1
|
Nielsen H, Engelbrecht J, Brunak S, von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. PROTEIN ENGINEERING 1997; 10:1-6. [PMID: 9051728 DOI: 10.1093/protein/10.1.1] [Citation(s) in RCA: 4203] [Impact Index Per Article: 150.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have developed a new method for the identification of signal peptides and their cleavage sites based on neural networks trained on separate sets of prokaryotic and eukaryotic sequence. The method performs significantly better than previous prediction schemes and can easily be applied on genome-wide data sets. Discrimination between cleaved signal peptides and uncleaved N-terminal signal-anchor sequences is also possible, though with lower precision. Predictions can be made on a publicly available WWW server.
Collapse
|
|
28 |
4203 |
2
|
Abstract
Efficient folding of many newly synthesized proteins depends on assistance from molecular chaperones, which serve to prevent protein misfolding and aggregation in the crowded environment of the cell. Nascent chain--binding chaperones, including trigger factor, Hsp70, and prefoldin, stabilize elongating chains on ribosomes in a nonaggregated state. Folding in the cytosol is achieved either on controlled chain release from these factors or after transfer of newly synthesized proteins to downstream chaperones, such as the chaperonins. These are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. Understanding how the thousands of different proteins synthesized in a cell use this chaperone machinery has profound implications for biotechnology and medicine.
Collapse
|
Review |
23 |
2397 |
3
|
Abstract
PAS domains are newly recognized signaling domains that are widely distributed in proteins from members of the Archaea and Bacteria and from fungi, plants, insects, and vertebrates. They function as input modules in proteins that sense oxygen, redox potential, light, and some other stimuli. Specificity in sensing arises, in part, from different cofactors that may be associated with the PAS fold. Transduction of redox signals may be a common mechanistic theme in many different PAS domains. PAS proteins are always located intracellularly but may monitor the external as well as the internal environment. One way in which prokaryotic PAS proteins sense the environment is by detecting changes in the electron transport system. This serves as an early warning system for any reduction in cellular energy levels. Human PAS proteins include hypoxia-inducible factors and voltage-sensitive ion channels; other PAS proteins are integral components of circadian clocks. Although PAS domains were only recently identified, the signaling functions with which they are associated have long been recognized as fundamental properties of living cells.
Collapse
|
Comparative Study |
26 |
1236 |
4
|
Cserzö M, Wallin E, Simon I, von Heijne G, Elofsson A. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. PROTEIN ENGINEERING 1997; 10:673-6. [PMID: 9278280 DOI: 10.1093/protein/10.6.673] [Citation(s) in RCA: 811] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A new, simple method for predicting transmembrane segments in integral membrane proteins has been developed. It is based on low-stringency dot-plots of the query sequence against a collection of non-homologous membrane proteins using a previously derived scoring matrix [Cserzö et al., 1994, J. Mol. Biol., 243, 388-396]. This so-called dense alignment surface (DAS) method is shown to perform on par with earlier methods that require extra information in the form of multiple sequence alignments or the distribution of positively charged residues outside the transmembrane segments, and thus improves prediction abilities when only single-sequence information is available or for classes of membrane proteins that do not follow the 'positive inside' rule.
Collapse
|
|
28 |
811 |
5
|
Accardi A, Miller C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. Nature 2004; 427:803-7. [PMID: 14985752 DOI: 10.1038/nature02314] [Citation(s) in RCA: 473] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 01/05/2004] [Indexed: 11/09/2022]
Abstract
ClC Cl- channels make up a large molecular family, ubiquitous with respect to both organisms and cell types. In eukaryotes, these channels fulfill numerous biological roles requiring gated anion conductance, from regulating skeletal muscle excitability to facilitating endosomal acidification by (H+)ATPases. In prokaryotes, ClC functions are unknown except in Escherichia coli, where the ClC-ec1 protein promotes H+ extrusion activated in the extreme acid-resistance response common to enteric bacteria. Recently, the high-resolution structure of ClC-ec1 was solved by X-ray crystallography. This primal prokaryotic ClC structure has productively guided understanding of gating and anion permeation in the extensively studied eukaryotic ClC channels. We now show that this bacterial homologue is not an ion channel, but rather a H+-Cl- exchange transporter. As the same molecular architecture can support two fundamentally different transport mechanisms, it seems that the structural boundary separating channels and transporters is not as clear cut as generally thought.
Collapse
|
|
21 |
473 |
6
|
Abstract
The removal of cell-bound water through air drying and the addition of water to air-dried cells are forces that have played a pivotal role in the evolution of the prokaryotes. In bacterial cells that have been subjected to air drying, the evaporation of free cytoplasmic water (Vf) can be instantaneous, and an equilibrium between cell-bound water (Vb) and the environmental water (vapor) potential (psi wv) may be achieved rapidly. In the air-dried state some bacteria survive only for seconds whereas others can tolerate desiccation for thousands, perhaps millions, of years. The desiccated (anhydrobiotic) cell is characterized by its singular lack of water--with contents as low as 0.02 g of H2O g (dry weight)-1. At these levels the monolayer coverage by water of macromolecules, including DNA and proteins, is disturbed. As a consequence the mechanisms that confer desiccation tolerance upon air-dried bacteria are markedly different from those, such as the mechanism of preferential exclusion of compatible solutes, that preserve the integrity of salt-, osmotically, and freeze-thaw-stressed cells. Desiccation tolerance reflects a complex array of interactions at the structural, physiological, and molecular levels. Many of the mechanisms remain cryptic, but it is clear that they involve interactions, such as those between proteins and co-solvents, that derive from the unique properties of the water molecule. A water replacement hypothesis accounts for how the nonreducing disaccharides trehalose and sucrose preserve the integrity of membranes and proteins. Nevertheless, we have virtually no insight into the state of the cytoplasm of an air-dried cell. There is no evidence for any obvious adaptations of proteins that can counter the effects of air drying or for the occurrence of any proteins that provide a direct and a tangible contribution to cell stability. Among the prokaryotes that can exist as anhydrobiotic cells, the cyanobacteria have a marked capacity to do so. One form, Nostoc commune, encompasses a number of the features that appear to be critical to the withstanding of a long-term water deficit, including the elaboration of a conspicuous extracellular glycan, synthesis of abundant UV-absorbing pigments, and maintenance of protein stability and structural integrity. There are indications of a growing technology for air-dried cells and enzymes. Paradoxically, desiccation tolerance of bacteria has virtually been ignored for the past quarter century. The present review considers what is known, and what is not known, about desiccation, a phenomenon that impinges upon every facet of the distributions and activities of prokaryotic cells.
Collapse
|
research-article |
31 |
436 |
7
|
Abstract
The removal of cell-bound water through air drying and the addition of water to air-dried cells are forces that have played a pivotal role in the evolution of the prokaryotes. In bacterial cells that have been subjected to air drying, the evaporation of free cytoplasmic water (Vf) can be instantaneous, and an equilibrium between cell-bound water (Vb) and the environmental water (vapor) potential (psi wv) may be achieved rapidly. In the air-dried state some bacteria survive only for seconds whereas others can tolerate desiccation for thousands, perhaps millions, of years. The desiccated (anhydrobiotic) cell is characterized by its singular lack of water--with contents as low as 0.02 g of H2O g (dry weight)-1. At these levels the monolayer coverage by water of macromolecules, including DNA and proteins, is disturbed. As a consequence the mechanisms that confer desiccation tolerance upon air-dried bacteria are markedly different from those, such as the mechanism of preferential exclusion of compatible solutes, that preserve the integrity of salt-, osmotically, and freeze-thaw-stressed cells. Desiccation tolerance reflects a complex array of interactions at the structural, physiological, and molecular levels. Many of the mechanisms remain cryptic, but it is clear that they involve interactions, such as those between proteins and co-solvents, that derive from the unique properties of the water molecule. A water replacement hypothesis accounts for how the nonreducing disaccharides trehalose and sucrose preserve the integrity of membranes and proteins. Nevertheless, we have virtually no insight into the state of the cytoplasm of an air-dried cell. There is no evidence for any obvious adaptations of proteins that can counter the effects of air drying or for the occurrence of any proteins that provide a direct and a tangible contribution to cell stability. Among the prokaryotes that can exist as anhydrobiotic cells, the cyanobacteria have a marked capacity to do so. One form, Nostoc commune, encompasses a number of the features that appear to be critical to the withstanding of a long-term water deficit, including the elaboration of a conspicuous extracellular glycan, synthesis of abundant UV-absorbing pigments, and maintenance of protein stability and structural integrity. There are indications of a growing technology for air-dried cells and enzymes. Paradoxically, desiccation tolerance of bacteria has virtually been ignored for the past quarter century. The present review considers what is known, and what is not known, about desiccation, a phenomenon that impinges upon every facet of the distributions and activities of prokaryotic cells.
Collapse
|
Review |
31 |
384 |
8
|
Russell MJ, Hall AJ. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. JOURNAL OF THE GEOLOGICAL SOCIETY 1997; 154:377-402. [PMID: 11541234 DOI: 10.1144/gsjgs.154.3.0377] [Citation(s) in RCA: 383] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Here we argue that life emerged on Earth from a redox and pH front at c. 4.2 Ga. This front occurred where hot (c. 150 degrees C), extremely reduced, alkaline, bisulphide-bearing, submarine seepage waters interfaced with the acid, warm (c. 90 degrees C), iron-hearing Hadean ocean. The low pH of the ocean was imparted by the ten bars of CO2 considered to dominate the Hadean atmosphere/hydrosphere. Disequilibrium between the two solutions was maintained by the spontaneous precipitation of a colloidal FeS membrane. Iron monosulphide bubbles comprising this membrane were inflated by the hydrothermal solution upon sulphide mounds at the seepage sites. Our hypothesis is that the FeS membrane, laced with nickel, acted as a semipermeable catalytic boundary between the two fluids, encouraging synthesis of organic anions by hydrogenation and carboxylation of hydrothermal organic primers. The ocean provided carbonate, phosphate, iron, nickel and protons; the hydrothermal solution was the source of ammonia, acetate, HS-, H2 and tungsten, as well as minor concentrations of organic sulphides and perhaps cyanide and acetaldehyde. The mean redox potential (delta Eh) across the membrane, with the energy to drive synthesis, would have approximated to 300 millivolts. The generation of organic anions would have led to an increase in osmotic pressure within the FeS bubbles. Thus osmotic pressure could take over from hydraulic pressure as the driving force for distension, budding and reproduction of the bubbles. Condensation of the organic molecules to polymers, particularly organic sulphides, was driven by pyrophosphate hydrolysis. Regeneration of pyrophosphate from the monophosphate in the membrane was facilitated by protons contributed from the Hadean ocean. This was the first use by a metabolizing system of protonmotive force (driven by natural delta pH) which also would have amounted to c. 300 millivolts. Protonmotive force is the universal energy transduction mechanism of life. Taken together with the redox potential across the membrane, the total electrochemical and chemical energy available for protometabolism amounted to a continuous supply at more than half a volt. The role of the iron sulphide membrane in keeping the two solutions separated was appropriated by the newly synthesized organic sulphide polymers. This organic take-over of the membrane material led to the miniaturization of the metabolizing system. Information systems to govern replication could have developed penecontemporaneously in this same milieu. But iron, sulphur and phosphate, inorganic components of earliest life, continued to be involved in metabolism.
Collapse
|
|
28 |
383 |
9
|
Abstract
In this study, we analyzed all known protein sequences for repeating amino acid segments. Although duplicated sequence segments occur in 14 % of all proteins, eukaryotic proteins are three times more likely to have internal repeats than prokaryotic proteins. After clustering the repetitive sequence segments into families, we find repeats from eukaryotic proteins have little similarity with prokaryotic repeats, suggesting most repeats arose after the prokaryotic and eukaryotic lineages diverged. Consequently, protein classes with the highest incidence of repetitive sequences perform functions unique to eukaryotes. The frequency distribution of the repeating units shows only weak length dependence, implicating recombination rather than duplex melting or DNA hairpin formation as the limiting mechanism underlying repeat formation. The mechanism favors additional repeats once an initial duplication has been incorporated. Finally, we show that repetitive sequences are favored that contain small and relatively water-soluble residues. We propose that error-prone repeat expansion allows repetitive proteins to evolve more quickly than non-repeat-containing proteins.
Collapse
|
|
26 |
302 |
10
|
Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 2000; 275:5668-74. [PMID: 10681550 DOI: 10.1074/jbc.275.8.5668] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The late embryogenesis abundant (LEA) proteins are plant proteins that are synthesized at the onset of desiccation in maturing seeds and in vegetative organs exposed to water deficit. Here, we show that most LEA proteins are comprised in a more widespread group, which we call "hydrophilins." The defining characteristics of hydrophilins are high glycine content (>6%) and a high hydrophilicity index (>1.0). By data base searching, we show that this criterion selectively differentiates most known LEA proteins as well as additional proteins from different taxons. We found that within the genomes of Escherichia coli and Saccharomyces cerevisiae, only 5 and 12 proteins, respectively, meet our criterion. Despite their deceivingly loose definition, hydrophilins usually represent <0.2% of the proteins of a genome. Additionally, we demonstrate that the criterion that defines hydrophilins seems to be an excellent predictor of responsiveness to hyperosmosis since most of the genes encoding these proteins in E. coli and S. cerevisiae are induced by osmotic stress. Evidence for the participation of one of the E. coli hydrophilins in the adaptive response to hyperosmotic conditions is presented. Apparently, hydrophilins represent analogous adaptations to a common problem in such diverse taxons as prokaryotes and eukaryotes.
Collapse
|
|
25 |
286 |
11
|
Savojardo C, Martelli P, Fariselli P, Profiti G, Casadio R. BUSCA: an integrative web server to predict subcellular localization of proteins. Nucleic Acids Res 2018; 46:W459-W466. [PMID: 29718411 PMCID: PMC6031068 DOI: 10.1093/nar/gky320] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 12/28/2022] Open
Abstract
Here, we present BUSCA (http://busca.biocomp.unibo.it), a novel web server that integrates different computational tools for predicting protein subcellular localization. BUSCA combines methods for identifying signal and transit peptides (DeepSig and TPpred3), GPI-anchors (PredGPI) and transmembrane domains (ENSEMBLE3.0 and BetAware) with tools for discriminating subcellular localization of both globular and membrane proteins (BaCelLo, MemLoci and SChloro). Outcomes from the different tools are processed and integrated for annotating subcellular localization of both eukaryotic and bacterial protein sequences. We benchmark BUSCA against protein targets derived from recent CAFA experiments and other specific data sets, reporting performance at the state-of-the-art. BUSCA scores better than all other evaluated methods on 2732 targets from CAFA2, with a F1 value equal to 0.49 and among the best methods when predicting targets from CAFA3. We propose BUSCA as an integrated and accurate resource for the annotation of protein subcellular localization.
Collapse
|
research-article |
7 |
281 |
12
|
Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG. Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 2005; 3:557-65. [PMID: 15953932 DOI: 10.1038/nrmicro1177] [Citation(s) in RCA: 268] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One element of classical systems analysis treats a system as a black or grey box, the inner structure and behaviour of which can be analysed and modelled by varying an internal or external condition, probing it from outside and studying the effect of the variation on the external observables. The result is an understanding of the inner make-up and workings of the system. The equivalent of this in biology is to observe what a cell or system excretes under controlled conditions - the 'metabolic footprint' or exometabolome - as this is readily and accurately measurable. Here, we review the principles, experimental approaches and scientific outcomes that have been obtained with this useful and convenient strategy.
Collapse
|
Review |
20 |
268 |
13
|
Abstract
The Sec61 or SecY channel, a universally conserved protein-conducting channel, translocates proteins across and integrates proteins into the eukaryotic endoplasmic reticulum (ER) membrane and the prokaryotic plasma membrane. Depending on channel-binding partners, polypeptides are moved by different mechanisms. In cotranslational translocation, the ribosome feeds the polypeptide chain directly into the channel. In posttranslational translocation, a ratcheting mechanism is used by the ER-lumenal chaperone BiP in eukaryotes, and a pushing mechanism is utilized by the SecA ATPase in bacteria. In prokaryotes, posttranslational translocation is facilitated through the function of the SecD/F protein. Recent structural and biochemical data show how the channel opens during translocation, translocates soluble proteins, releases hydrophobic segments of membrane proteins into the lipid phase, and maintains the barrier for small molecules.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
267 |
14
|
Nakashima H, Nishikawa K. Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies. J Mol Biol 1994; 238:54-61. [PMID: 8145256 DOI: 10.1006/jmbi.1994.1267] [Citation(s) in RCA: 265] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sequences of intracellular and extracellular soluble proteins were analyzed statistically in terms of amino acid composition and residue-pair frequencies. Residue-pair frequencies were calculated for sequential separations from (n, n + 1) to (n, n + 5), and converted into scoring parameters. Then, for each test protein, the single-residue and residue-pair parameters were applied to calculate a total score. According to our definition, a protein which yields a positive score is indicative of an intracellular protein, whereas a negative score implies an extracellular one. The parameter set was derived from 894 sequences constituting different protein families in the PIR database, and assessed by application to a test of 379 proteins. The results showed that 88% of intracellular and 84% of extracellular proteins were correctly assigned. The discrimination power was improved by about 8% in comparison with the previous study, which used composition data alone. Segregation of intra/extracellular proteins is also observed by other criteria, such as structural class (intracellular proteins prefer alpha and alpha/beta types and extracellular proteins prefer beta and alpha + beta types). Segregation by sequence was found to be a more reliable procedure for distinguishing intra/extracellular proteins than methods using structural class. Possible causes for this segregation by sequence are discussed.
Collapse
|
|
31 |
265 |
15
|
Beuming T, Shi L, Javitch JA, Weinstein H. A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Mol Pharmacol 2006; 70:1630-42. [PMID: 16880288 DOI: 10.1124/mol.106.026120] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The recently elucidated crystal structure of a prokaryotic member of the neurotransmitter/sodium symporter (NSS) family (Yamashita et al., 2005) is a major advance toward understanding structure-function relationships in this important class of transporters. To aid in the generalization of these results, we present here a comprehensive sequence alignment of all known prokaryotic and eukaryotic NSS proteins, based on the crystal structure of the leucine transporter from Aquifex aeolicus (LeuT). Regions of low sequence identity between prokaryotic and eukaryotic transporters were aligned with the aid of a number of bioinformatics tools, and the resulting alignments were validated by comparison with experimental data. In a number of regions, including the transmembrane segments 4, 5, and 9 as well as extracellular loops 2, 3, and 4, our alignment differs from the one proposed previously [Nature (Lond) 437: 215-223, 2005]. Important similarities and differences among the sequences of NSS proteins in regions likely to determine selectivity in substrate binding and mechanisms of transport regulation are discussed in the context of the LeuT structure and the alignment.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
230 |
16
|
Tasneem A, Iyer LM, Jakobsson E, Aravind L. Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. Genome Biol 2004; 6:R4. [PMID: 15642096 PMCID: PMC549065 DOI: 10.1186/gb-2004-6-1-r4] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/26/2004] [Accepted: 11/24/2004] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Acetylcholine receptor type ligand-gated ion channels (ART-LGIC; also known as Cys-loop receptors) are a superfamily of proteins that include the receptors for major neurotransmitters such as acetylcholine, serotonin, glycine, GABA, glutamate and histamine, and for Zn2+ ions. They play a central role in fast synaptic signaling in animal nervous systems and so far have not been found outside of the Metazoa. RESULTS Using sensitive sequence-profile searches we have identified homologs of ART-LGICs in several bacteria and a single archaeal genus, Methanosarcina. The homology between the animal receptors and the prokaryotic homologs spans the entire length of the former, including both the ligand-binding and channel-forming transmembrane domains. A sequence-structure analysis using the structure of Lymnaea stagnalis acetylcholine-binding protein and the newly detected prokaryotic versions indicates the presence of at least one aromatic residue in the ligand-binding boxes of almost all representatives of the superfamily. Investigation of the domain architectures of the bacterial forms shows that they may often show fusions with other small-molecule-binding domains, such as the periplasmic binding protein superfamily I (PBP-I), Cache and MCP-N domains. Some of the bacterial forms also occur in predicted operons with the genes of the PBP-II superfamily and the Cache domains. Analysis of phyletic patterns suggests that the ART-LGICs are currently absent in all other eukaryotic lineages except animals. Moreover, phylogenetic analysis and conserved sequence motifs also suggest that a subset of the bacterial forms is closer to the metazoan forms. CONCLUSIONS From the information from the bacterial forms we infer that cation-pi or hydrophobic interactions with the ligand are likely to be a pervasive feature of the entire superfamily, even though the individual residues involved in the process may vary. The conservation pattern in the channel-forming transmembrane domains also suggests similar channel-gating mechanisms in the prokaryotic versions. From the distribution of charged residues in the prokaryotic M2 transmembrane segments, we expect that there will be examples of both cation and anion selectivity within the prokaryotic members. Contextual connections suggest that the prokaryotic forms may function as chemotactic receptors for low molecular weight solutes. The phyletic patterns and phylogenetic relationships suggest the possibility that the metazoan receptors emerged through an early lateral transfer from a prokaryotic source, before the divergence of extant metazoan lineages.
Collapse
|
research-article |
21 |
197 |
17
|
Maytal-Kivity V, Reis N, Hofmann K, Glickman MH. MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC BIOCHEMISTRY 2002; 3:28. [PMID: 12370088 PMCID: PMC129983 DOI: 10.1186/1471-2091-3-28] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2002] [Accepted: 09/20/2002] [Indexed: 11/22/2022]
Abstract
BACKGROUND Three macromolecular assemblages, the lid complex of the proteasome, the COP9-Signalosome (CSN) and the eIF3 complex, all consist of multiple proteins harboring MPN and PCI domains. Up to now, no specific function for any of these proteins has been defined, nor has the importance of these motifs been elucidated. In particular Rpn11, a lid subunit, serves as the paradigm for MPN-containing proteins as it is highly conserved and important for proteasome function. RESULTS We have identified a sequence motif, termed the MPN+ motif, which is highly conserved in a subset of MPN domain proteins such as Rpn11 and Csn5/Jab1, but is not present outside of this subfamily. The MPN+ motif consists of five polar residues that resemble the active site residues of hydrolytic enzyme classes, particularly that of metalloproteases. By using site-directed mutagenesis, we show that the MPN+ residues are important for the function of Rpn11, while a highly conserved Cys residue outside of the MPN+ motif is not essential. Single amino acid substitutions in MPN+ residues all show similar phenotypes, including slow growth, sensitivity to temperature and amino acid analogs, and general proteasome-dependent proteolysis defects. CONCLUSIONS The MPN+ motif is abundant in certain MPN-domain proteins, including newly identified proteins of eukaryotes, bacteria and archaea thought to act outside of the traditional large PCI/MPN complexes. The putative catalytic nature of the MPN+ motif makes it a good candidate for a pivotal enzymatic function, possibly a proteasome-associated deubiquitinating activity and a CSN-associated Nedd8/Rub1-removing activity.
Collapse
|
research-article |
23 |
174 |
18
|
Faux NG, Bottomley SP, Lesk AM, Irving JA, Morrison JR, de la Banda MG, Whisstock JC. Functional insights from the distribution and role of homopeptide repeat-containing proteins. Genome Res 2005; 15:537-51. [PMID: 15805494 PMCID: PMC1074368 DOI: 10.1101/gr.3096505] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Expansion of "low complex" repeats of amino acids such as glutamine (Poly-Q) is associated with protein misfolding and the development of degenerative diseases such as Huntington's disease. The mechanism by which such regions promote misfolding remains controversial, the function of many repeat-containing proteins (RCPs) remains obscure, and the role (if any) of repeat regions remains to be determined. Here, a Web-accessible database of RCPs is presented. The distribution and evolution of RCPs that contain homopeptide repeats tracts are considered, and the existence of functional patterns investigated. Generally, it is found that while polyamino acid repeats are extremely rare in prokaryotes, several eukaryote putative homologs of prokaryote RCP-involved in important housekeeping processes-retain the repetitive region, suggesting an ancient origin for certain repeats. Within eukarya, the most common uninterrupted amino acid repeats are glutamine, asparagines, and alanine. Interestingly, while poly-Q repeats are found in vertebrates and nonvertebrates, poly-N repeats are only common in more primitive nonvertebrate organisms, such as insects and nematodes. We have assigned function to eukaryote RCPs using Online Mendelian Inheritance in Man (OMIM), the Human Reference Protein Database (HRPD), FlyBase, and Wormpep. Prokaryote RCPs were annotated using BLASTp searches and Gene Ontology. These data reveal that the majority of RCPs are involved in processes that require the assembly of large, multiprotein complexes, such as transcription and signaling.
Collapse
|
|
20 |
151 |
19
|
Attwood PV, Piggott MJ, Zu XL, Besant PG. Focus on phosphohistidine. Amino Acids 2006; 32:145-56. [PMID: 17103118 DOI: 10.1007/s00726-006-0443-6] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 09/09/2006] [Indexed: 10/23/2022]
Abstract
Phosphohistidine has been identified as an enzymic intermediate in numerous biochemical reactions and plays a functional role in many regulatory pathways. Unlike the phosphoester bond of its cousins (phosphoserine, phosphothreonine and phosphotyrosine), the phosphoramidate (P-N) bond of phosphohistidine has a high DeltaG degrees of hydrolysis and is unstable under acidic conditions. This acid-lability has meant that the study of protein histidine phosphorylation and the associated protein kinases has been slower to progress than other protein phosphorylation studies. Histidine phosphorylation is a crucial component of cell signalling in prokaryotes and lower eukaryotes. It is also now becoming widely reported in mammalian signalling pathways and implicated in certain human disease states. This review covers the chemistry of phosphohistidine in terms of its isomeric forms and chemical derivatives, how they can be synthesized, purified, identified and the relative stabilities of each of these forms. Furthermore, we highlight how this chemistry relates to the role of phosphohistidine in its various biological functions.
Collapse
|
Review |
19 |
149 |
20
|
Abstract
Based on early bioinformatic studies on a handful of species, the frequency of structural disorder of proteins is generally thought to be much higher in eukaryotes than in prokaryotes. To refine this view, we present here a comparative prediction study and analysis of 194 fully described eukaryotic proteomes and 87 reference prokaryotes for structural disorder. We found that structural disorder does distinguish eukaryotes from prokaryotes, but its frequency spans a very wide range in the two superkingdoms that largely overlap. The number of disordered binding regions and different Pfam domain types also contribute to distinguish eukaryotes from prokaryotes. Unexpectedly, the highest levels--and highest variability--of predicted disorder is found in protists, i.e. single-celled eukaryotes, often surpassing more complex eukaryote organisms, plants and animals. This trend contrasts with that of the number of domain types, which increases rather monotonously toward more complex organisms. The level of structural disorder appears to be strongly correlated with lifestyle, because some obligate intracellular parasites and endosymbionts have the lowest levels, whereas host-changing parasites have the highest level of predicted disorder. We conclude that protists have been the evolutionary hot-bed of experimentation with structural disorder, in a period when structural disorder was actively invented and the major functional classes of disordered proteins established.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
145 |
21
|
Kunin V, Ouzounis CA. The balance of driving forces during genome evolution in prokaryotes. Genome Res 2003; 13:1589-94. [PMID: 12840037 PMCID: PMC403731 DOI: 10.1101/gr.1092603] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2003] [Accepted: 04/22/2003] [Indexed: 11/24/2022]
Abstract
Genomes are shaped by evolutionary processes such as gene genesis, horizontal gene transfer (HGT), and gene loss. To quantify the relative contributions of these processes, we analyze the distribution of 12,762 protein families on a phylogenetic tree, derived from entire genomes of 41 Bacteria and 10 Archaea. We show that gene loss is the most important factor in shaping genome content, being up to three times more frequent than HGT, followed by gene genesis, which may contribute up to twice as many genes as HGT. We suggest that gene gain and gene loss in prokaryotes are balanced; thus, on average, prokaryotic genome size is kept constant. Despite the importance of HGT, our results indicate that the majority of protein families have only been transmitted by vertical inheritance. To test our method, we present a study of strain-specific genes of Helicobacter pylori, and demonstrate correct predictions of gene loss and HGT for at least 81% of validated cases. This approach indicates that it is possible to trace genome content history and quantify the factors that shape contemporary prokaryotic genomes.
Collapse
|
Validation Study |
22 |
142 |
22
|
Liu Y, Harrison PM, Kunin V, Gerstein M. Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes. Genome Biol 2004; 5:R64. [PMID: 15345048 PMCID: PMC522871 DOI: 10.1186/gb-2004-5-9-r64] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 06/04/2004] [Accepted: 08/02/2004] [Indexed: 12/04/2022] Open
Abstract
A comprehensive analysis of the occurrence of pseudogenes in a diverse selection of 64 prokaryote genomes identified around 7,000 candidate pseudogenes. A large fraction of prokaryote pseudogenes seems to have arisen from failed horizontal-transfer events. Background Pseudogenes often manifest themselves as disabled copies of known genes. In prokaryotes, it was generally believed (with a few well-known exceptions) that they were rare. Results We have carried out a comprehensive analysis of the occurrence of pseudogenes in a diverse selection of 64 prokaryote genomes. Overall, we find a total of around 7,000 candidate pseudogenes. Moreover, in all the genomes surveyed, pseudogenes occur in at least 1 to 5% of all gene-like sequences, with some genomes having considerably higher occurrence. Although many large populations of pseudogenes arise from large, diverse protein families (for example, the ABC transporters), notable numbers of pseudogenes are associated with specific families that do not occur that widely. These include the cytochrome P450 and PPE families (PF00067 and PF00823) and others that have a direct role in DNA transposition. Conclusions We find suggestive evidence that a large fraction of prokaryote pseudogenes arose from failed horizontal transfer events. In particular, we find that pseudogenes are more than twice as likely as genes to have anomalous codon usage associated with horizontal transfer. Moreover, we found a significant difference in the number of horizontally transferred pseudogenes in pathogenic and non-pathogenic strains of Escherichia coli.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
135 |
23
|
Upadhyay AA, Fleetwood AD, Adebali O, Finn RD, Zhulin IB. Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes. PLoS Comput Biol 2016; 12:e1004862. [PMID: 27049771 PMCID: PMC4822843 DOI: 10.1371/journal.pcbi.1004862] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/10/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly built computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms. Furthermore, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes. Cell-surface receptors control multiple cellular functions and are attractive targets for drug design. These receptors often have dedicated extracellular domains that bind signaling molecules, such as hormones and nutrients. Computational identification of these ligand-binding domains in genomic sequences is a pre-requisite for their further experimental characterization. Using available three-dimensional structures of several bacterial cell-surface receptors, we built computational models that enabled identification of the Cache domain, as the most common extracellular sensor module in prokaryotes, including many important pathogens. We also demonstrated that the Cache domain is homologous to, but sufficiently different from the most common intracellular sensor module, the PAS domain. These findings provide a unified view on molecular principles of signal recognition by extra- and intracellular receptors.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
133 |
24
|
Abstract
Phosphorylcholine (PC) is a structural component of a variety of prokaryotic and eukaryotic pathogens. In some cases, PC in infectious agents can benefit the infected host due to its targeting by both the innate and adaptive immune responses. However, as discussed here, PC exhibits a surprising range of immunomodulatory properties that might be to the detriment of the host.
Collapse
|
|
26 |
132 |
25
|
Hillion M, Antelmann H. Thiol-based redox switches in prokaryotes. Biol Chem 2016; 396:415-44. [PMID: 25720121 DOI: 10.1515/hsz-2015-0102] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/05/2015] [Indexed: 12/12/2022]
Abstract
Bacteria encounter reactive oxygen species (ROS) as a consequence of the aerobic life or as an oxidative burst of activated neutrophils during infections. In addition, bacteria are exposed to other redox-active compounds, including hypochloric acid (HOCl) and reactive electrophilic species (RES) such as quinones and aldehydes. These reactive species often target the thiol groups of cysteines in proteins and lead to thiol-disulfide switches in redox-sensing regulators to activate specific detoxification pathways and to restore the redox balance. Here, we review bacterial thiol-based redox sensors that specifically sense ROS, RES and HOCl via thiol-based mechanisms and regulate gene transcription in Gram-positive model bacteria and in human pathogens, such as Staphylococcus aureus and Mycobacterium tuberculosis. We also pay particular attention to emerging widely conserved HOCl-specific redox regulators that have been recently characterized in Escherichia coli. Different mechanisms are used to sense and respond to ROS, RES and HOCl by 1-Cys-type and 2-Cys-type thiol-based redox sensors that include versatile thiol-disulfide switches (OxyR, OhrR, HypR, YodB, NemR, RclR, Spx, RsrA/RshA) or alternative Cys phosphorylations (SarZ, MgrA, SarA), thiol-S-alkylation (QsrR), His-oxidation (PerR) and methionine oxidation (HypT). In pathogenic bacteria, these redox-sensing regulators are often important virulence regulators and required for adapation to the host immune defense.
Collapse
|
Review |
9 |
131 |