws. Acta Biomater 2006; 2:521-30. [PMID: 16831576 DOI: 10.1016/j.actbio.2006.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 04/03/2006] [Accepted: 05/04/2006] [Indexed: 10/24/2022]
Abstract
The remarkable mechanical prowess of the jaws of the bloodworm Glycera dibranchiata appears to be a consequence of a robust cross-linked network of organic molecules, notably melanin and proteins, as well as small amounts of unmineralized Cu and a Cu-based mineral. The present study focuses on the role of melanin. Mechanical properties of untreated jaws and the constituent melanin are probed through nanoindentation, both in air and underwater. Complementary information is obtained from density and porosity measurements and attempts at Cu removal from the jaws using EDTA, an effective metal chelator in most biological systems. In near-tip regions of the jaws, mechanical properties attain the highest values and diminish only slightly when wet (by 15-25%), in contrast to the behavior of other organic biomaterials. The melanin constituent contributes significantly to the mechanical integrity of the jaw; its hardness and elastic modulus are about half those of untreated jaws. Although melanin may be the dominant shape-determining component of the structure, it remains to be shown whether jaw assembly is mediated by protein deposition on a melanin scaffold or, conversely, by melanin deposition on a protein scaffold. The inability of EDTA to chelate Cu from the jaws and the relatively high density of the jaws and the melanin support the notion of a highly cross-linked molecular structure. Finally, based on the metric H(3)/E(2) (H being hardness and E the Young's modulus), the results suggest that the abrasion resistance of the jaws is superior to all engineering polymers and competitive with the hardest metallic alloys.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
43 |
23
|
Revel M, Yakovenko N, Caley T, Guillet C, Châtel A, Mouneyrac C. Accumulation and immunotoxicity of microplastics in the estuarine worm Hediste diversicolor in environmentally relevant conditions of exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3574-3583. [PMID: 30353435 DOI: 10.1007/s11356-018-3497-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/16/2018] [Indexed: 05/23/2023]
Abstract
The presence of plastic debris < 5 mm called microplastics (MPs) which results mainly from macroplastic's fragmentation has been reported in aquatic ecosystems. Several studies have shown that MPs are persistent and their accumulation was observed in various aquatic species. However, the majority of studies focused on marine species, and much less on continental and estuarine biota. The goal of the present study was to investigate the effects of a mixture of two types of MPs (polyethylene and polypropylene), frequently found in natural environments, towards the ragworm Hediste diversicolor to determine their accumulation in organisms exposed through the water phase or sediment. Two concentrations of exposure were selected for medium and heavily contaminated areas reported for water phase (10 and 100 μg/L) and sediment (10 and 50 mg of MPs/kg). To study the potential toxic effect of MPs, immune parameters were selected since they are involved in many defense mechanisms against xenobiotics or infectious agents. An average number of MP items/worm ranging from 0 to 2.5 and from 1 to 36 were identified in animals exposed to the lowest and the highest concentration of MPs through water exposure. In worms exposed through sediment, less than 1 MP/worm was found and a greater number of particles were identified in depurated sediment. For immunotoxic impact, MP exposure induced a decrease in coelomocytes viability, but no alteration of phagocytosis activity, phenoloxydase, and acid phosphatase was measured. This study brings new results on the potential accumulation and immunotoxicity of MPs for the ragworm H. diversicolor who plays a key role in the structure and functioning of estuarine ecosystem.
Collapse
|
|
5 |
41 |
24
|
Durou C, Smith BD, Roméo M, Rainbow PS, Mouneyrac C, Mouloud M, Gnassia-Barelli M, Gillet P, Deutch B, Amiard-Triquet C. From biomarkers to population responses in Nereis diversicolor: assessment of stress in estuarine ecosystems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2007; 66:402-11. [PMID: 16620980 DOI: 10.1016/j.ecoenv.2006.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 02/22/2006] [Accepted: 02/28/2006] [Indexed: 05/08/2023]
Abstract
Suborganismal responses to toxicants can be sensitive tools to assess marine pollution, but their ecological significance is a matter of debate. Among these biomarkers, those linked to reproduction are most probably related to populational effects. To test this hypothesis, Nereis diversicolor were collected in the multipolluted Seine estuary and the comparatively clean Authie estuary (France). Energy reserves were higher in Authie worms, suggesting a better physiological status. The number of oocytes per female was higher for the polychaetes from the Authie, but it was related to the size of animals, which was higher at this site. Densities of worms were depleted in the Seine compared to those in Authie. Demographic structure of the Seine population was also altered. The concomitant changes in energy reserves, egg production, and population structure and density suggest that the effects on biomarkers and at the population level are related.
Collapse
|
|
18 |
39 |
25
|
Caldwell GS, Olive PJW, Bentley MG. Inhibition of embryonic development and fertilization in broadcast spawning marine invertebrates by water soluble diatom extracts and the diatom toxin 2-trans,4-trans decadienal. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2002; 60:123-137. [PMID: 12204592 DOI: 10.1016/s0166-445x(01)00277-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Water soluble diatom extracts and the diatom aldehyde 2-trans,4-trans decadienal were assayed on the gametes and embryos of the broadcast spawning polychaetes Arenicola marina and Nereis virens and the echinoderms Asterias rubens and Psammechinus miliaris. Both crude cellular extracts and purified aldehyde were found to inhibit fertilization, embryogenesis and hatching success in a dose dependent manner. Intact diatom cells had no discernable effect on fertilization or development. Extracts of Skeletonema costatum were generally more effective than Nitzschia commutata in inhibiting development and fertilization. There was considerable interspecific variation in terms of toxin sensitivity. The polychaetes were more sensitive to the effects than the echinoderms. Within the polychaetes A. marina was the more tolerant in terms of developmental competence but N. virens had a higher fertilization rate. Echinoid embryos were more tolerant than asteroid embryos. This is the first study to present data on the inhibition of fertilization success by diatom extracts and aldehydes. Our observations are discussed in relation to temporal patterns in spawning and possible adaptive mechanisms to avoid diatom toxicity.
Collapse
|
|
23 |
39 |