1
|
Koh C, Canini L, Dahari H, Zhao X, Uprichard SL, Haynes-Williams V, Winters MA, Subramanya G, Cooper SL, Pinto P, Wolff EF, Bishop R, Ai Thanda Han M, Cotler SJ, Kleiner DE, Keskin O, Idilman R, Yurdaydin C, Glenn JS, Heller T. Oral prenylation inhibition with lonafarnib in chronic hepatitis D infection: a proof-of-concept randomised, double-blind, placebo-controlled phase 2A trial. THE LANCET. INFECTIOUS DISEASES 2015; 15:1167-1174. [PMID: 26189433 DOI: 10.1016/s1473-3099(15)00074-2] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Therapies for chronic hepatitis delta virus (HDV) infection are unsatisfactory. Prenylation is essential for HDV and inhibition abrogates HDV production in experimental models. In a proof-of-concept study, we aimed to assess the effect on HDV RNA levels, safety, and tolerability of the prenylation inhibitor lonafarnib in patients with chronic delta hepatitis. METHODS In this phase 2A double-blind, randomised, placebo-controlled study, patients aged 18 years or older with chronic HDV infection were randomly assigned (3:1 in group 1 and 2:1 in group 2) to receive lonafarnib 100 mg (group 1) or lonafarnib 200 mg (group 2) twice daily for 28 days with 6 months' follow-up. Participants were randomised by random-number tables blocked in groups of four without stratification. Both groups enrolled six treatment participants and two placebo participants. Group 1 placebo patients received open-label lonafarnib as group 2 participants. The primary therapeutic endpoint was a decrease in HDV RNA viral titre in serum and the primary safety endpoint was the ability to tolerate the drug at the prescribed dose for the full 4-week duration, defined as drug discontinuation due to intolerance or grade 3/4 adverse events. This trial is registered with ClinicalTrials.gov, number NCT01495585. FINDINGS Between Jan 19, 2012, and April 28, 2014, 14 patients were enrolled, of whom eight were assigned to group 1 and six were assigned to group 2. At day 28, compared with placebo, mean log HDV RNA declines from baseline were -0·73 log IU/mL in group 1 (95% CI 0·17-1·31; p=0·03) and -1·54 log IU/mL in group 2 (1·21-1·93; p<0·0001). Lonafarnib serum concentrations correlated with HDV RNA change (r(2)=0·78, p<0·0001). Model fits show that hepatitis B surface antigen (HBsAg) remained stable after a short pharmacological delay (0·75 days [SE 0·24]), lonafarnib effectiveness in blocking HDV production was greater in group 2 than in group 1 (0·952 [SE 0·06] vs 0·739 [0·05], p<0·001), and the HDV half-life was 1·62 days (0·07). There was no evidence of virological resistance. Adverse events were mainly mild to moderate with group 1 patients experiencing diarrhoea in three patients (50%) and nausea in two patients (33%) and in group 2 with all patients (100%) experiencing nausea, diarrhoea, abdominal bloating, and weight loss greater than 2 kg (mean of 4 kg). No treatment discontinuations occurred in any treatment groups. INTERPRETATION Treatment of chronic HDV with lonafarnib significantly reduces virus levels. The decline in virus levels significantly correlated with serum drug levels, providing further evidence for the efficacy of prenylation inhibition in chronic HDV. FUNDING National Institute of Diabetes and Digestive and Kidney Diseases and National Cancer Institute, National Institutes of Health, and Eiger Biopharmaceuticals Inc.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
206 |
2
|
Zhuang J, Zhang J, Lwin ST, Edwards JR, Edwards CM, Mundy GR, Yang X. Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+myeloid-derived suppressor cells. PLoS One 2012; 7:e48871. [PMID: 23173040 PMCID: PMC3500251 DOI: 10.1371/journal.pone.0048871] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 10/01/2012] [Indexed: 01/15/2023] Open
Abstract
Osteoclasts play a key role in the development of cancer-associated osteolytic lesions. The number and activity of osteoclasts are often enhanced by tumors. However, the origin of osteoclasts is unknown. Myeloid-derived suppressor cells (MDSCs) are one of the pre-metastatic niche components that are induced to expand by tumor cells. Here we show that the MDSCs can differentiate into mature and functional osteoclasts in vitro and in vivo. Inoculation of 5TGM1-GFP myeloma cells into C57BL6/KaLwRij mice led to a significant expansion of MDSCs in blood, spleen, and bone marrow over time. When grown in osteoclastogenic media in vitro, MDSCs from tumor-challenged mice displayed 14 times greater potential to differentiate into mature and functional osteoclasts than those from non-tumor controls. Importantly, MDSCs from tumor-challenged LacZ transgenic mice differentiated into LacZ+osteoclasts in vivo. Furthermore, a significant increase in tumor burden and bone loss accompanied by increased number of osteoclasts was observed in mice co-inoculated with tumor-challenged MDSCs and 5TGM1 cells compared to the control animals received 5TGM1 cells alone. Finally, treatment of MDSCs from myeloma-challenged mice with Zoledronic acid (ZA), a potent inhibitor of bone resorption, inhibited the number of osteoclasts formed in MDSC cultures and the expansion of MDSCs and bone lesions in mice. Collectively, these data provide in vitro and in vivo evidence that tumor-induced MDSCs exacerbate cancer-associated bone destruction by directly serving as osteoclast precursors.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
98 |
3
|
Parikh A, Childress C, Deitrick K, Lin Q, Rukstalis D, Yang W. Statin-induced autophagy by inhibition of geranylgeranyl biosynthesis in prostate cancer PC3 cells. Prostate 2010; 70:971-81. [PMID: 20135644 DOI: 10.1002/pros.21131] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Autophagy is a cellular process of degradation of macromolecules and organelles and activated under nutritional stress. Statins are a class of inhibitors of 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase, a key enzyme in synthesis of cholesterol. Epidemiological studies have shown that statin use decreases the incidence of advanced prostate cancer. We explored the idea that treatment of atorvastatin, a commonly prescribed statin for treatment of hypercholesterolemia, induces autophagy in prostate cancer cells. METHODS The atorvastatin-induced autophagic process in prostate cancer PC3 cells was determined by detection of cellular level of LC3-II, an autophagosomal marker, via immunoblotting and immunofluorescent staining. RESULTS Atorvastatin treatment of PC3 cells for 40 hrs increased expression of LC3-II by more than 10 fold in a dose-dependent manner. Treatment of the cells with pepstatin A and E64-d, the autophagic protease inhibitors, dramatically increased atorvastatin-dependent LC3-II expression level, suggesting that atorvastatin induces autophagic flux. In addition, atorvastatin treatment caused rapid death of PC3 cells. Atorvastatin-induced autophagy and rapid cell death were reversed by addition of geranylgeraniol, not farnesol, into culture medium, indicating that atorvastatin-mediated inhibition of geranylgeranyl biosynthesis causes autophagy and cell death. Furthermore, atorvastatin did not induce autophagy or cell death in normal prostate RWPE1 cells, and induced only a minor autophagic response in AR-positive prostate cancer LNCaP cells. CONCLUSIONS Our studies demonstrate that statins induce autophagy and autophagy-associated cell death in PC3 cells, likely through inhibition of geranylgeranylation, and suggest that autophagic response to statins may partially underlie the protective effects of statins on prostate cancer progression. Importantly, these findings highlight additional mechanisms by which statins might be used for prostate cancer therapy.
Collapse
|
|
15 |
87 |
4
|
Cornish J, Bava U, Callon KE, Bai J, Naot D, Reid IR. Bone-bound bisphosphonate inhibits growth of adjacent non-bone cells. Bone 2011; 49:710-6. [PMID: 21807133 DOI: 10.1016/j.bone.2011.07.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 01/13/2023]
Abstract
The conventional view of the mode of action of bisphosphonates is that they are taken up by bone surfaces and then ingested by bone-resorbing osteoclasts, the activity of which they inhibit through their actions on the enzyme, farnesyl pyrophosphate (FPP) synthase. This model suggests that these compounds should only have effects on osteoclasts, and does not provide an explanation for their other actions, such as the epithelial abnormalities seen in osteonecrosis of the jaw, and their possible prolongation of disease-free survival in some malignancies. The present studies set out to determine whether cells other than osteoclasts are affected by bone-bound bisphosphonates. Bone slices were incubated overnight in PBS or in solutions of bisphosphonates (100 μM), washed, then transferred to 96-well plates (1 slice/well). Cells from 2 cell lines were seeded onto the bone slices: Caco-2 human colorectal adenocarcinoma epithelial cells and Chinese hamster ovary (CHO) cells. Cell proliferation (cell numbers and thymidine incorporation) was assessed at 4-72 h. Cell adhesion at 4 h was normal on bone slices pre-treated with bisphosphonates, but there were progressive reductions in cell numbers from 48 h and even greater reductions in thymidine incorporation from 24 h (>90% with zoledronate at 72 h). Growth inhibition was related to the clinical potency of the bisphosphonate used. There was no evidence of increased apoptosis in cells grown on bisphosphonate-coated bone, but levels of unprenylated Rap1A were increased, indicating inhibition of FPP synthase. Similar growth inhibition was observed in primary cultures of rat osteoblasts on bone, indicating that this was not specific to transformed cells. It is concluded that bisphosphonates bound to a bone surface can act on adjacent non-bone cells and inhibit their growth. This greatly widens the range of potential target cells for these drugs.
Collapse
|
|
14 |
50 |
5
|
Riganti C, Castella B, Kopecka J, Campia I, Coscia M, Pescarmona G, Bosia A, Ghigo D, Massaia M. Zoledronic acid restores doxorubicin chemosensitivity and immunogenic cell death in multidrug-resistant human cancer cells. PLoS One 2013; 8:e60975. [PMID: 23593363 PMCID: PMC3625183 DOI: 10.1371/journal.pone.0060975] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/01/2013] [Indexed: 11/23/2022] Open
Abstract
Durable tumor cell eradication by chemotherapy is challenged by the development of multidrug-resistance (MDR) and the failure to induce immunogenic cell death. The aim of this work was to investigate whether MDR and immunogenic cell death share a common biochemical pathway eventually amenable to therapeutic intervention. We found that mevalonate pathway activity, Ras and RhoA protein isoprenylation, Ras- and RhoA-downstream signalling pathway activities, Hypoxia Inducible Factor-1alpha activation were significantly higher in MDR+ compared with MDR− human cancer cells, leading to increased P-glycoprotein expression, and protection from doxorubicin-induced cytotoxicity and immunogenic cell death. Zoledronic acid, a potent aminobisphosphonate targeting the mevalonate pathway, interrupted Ras- and RhoA-dependent downstream signalling pathways, abrogated the Hypoxia Inducible Factor-1alpha-driven P-glycoprotein expression, and restored doxorubicin-induced cytotoxicity and immunogenic cell death in MDR+ cells. Immunogenic cell death recovery was documented by the ability of dendritic cells to phagocytise MDR+ cells treated with zoledronic acid plus doxorubicin, and to recruit anti-tumor cytotoxic CD8+ T lymphocytes. These data indicate that MDR+ cells have an hyper-active mevalonate pathway which is targetable with zoledronic acid to antagonize their ability to withstand chemotherapy-induced cytotoxicity and escape immunogenic cell death.
Collapse
|
Retracted Publication |
12 |
47 |
6
|
Blondel S, Jaskowiak AL, Egesipe AL, Le Corf A, Navarro C, Cordette V, Martinat C, Laabi Y, Djabali K, de Sandre-Giovannoli A, Levy N, Peschanski M, Nissan X. Induced pluripotent stem cells reveal functional differences between drugs currently investigated in patients with hutchinson-gilford progeria syndrome. Stem Cells Transl Med 2014; 3:510-9. [PMID: 24598781 DOI: 10.5966/sctm.2013-0168] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome is a rare congenital disease characterized by premature aging in children. Identification of the mutation and related molecular mechanisms has rapidly led to independent clinical trials testing different marketed drugs with a preclinically documented impact on those mechanisms. However, the extensive functional effects of those drugs remain essentially unexplored. We have undertaken a systematic comparative study of the three main treatments currently administered or proposed to progeria-affected children, namely, a farnesyltransferase inhibitor, the combination of an aminobisphosphonate and a statin (zoledronate and pravastatin), and the macrolide antibiotic rapamycin. This work was based on the assumption that mesodermal stem cells, which are derived from Hutchinson-Gilford progeria syndrome-induced pluripotent stem cells expressing major defects associated with the disease, may be instrumental to revealing such effects. Whereas all three treatments significantly improved misshapen cell nuclei typically associated with progeria, differences were observed in terms of functional improvement in prelamin A farnesylation, progerin expression, defective cell proliferation, premature osteogenic differentiation, and ATP production. Finally, we have evaluated the effect of the different drug combinations on this cellular model. This study revealed no additional benefit compared with single-drug treatments, whereas a cytostatic effect equivalent to that of a farnesyltransferase inhibitor alone was systematically observed. Altogether, these results reveal the complexity of the modes of action of different drugs, even when they have been selected on the basis of a similar mechanistic hypothesis, and underscore the use of induced pluripotent stem cell derivatives as a critical and powerful tool for standardized, comparative pharmacological studies.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
41 |
7
|
Gasparini G, Longo R, Torino F, Morabito A. Therapy of breast cancer with molecular targeting agents. Ann Oncol 2005; 16 Suppl 4:iv28-36. [PMID: 15923426 DOI: 10.1093/annonc/mdi905] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Invasive breast cancer is a heterogeneous disease sustained by intercorrelated and complex growth pathways. Classically, human breast carcinoma has been classified for therapeutic purposes in two distinct categories: one hormone-correlated, the other hormone-uncorrelated. However, the recent advancements of the technology applied to molecular biology by genomic and proteomic analyses have suggested that many more factors are involved in breast cancer growth and progression and that some clusters of these distinguish subgroups of patients at different prognosis. The knowledge of the diversities between tumor and normal tissue of origin is the key to identify novel targets for new selective therapeutic strategies. In fact, the principal goal of molecular-targeted therapy is the suppression of the transformed phenotype minimally affecting normal cells. This review focuses on the molecular targeting compounds directed against the known molecular pathways involved in breast cancer such as: type I growth factors (HER-2/neu; epidermal growth factor receptor [EGFR]), angiogenesis, cyclooxigenase-2 (COX-2) and farnesylation. Presently, trastuzumab is the first agent approved for therapy of HER-2/neu overexpressing tumors. Several other compounds directed against different targets have entered clinical evaluation and the preliminary results are here presented and commented. The major challenges on the clinical development of targeted therapy include the proper selection of patients, the identification of the optimal dosage and schedule of administration, the combinations with conventional treatments and the more appropriate therapeutic strategy.
Collapse
|
|
20 |
32 |
8
|
Göbel A, Zinna VM, Dell'Endice S, Jaschke N, Kuhlmann JD, Wimberger P, Rachner TD. Anti-tumor effects of mevalonate pathway inhibition in ovarian cancer. BMC Cancer 2020; 20:703. [PMID: 32727400 PMCID: PMC7388525 DOI: 10.1186/s12885-020-07164-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ovarian cancer remains the most fatal gynecological malignancy. Current therapeutic options are limited due to late diagnosis in the majority of the cases, metastatic spread to the peritoneal cavity and the onset of chemo-resistance. Thus, novel therapeutic approaches are required. Statins and amino-bisphosphonates are inhibitors of the mevalonate pathway, which is a fundamental pathway of cellular metabolism, essential for cholesterol production and posttranslational protein farnesylation and geranylgeranylation. While this pathway has emerged as a promising treatment target in several human malignancies, its potential as a therapeutic approach in ovarian cancer is still not fully understood. METHODS Human ovarian cancer cell lines (IGROV-1, A2780, A2780cis) were treated with increasing concentrations (0.5-100 μM) of statins (simvastatin, atorvastatin, rosuvastatin) and zoledronic acid. Effects on cell vitality and apoptosis were assessed using Cell Titer Blue®, Caspase 3/7 Glo®, clonogenic assays as well as cleaved poly (ADP-ribose) polymerase (cPARP) detection. The inhibition of the mevalonate pathway was confirmed using Western Blot of unprenylated Ras and Rap1a proteins. Quantitative real-time PCR and ELISA were used to analyze modulations on several key regulators of ovarian cancer tumorigenesis. RESULTS The treatment of IGROV-1 and A2780 cells with statins and zoledronic acid reduced vitality (by up to 80%; p < 0.001) and induced apoptosis by up to 8-folds (p < 0.001) in a dose-dependent fashion. Rescue experiments using farnesyl pyrophosphate or geranylgeranyl pyrophosphate evidenced that blocked geranylgeranylation is the major underlying mechanism of the pro-apoptotic effects. Gene expression of the tumor-promoting cytokines and mediators, such as transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF), interleukin (IL)-8, and IL-6 were significantly suppressed by statins and zoledronic acid by up to 90% (p < 0.001). For all readouts, simvastatin was most potent of all agents used. Cisplatin-resistant A2780cis cells showed a relative resistance to statins and zoledronic acid. However, similar to the effects in A2780 cells, simvastatin and zoledronic acid significantly induced caspase 3/7 activation (6-folds; p < 0.001). CONCLUSION Our in vitro findings point to promising anti-tumor effects of statins and zoledronic acid in ovarian cancer and warrant additional validation in preclinical and clinical settings.
Collapse
|
research-article |
5 |
31 |
9
|
Henriksbo BD, Tamrakar AK, Xu J, Duggan BM, Cavallari JF, Phulka J, Stampfli MR, Ashkar AA, Schertzer JD. Statins Promote Interleukin-1β-Dependent Adipocyte Insulin Resistance Through Lower Prenylation, Not Cholesterol. Diabetes 2019; 68:1441-1448. [PMID: 31010959 DOI: 10.2337/db18-0999] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 04/16/2019] [Indexed: 11/13/2022]
Abstract
Statins lower cholesterol and adverse cardiovascular outcomes, but this drug class increases diabetes risk. Statins are generally anti-inflammatory. However, statins can promote inflammasome-mediated adipose tissue inflammation and insulin resistance through an unidentified immune effector. Statins lower mevalonate pathway intermediates beyond cholesterol, but it is unknown whether lower cholesterol underpins statin-mediated insulin resistance. We sought to define the mevalonate pathway metabolites and immune effectors that propagate statin-induced adipose insulin resistance. We found that LDL cholesterol lowering was dispensable, but statin-induced lowering of isoprenoids required for protein prenylation triggered NLRP3/caspase-1 inflammasome activation and interleukin-1β (IL-1β)-dependent insulin resistance in adipose tissue. Multiple statins impaired insulin action at the level of Akt/protein kinase B signaling in mouse adipose tissue. Providing geranylgeranyl isoprenoids or inhibiting caspase-1 prevented statin-induced defects in insulin signaling. Atorvastatin (Lipitor) impaired insulin signaling in adipose tissue from wild-type and IL-18-/- mice, but not IL-1β-/- mice. Atorvastatin decreased cell-autonomous insulin-stimulated lipogenesis but did not alter lipolysis or glucose uptake in 3T3-L1 adipocytes. Our results show that statin lowering of prenylation isoprenoids activates caspase-1/IL-1β inflammasome responses that impair endocrine control of adipocyte lipogenesis. This may allow the targeting of cholesterol-independent statin side effects on adipose lipid handling without compromising the blood lipid/cholesterol-lowering effects of statins.
Collapse
|
|
6 |
29 |
10
|
Mohammad G, Duraisamy AJ, Kowluru A, Kowluru RA. Functional Regulation of an Oxidative Stress Mediator, Rac1, in Diabetic Retinopathy. Mol Neurobiol 2019; 56:8643-8655. [PMID: 31300985 PMCID: PMC6842106 DOI: 10.1007/s12035-019-01696-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Early activation of cytosolic NADPH oxidase-2 (Nox2) in diabetes increases retinal ROS production, damaging their mitochondria. The assembly of Nox2 holoenzyme requires activation of a small molecular weight G protein Rac1. Rac1 activation is regulated by guanine exchange factors and guanine nucleotide-dissociation inhibitors, and post-translational modifications assist in its association with exchange factors and dissociation inhibitors. The goal of this study is to investigate the mechanisms of Rac1 activation in the development of diabetic retinopathy. METHODS The levels of the dissociation inhibitor, prenylating enzyme (farnesyltransferase, FNTA), and exchange factor Vav2 were quantified in human retinal endothelial cells, incubated in normal or high glucose for 96 h. The roles of prenylation and Vav2 in Rac1-Nox2-ROS mitochondrial damage were confirmed in FNTA-siRNA-transfected cells and using the Vav2 inhibitor EHop, respectively. Retinal histopathology and functional changes associated with diabetic retinopathy were analyzed in diabetic mice receiving EHop for 6 months. Key parameters of Rac1 activation were confirmed in the retinal microvasculature from human donors with diabetic retinopathy. RESULTS In HRECs, glucose increased FNTA and Vav2 and decreased the dissociation inhibitor. FNTA-siRNA and EHop inhibited glucose-induced activation of Rac1-Nox2-ROS signaling. In diabetic mice, EHop ameliorated the development of retinopathy and functional/structural abnormalities and attenuated Rac1-Nox2-mitochondrial damage. Similar alterations in Rac1 regulators were observed in retinal microvasculature from human donors with diabetic retinopathy. In diabetes, Rac1 prenylation and its interactions with Vav2 contribute to Nox2-ROS-mitochondrial damage, and the pharmacological inhibitors to attenuate Rac1 interactions with its regulators could have the potential to halt/inhibit the development of diabetic retinopathy. Graphical Abstract Activation of prenylating enzyme farnesyltransferase (FNTA) in diabetes, prenylates Rac1. The binding of Rac1 with guanine nucleotide-dissociation inhibitor (GDI) is decreased, but its association with the guanine exchange factor, Vav2, is increased, resulting in Rac1 activation. Active Rac1 helps in the assembly of Nox2 holoenzyme, and Nox2 activation increases cytosolic ROS production, damaging the mitochondria. Damaged mitochondria accelerate capillary cell apoptosis, and ultimately, results in the development of diabetic retinopathy.
Collapse
|
research-article |
6 |
28 |
11
|
Berzat AC, Brady DC, Fiordalisi JJ, Cox AD. Using Inhibitors of Prenylation to Block Localization and Transforming Activity. Methods Enzymol 2006; 407:575-97. [PMID: 16757354 DOI: 10.1016/s0076-6879(05)07046-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The proper subcellular localization and biological activity of most Ras and Rho family small GTPases are dependent on their posttranslational modification by isoprenylation. Farnesyltransferase (FTase) and geranylgeranyl transferase I (GGTase I) are the prenyltransferases that catalyze the irreversible attachment of C15 farnesyl (Ras, Rnd) or C20 (R-Ras, Ral, Rap, Rho, Rac, Cdc42) isoprenoid lipid moieties to these small GTPases and other proteins. Therefore, pharmacological inhibitors of FTase (FTIs) and GGTase I (GGTIs) have been developed to prevent these modifications and thereby to block the lipid-mediated association of Ras and Rho proteins with cellular membranes and the consequent signaling and transforming activities. In addition, other small molecule inhibitors such as farnesyl thiosalicylic acid (FTS) can compete with the isoprenoid moiety of small GTPases for membrane binding sites. Finally, endogenous regulatory proteins such as RhoGDIs can bind to and mask the prenyl groups of small GTPases, leading to their sequestration from membranes. We describe here methods to use each of these categories of prenylation inhibitors to manipulate and investigate the subcellular localization patterns and transforming potential of these Ras and Rho family GTPases.
Collapse
|
|
19 |
26 |
12
|
Liu Q, Kim DI, Syme J, LuValle P, Burke B, Roux KJ. Dynamics of lamin-A processing following precursor accumulation. PLoS One 2010; 5:e10874. [PMID: 20526372 PMCID: PMC2878336 DOI: 10.1371/journal.pone.0010874] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/06/2010] [Indexed: 11/18/2022] Open
Abstract
Lamin A (LaA) is a component of the nuclear lamina, an intermediate filament meshwork that underlies the inner nuclear membrane (INM) of the nuclear envelope (NE). Newly synthesized prelamin A (PreA) undergoes extensive processing involving C-terminal farnesylation followed by proteolysis yielding non-farnesylated mature lamin A. Different inhibitors of these processing events are currently used therapeutically. Hutchinson-Gilford Progeria Syndrome (HGPS) is most commonly caused by mutations leading to an accumulation of a farnesylated LaA isoform, prompting a clinical trial using farnesyltransferase inhibitors (FTI) to reduce this modification. At therapeutic levels, HIV protease inhibitors (PI) can unexpectedly inhibit the final processing step in PreA maturation. We have examined the dynamics of LaA processing and associated cellular effects during PI or FTI treatment and following inhibitor washout. While PI reversibility was rapid, with respect to both LaA maturation and associated cellular phenotype, recovery from FTI treatment was more gradual. FTI reversibility is influenced by both cell type and rate of proliferation. These results suggest a less static lamin network than has previously been observed.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
23 |
13
|
Ye Y, Hu SJ, Li L. Inhibition of farnesylpyrophosphate synthase prevents angiotensin II-induced hypertrophic responses in rat neonatal cardiomyocytes: involvement of the RhoA/Rho kinase pathway. FEBS Lett 2009; 583:2997-3003. [PMID: 19716825 DOI: 10.1016/j.febslet.2009.08.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/22/2009] [Accepted: 08/22/2009] [Indexed: 01/10/2023]
Abstract
The RhoA/Rho-kinase (ROCK) pathway is involved in angiotensin (Ang) II-induced cardiac hypertrophy. However, it is still unclear whether inhibition of farnesylpyrophosphate (FPP) synthase can attenuate Ang II-induced hypertrophic responses, and whether it involves the RhoA/ROCK pathway. The anti-hypertrophic effects of inhibition of FPP synthase with alendronate in Ang II-cultured neonatal cardiomyocytes were partially reversed by geranylgeranyol (GGOH) and were mimicked by GGTI-286, a geranylgeranyl transferase-I inhibitor, C3 exoenzyme, an inhibitor of Rho, or Y-27632, an inhibitor of ROCK. Pull-down assay showed alendronate reduced-active RhoA by Ang II was also partially antagonized by GGOH. This study revealed that the inhibition of FPP synthase by alendronate reduces RhoA activation by diminishing geranylgeranylation which prevents Ang II-induced hypertrophic responses in neonatal cardiomyocytes.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
23 |
14
|
Dieterle F, Schlotterbeck G, Binder M, Ross A, Suter L, Senn H. Application of Metabonomics in a Comparative Profiling Study Reveals N-Acetylfelinine Excretion as a Biomarker for Inhibition of the Farnesyl Pathway by Bisphosphonates. Chem Res Toxicol 2007; 20:1291-9. [PMID: 17676813 DOI: 10.1021/tx700151t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, the results of metabolic profiling of urine from a preclinical comparative profiling study with the two biphosphonates ibandronate and zoledronate are reported. Toxicological assessment showed very different effects for the two compounds. Ibandronate did not cause major signs of toxicity, whereas zoledronate elicited hepatotoxicity and nephrotoxicity. Increased levels of urinary glucose and decreased levels of urinary creatinine detected by NMR also indicated drug-induced nephrotoxicity. Similarly, increased urinary levels of creatine and taurine indicated hepatotoxicity. Both organ toxicities were later confirmed by histopathology. In addition, the benefit of metabonomics as an open approach as compared to targeted methods was demonstrated by the identification of an unknown molecule in the urine of rats dosed with zoledronate. The structure elucidation revealed this molecule as N-acetylfelinine. Analysis of the pathways proposed for the biochemical synthesis of this molecule showed that the synthesis and excretion of N-acetylfelinine could easily be explained by drug-induced inhibition of farnesyl diphosphate synthase. This is the reported mode of action of bisphosphonates. Until now, N-acetylfelinine was exclusively observed in the urine of felidae species, where it is believed to be a precursor to a pheromone.
Collapse
|
|
18 |
19 |
15
|
Weivoda MM, Hohl RJ. Geranylgeranyl pyrophosphate stimulates PPARγ expression and adipogenesis through the inhibition of osteoblast differentiation. Bone 2012; 50:467-76. [PMID: 22019459 DOI: 10.1016/j.bone.2011.09.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/31/2011] [Accepted: 09/26/2011] [Indexed: 01/04/2023]
Abstract
Osteoblasts and adipocytes are derived from mesenchymal stem cells and play important roles in skeletal homeostasis. Osteoblast differentiation results in a decrease in the cellular concentration of the isoprenoid geranylgeranyl pyrophosphate (GGPP), and the statin-mediated depletion of GGPP stimulates osteoblast differentiation. Adipogenic differentiation, in contrast, results in increased expression of GGPP synthase (GGPPS), and GGPP lowering agents inhibit adipogenesis in vitro. In this study, we tested the hypothesis that GGPP inhibits osteoblast differentiation and enhances adipogenesis. We found that treatment with exogenous GGPP reduced osteoblastic gene expression and matrix mineralization in primary calvarial osteoblast cultures. GGPP treatment of primary calvarial osteoblasts and bone marrow stromal cells (BMSCs) led to increased expression of total peroxisome proliferator activated receptor (PPAR)-γ as well as the adipocyte specific splice variant PPARγ2. Inhibition of PPARγ transcriptional activity did not prevent the effects of GGPP on osteoblasts, suggesting that enhanced PPARγ expression is secondary to the inhibition of osteoblast differentiation. Enhanced PPARγ expression correlated with the increased formation of Oil Red O-positive cells in osteoblast cultures. Additionally, primary calvarial osteoblasts treated with GGPP exhibited increased expression of the adipokine adiponectin. Consistent with a role for GGPP in adipogenesis, adipogenic differentiation of BMSCs could be impaired by specific depletion of cellular GGPP. In contrast to previous reports utilizing other cell types, treatment of osteoblasts with GGPP did not increase geranylgeranylation, suggesting that GGPP itself may be acting as a signaling molecule. GGPP treatment of MC3T3-E1 pre-osteoblasts and primary calvarial osteoblasts led to enhanced insulin-induced Erk signaling which has been previously demonstrated to inhibit insulin receptor substrate (IRS)-1 activity. Additionally, GGPP treatment of MC3T3-E1 pre-osteoblasts resulted in a decrease in the insulin-induced phosphorylation of the insulin receptor. Altogether these findings demonstrate a negative role for GGPP in osteoblast differentiation, leading to increased adipogenesis. Additionally, the effects of GGPP on insulin signaling suggest a potential mechanism for inhibition of osteoblast differentiation and also implicate a role for this isoprenoid in physiological energy homeostasis.
Collapse
|
|
13 |
18 |
16
|
Garay T, Kenessey I, Molnár E, Juhász É, Réti A, László V, Rózsás A, Dobos J, Döme B, Berger W, Klepetko W, Tóvári J, Tímár J, Hegedűs B. Prenylation inhibition-induced cell death in melanoma: reduced sensitivity in BRAF mutant/PTEN wild-type melanoma cells. PLoS One 2015; 10:e0117021. [PMID: 25646931 PMCID: PMC4315579 DOI: 10.1371/journal.pone.0117021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 12/17/2014] [Indexed: 12/23/2022] Open
Abstract
While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
18 |
17
|
Cha MR, Choi YH, Choi CW, Kim YS, Kim YK, Ryu SY, Kim YH, Choi SU. Galbanic acid, a cytotoxic sesquiterpene from the gum resin of Ferula asafoetida, blocks protein farnesyltransferase. PLANTA MEDICA 2011; 77:52-54. [PMID: 20560115 DOI: 10.1055/s-0030-1250049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Farnesylation of the activated RAS oncogene product by protein farnesyltransferase (FTase) is a critical step for its oncogenic function. Bioassay-guided purification of Ferula asafoetida (Umbelliferae) extract led to the isolation of the coumarin-derived sesquiterpene galbanic acid (1) as an active principal for FTase inhibitory activity, together with the four structurally related sesquiterpenes karatavicinol (2), umbelliprenin (3), farnesiferol B (4), and farnesiferol C (5). The 50 % inhibitory concentration (IC (50)) of 1 against FTase in an enzyme-based assay was calculated as 2.5 µM. Compound 1 also demonstrated potent inhibition of the proliferation of oncogenic RAS-transformed NIH3T3/Hras-F in a dose-dependent manner. The IC (50) value of 1 on the proliferation of oncogenic RAS-transformed NIH3T3/Hras-F cells was calculated as 16.2 µM, whereas its IC (50) value on control vector-transfected normal RAS-containing NIH3T3/ZIPneo cells was 58.5 µM.
Collapse
|
|
14 |
18 |
18
|
Mitrofan LM, Castells FB, Pelkonen J, Mönkkönen J. Lysosomal-mitochondrial axis in zoledronic acid-induced apoptosis in human follicular lymphoma cells. J Biol Chem 2010; 285:1967-79. [PMID: 19875454 PMCID: PMC2804355 DOI: 10.1074/jbc.m109.038935] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/07/2009] [Indexed: 12/19/2022] Open
Abstract
Bisphosphonates (BPs) are potent inhibitors of osteoclast function, widely used to treat excessive bone resorption associated with bone metastases, that also have anti-tumor activity. Zoledronic acid (ZOL) represents a potential chemotherapeutic agent for the treatment of cancer. ZOL is the most potent nitrogen-containing BPs, and it inhibits cell growth and induces apoptosis in a variety of cancer cells. Recently we demonstrated that accumulation of isopentenyl pyrophosphate and the consequent formation of a new type of ATP analog (ApppI) after mevalonate pathway inhibition by nitrogen-containing BPs strongly correlates with ZOL-induced cell death in cancer cells in vitro. In this study we show that ZOL-induced apoptosis in HF28RA human follicular lymphoma cells occurs exclusively via the mitochondrial pathway, involves lysosomes, and is dependent on mevalonate pathway inhibition. To define the exact signaling pathway connecting them, we used modified HF28RA cell lines overexpressing either BclXL or dominant-negative caspase-9. In both mutant cells, mitochondrial and lysosomal membrane permeabilization (MMP and LMP) were totally prevented, indicating signaling between lysosomes and mitochondria and, additionally, an amplification loop for MMP and/or LMP regulated by caspase-9 in association with farnesyl pyrophosphate synthetase inhibition. Additionally, the lysosomal pathway in ZOL-induced apoptosis plays an additional/amplification role of the intrinsic pathway independently of caspase-3 activation. Moreover, we show a potential regulation by Bcl-XL and caspase-9 on cell cycle regulators of S-phase. Our findings provide a molecular basis for new strategies concomitantly targeting cell death pathways from multiple sites.
Collapse
|
research-article |
15 |
17 |
19
|
Leláková V, Béraud-Dufour S, Hošek J, Šmejkal K, Prachyawarakorn V, Pailee P, Widmann C, Václavík J, Coppola T, Mazella J, Blondeau N, Heurteaux C. Therapeutic potential of prenylated stilbenoid macasiamenene F through its anti-inflammatory and cytoprotective effects on LPS-challenged monocytes and microglia. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113147. [PMID: 32736058 DOI: 10.1016/j.jep.2020.113147] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Macaranga Thou. (Euphorbiaceae) is a large genus that comprises over 300 species distributed between Western Africa and the islands of the South Pacific. Plants of this genus have a long-standing history of use in traditional medicine for different purposes, including the treatment of inflammation. Fresh and dried leaves of certain Macaranga species (e.g. M. tanarius (L.) Müll.Arg.), have been used to treat cuts, bruises, boils, swellings, sores and covering of wounds in general. Several reports described Macaranga spp. being a rich source of polyphenols, such as prenylated stilbenoids and flavonoids, mostly responsible for its biological activity. Similarly, an abundant content of prenylated stilbenes was also described in M. siamensis S.J.Davies, species recently identified (2001) in Thailand. While the respective biological activity of the prenylated stilbenes from M. siamensis was poorly investigated to date, our recent study pointed out the interest as the natural source of several novel anti-inflammatory stilbenoids isolated from this species. AIM OF THE STUDY This work investigated the potential anti-inflammatory effects of the stilbenoid macasiamenene F (MF) isolated from M. siamensis S.J.Davies (Euphorbiaceae) on the lipopolysaccharide (LPS)-induced inflammation-like response of monocytes and microglia, major cells involved in the peripheral and central inflammatory response, respectively. MATERIALS AND METHODS LPS-induced stimulation of TLR4 signaling led to the activation of inflammatory pathways in in vitro models of THP-1 and THP-1-XBlue™-MD2-CD14 human monocytes, BV-2 mouse microglia, and an ex vivo model of brain-sorted mouse microglia. The ability of the stilbenoid MF to intervene in the IкB/NF-кB and MAPKs/AP-1 inflammatory cascade was investigated. The gene and protein expressions of the pro-inflammatory cytokines IL-1β and TNF-α were evaluated at the transcription and translation levels. The protective effect of MF against LPS-triggered microglial loss was assessed by cell counting and the LDH assay. RESULTS MF demonstrated beneficial effects, reducing both monocyte and microglial inflammation as assessed in vitro. It efficiently inhibited the degradation of IкBα, thereby reducing the NF-кB activity and TNF-α expression in human monocytes. Furthermore, the LPS-induced expression of IL-1β and TNF-α in microglia was dampened by pre-, co-, or post-treatment with MF. In addition to its anti-inflammatory effect, MF demonstrated a cytoprotective effect against the LPS-induced death of BV-2 microglia. CONCLUSION Our research into anti-inflammatory and protective effects of MF has shown that it is a promising candidate for further in vitro and in vivo investigations of MF interventions with respect to acute and chronic inflammation, including potentially beneficial effects on the inflammatory component of brain diseases such as stroke and Alzheimer's disease.
Collapse
|
|
5 |
17 |
20
|
Kofler S, Schlichting C, Jankl S, Nickel T, Weis M. Dual mode of HMG-CoA reductase inhibition on dendritic cell invasion. Atherosclerosis 2007; 197:105-10. [PMID: 17888931 DOI: 10.1016/j.atherosclerosis.2007.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/18/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022]
Abstract
Atherosclerosis is a chronic disease triggered by lipid disturbances, endothelial injury and sustained by inflammation. Dendritic cells (DCs) are critical for the cell-mediated arm of an immune response and are known to initiate inflammatory immunity. We investigated the role of statins and the mevalonate pathway on DC invasion. DC incubation with atorvastatin (ATV; 0.05-1 microM) for 24h decreased DC adhesion capacity. DC invasion (adhesion/transmigration) was decreased after exposing DCs to low and moderate concentrations of statins, which was reversible by mevalonate (but not geranyl- or farnesyl-pyrophosphate) and cholesterol. Inhibition of the phosphoinositide 3-kinase (with wortmannin) and inhibition of the NO-synthase (with asymmetric dimethyl ADMA) partially reversed statin-mediated effects. High-dose statins markedly decreased DC invasion, which was reversible by adding geranyl pyrophosphate and cholesterol. Inhibition of geranylgeranyltransferase but not inhibition of farnesyltransferase significantly decreased DC invasion. Statin-mediated alteration in DC-cholesterol synthesis and subsequent activation of the Akt/NOS pathway accounts for the statin-induced decrease in DC invasion at low-moderate concentrations (0.05-0.5 microM). Additionally, at high statin concentrations (1 microM) DC invasion is reduced by inhibition of protein geranylgeranylation. As DCs control immunity, regulating DC/endothelial cell interaction by statins may have relevance to inflammation and atherogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
14 |
21
|
Hol J, Otterdal K, Breland UM, Stang E, Pedersen TM, Hagelsteen K, Ranheim T, Kasprzycka M, Halvorsen B, Haraldsen G, Aukrust P. Statins affect the presentation of endothelial chemokines by targeting to multivesicular bodies. PLoS One 2012; 7:e40673. [PMID: 22815786 PMCID: PMC3398041 DOI: 10.1371/journal.pone.0040673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/12/2012] [Indexed: 11/18/2022] Open
Abstract
Background In addition to lowering cholesterol, statins are thought to beneficially modulate inflammation. Several chemokines including CXCL1/growth-related oncogene (GRO)-α, CXCL8/interleukin (IL)-8 and CCL2/monocyte chemoattractant protein (MCP)-1 are important in the pathogenesis of atherosclerosis and can be influenced by statin-treatment. Recently, we observed that atorvastatintreatment alters the intracellular content and subcellular distribution of GRO-α in cultured human umbilical vein endothelial cells (HUVECs). The objective of this study was to investigate the mechanisms involved in this phenomenon. Methodology/ Principal Findings The effect of atorvastatin on secretion levels and subcellular distribution of GRO-α, IL-8 and MCP-1 in HUVECs activated by interleukin (IL)-1β were evaluated by ELISA, confocal microscopy and immunoelectron microscopy. Atorvastatin increased the intracellular contents of GRO-α, IL-8, and MCP-1 and induced colocalization with E-selectin in multivesicular bodies. This effect was prevented by adding the isoprenylation substrate GGPP, but not the cholesterol precursor squalene, indicating that atorvastatin exerts these effects by inhibiting isoprenylation rather than depleting the cells of cholesterol. Conclusions/ Significance Atorvastatin targets inflammatory chemokines to the endocytic pathway and multivesicular bodies and may contribute to explain the anti-inflammatory effect of statins at the level of endothelial cell function.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
13 |
22
|
Rouger C, Pagie S, Derbré S, Le Ray AM, Richomme P, Charreau B. Prenylated Polyphenols from Clusiaceae and Calophyllaceae with Immunomodulatory Activity on Endothelial Cells. PLoS One 2016; 11:e0167361. [PMID: 27907087 PMCID: PMC5131938 DOI: 10.1371/journal.pone.0167361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/12/2016] [Indexed: 12/19/2022] Open
Abstract
Endothelial cells (ECs) are key players in inflammation and immune responses involved in numerous pathologies. Although attempts were experimentally undertaken to prevent and control EC activation, drug leads and probes still remain necessary. Natural products (NPs) from Clusiaceous and Calophyllaceous plants were previously reported as potential candidates to prevent endothelial dysfunction. The present study aimed to identify more precisely the molecular scaffolds that could limit EC activation. Here, 13 polyphenols belonging to 5 different chemical types of secondary metabolites (i.e., mammea coumarins, a biflavonoid, a pyranochromanone acid, a polyprenylated polycyclic acylphloroglucinol (PPAP) and two xanthones) were tested on resting and cytokine-activated EC cultures. Quantitative and qualitative changes in the expression of both adhesion molecules (VCAM-1, ICAM-1, E-selectin) and major histocompatibility complex (MHC) molecules have been used to measure their pharmaceutical potential. As a result, we identified 3 mammea coumarins that efficiently reduce (up to >90% at 10 μM) both basal and cytokine-regulated levels of MHC class I, class II, MICA and HLA-E on EC surface. They also prevented VCAM-1 induction upon inflammation. From a structural point of view, our results associate the loss of the free prenyl group substituting mammea coumarins with a reduced cellular cytotoxicity but also an abrogation of their anti-inflammatory potential and a reduction of their immunosuppressive effects. A PPAP, guttiferone J, also triggers a strong immunomodulation but restricted to HLA-E and MHC class II molecules. In conclusion, mammea coumarins with a free prenyl group and the PPAP guttiferone J emerge as NPs able to drastically decrease both VCAM-1 and a set of MHC molecules and to potentially reduce the immunogenicity of the endothelium.
Collapse
|
research-article |
9 |
9 |
23
|
Wang Y, Xu L, Gao W, Niu L, Huang C, Yang P, Hu X. Isoprenylated Phenolic Compounds from Morus macroura as Potent Tyrosinase Inhibitors. PLANTA MEDICA 2018; 84:336-343. [PMID: 29096405 DOI: 10.1055/s-0043-121698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Three new Diels-Alder adducts, macrourins E - G (1: -3: ), one new 2-arylbenzofuran, macrourin H (4: ), and eight known Diels-Alder adducts (5: -12: ) were isolated from Morus macroura. Their structures were elucidated through extensive analysis of spectroscopic data. The 1H NMR and ECD trends in the determination of the configurations of these Diels-Alder adducts were summarized. The tyrosinase inhibitory activities of all compounds isolated were evaluated, and the new compounds (1: -4: ) as well as the eight known compounds (5: -12: ) were found to be potent with IC50 values ranging from 0.39 to 4.54 µM. Among them, 1 showed the best tyrosinase inhibitory activity with an IC50 value of 0.39 µM, approximately 50 times stronger than the positive control, kojic acid.
Collapse
|
|
7 |
7 |
24
|
Epplen R, Stöckle M, Engelmann U, Heidenreich A, Ohlmann CH. Differential effects of ibandronate, docetaxel and farnesol treatment alone and in combination on the growth of prostate cancer cell lines. Acta Oncol 2011; 50:127-33. [PMID: 20429730 DOI: 10.3109/0284186x.2010.482103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ibandronate, one of the most potent bisphosphonates, has been shown to inhibit growth of various cancer cell lines. In contrast, little is known about the effects of ibandronate on prostate cancer cells. Therefore the aim of our study was to characterize the effects of ibandronate alone and in combination with docetaxel on the growth of prostate cancer cell lines and to identify the underlying signalling pathways. Material and methods. The prostate cancer cell lines LNCaP and PC-3 were treated with increasing concentrations of ibandronate and docetaxel alone and in combination. Viable cell number was measured after five days using a hemocytometer and the MTT-method. The effects of ibandronate were tentatively antagonized by addition of farnesyl-pyrophosphate (FPP) or farnesol (FOH). Results. Ibandronate inhibits growth of both prostate cancer cell lines in a dose dependent manner. In combination with docetaxel, synergistic effects are found as evidenced by a combination index (CI) of <1. Addition of FOH and FPP completely antagonized the growth inhibitory effects of ibandronate on both cell lines. Surprisingly, in combination with ibandronate and docetaxel, FOH further increased growth inhibition instead of antagonizing the growth inhibitory effects of ibandronate. Furthermore, FOH alone appeared to be a potent inhibitor of tumor cell growth. Discussion. Ibandronate effectively inhibits growth of prostate cancer cell lines via inhibition of the farnesyl-IPP-synthase and exhibits synergistic effects with docetaxel. In addition, FOH is a potent inhibitor of prostate cancer cell lines and may display an interesting treatment option for patients with CRPC.
Collapse
|
Journal Article |
14 |
7 |
25
|
Marshall CB, KleinJan F, Gebregiworgis T, Lee KY, Fang Z, Eves BJ, Liu NF, Gasmi-Seabrook GMC, Enomoto M, Ikura M. NMR in integrated biophysical drug discovery for RAS: past, present, and future. JOURNAL OF BIOMOLECULAR NMR 2020; 74:531-554. [PMID: 32804298 DOI: 10.1007/s10858-020-00338-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Mutations in RAS oncogenes occur in ~ 30% of human cancers, with KRAS being the most frequently altered isoform. RAS proteins comprise a conserved GTPase domain and a C-terminal lipid-modified tail that is unique to each isoform. The GTPase domain is a 'switch' that regulates multiple signaling cascades that drive cell growth and proliferation when activated by binding GTP, and the signal is terminated by GTP hydrolysis. Oncogenic RAS mutations disrupt the GTPase cycle, leading to accumulation of the activated GTP-bound state and promoting proliferation. RAS is a key target in oncology, however it lacks classic druggable pockets and has been extremely challenging to target. RAS signaling has thus been targeted indirectly, by harnessing key downstream effectors as well as upstream regulators, or disrupting the proper membrane localization required for signaling, by inhibiting either lipid modification or 'carrier' proteins. As a small (20 kDa) protein with multiple conformers in dynamic equilibrium, RAS is an excellent candidate for NMR-driven characterization and screening for direct inhibitors. Several molecules have been discovered that bind RAS and stabilize shallow pockets through conformational selection, and recent compounds have achieved substantial improvements in affinity. NMR-derived insight into targeting the RAS-membrane interface has revealed a new strategy to enhance the potency of small molecules, while another approach has been development of peptidyl inhibitors that bind through large interfaces rather than deep pockets. Remarkable progress has been made with mutation-specific covalent inhibitors that target the thiol of a G12C mutant, and these are now in clinical trials. Here we review the history of RAS inhibitor development and highlight the utility of NMR and integrated biophysical approaches in RAS drug discovery.
Collapse
|
Review |
5 |
5 |