1
|
Novoa I, Zeng H, Harding HP, Ron D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 2001; 153:1011-22. [PMID: 11381086 PMCID: PMC2174339 DOI: 10.1083/jcb.153.5.1011] [Citation(s) in RCA: 1091] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2001] [Accepted: 04/06/2001] [Indexed: 01/29/2023] Open
Abstract
Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) on serine 51 integrates general translation repression with activation of stress-inducible genes such as ATF4, CHOP, and BiP in the unfolded protein response. We sought to identify new genes active in this phospho-eIF2alpha-dependent signaling pathway by screening a library of recombinant retroviruses for clones that inhibit the expression of a CHOP::GFP reporter. A retrovirus encoding the COOH terminus of growth arrest and DNA damage gene (GADD)34, also known as MYD116 (Fornace, A.J., D.W. Neibert, M.C. Hollander, J.D. Luethy, M. Papathanasiou, J. Fragoli, and N.J. Holbrook. 1989. Mol. Cell. Biol. 9:4196-4203; Lord K.A., B. Hoffman-Lieberman, and D.A. Lieberman. 1990. Nucleic Acid Res. 18:2823), was isolated and found to attenuate CHOP (also known as GADD153) activation by both protein malfolding in the endoplasmic reticulum, and amino acid deprivation. Despite normal activity of the cognate stress-inducible eIF2alpha kinases PERK (also known as PEK) and GCN2, phospho-eIF2alpha levels were markedly diminished in GADD34-overexpressing cells. GADD34 formed a complex with the catalytic subunit of protein phosphatase 1 (PP1c) that specifically promoted the dephosphorylation of eIF2alpha in vitro. Mutations that interfered with the interaction with PP1c prevented the dephosphorylation of eIF2alpha and blocked attenuation of CHOP by GADD34. Expression of GADD34 is stress dependent, and was absent in PERK(-)/- and GCN2(-)/- cells. These findings implicate GADD34-mediated dephosphorylation of eIF2alpha in a negative feedback loop that inhibits stress-induced gene expression, and that might promote recovery from translational inhibition in the unfolded protein response.
Collapse
|
research-article |
24 |
1091 |
2
|
Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L, Clark BF, Nyborg J. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 1995; 270:1464-72. [PMID: 7491491 DOI: 10.1126/science.270.5241.1464] [Citation(s) in RCA: 665] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The structure of the ternary complex consisting of yeast phenylalanyl-transfer RNA (Phe-tRNAPhe), Thermus aquaticus elongation factor Tu (EF-Tu), and the guanosine triphosphate (GTP) analog GDPNP was determined by x-ray crystallography at 2.7 angstrom resolution. The ternary complex participates in placing the amino acids in their correct order when messenger RNA is translated into a protein sequence on the ribosome. The EF-Tu-GDPNP component binds to one side of the acceptor helix of Phe-tRNAPhe involving all three domains of EF-Tu. Binding sites for the phenylalanylated CCA end and the phosphorylated 5' end are located at domain interfaces, whereas the T stem interacts with the surface of the beta-barrel domain 3. The binding involves many conserved residues in EF-Tu. The overall shape of the ternary complex is similar to that of the translocation factor, EF-G-GDP, and this suggests a novel mechanism involving "molecular mimicry" in the translational apparatus.
Collapse
|
|
30 |
665 |
3
|
Dever TE, Feng L, Wek RC, Cigan AM, Donahue TF, Hinnebusch AG. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 1992; 68:585-96. [PMID: 1739968 DOI: 10.1016/0092-8674(92)90193-g] [Citation(s) in RCA: 627] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We show that phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2) by the protein kinase GCN2 mediates translational control of the yeast transcriptional activator GCN4. In vitro, GCN2 specifically phosphorylates the alpha subunit of rabbit or yeast eIF-2. In vivo, phosphorylation of eIF-2 alpha increases in response to amino acid starvation, which is dependent on GCN2. Substitution of Ser-51 with alanine eliminates phosphorylation of eIF-2 alpha by GCN2 in vivo and in vitro and abolishes increased expression of GCN4 and amino acid biosynthetic genes under its control in amino acid-starved cells. The Asp-51 substitution mimics the phosphorylated state and derepresses GCN4 in the absence of GCN2. Thus, an established mechanism for regulating total protein synthesis in mammalian cells mediates gene-specific translational control in yeast.
Collapse
|
|
33 |
627 |
4
|
Krishnamoorthy T, Pavitt GD, Zhang F, Dever TE, Hinnebusch AG. Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol Cell Biol 2001; 21:5018-30. [PMID: 11438658 PMCID: PMC87228 DOI: 10.1128/mcb.21.15.5018-5030.2001] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation initiation factor 2 (eIF2) is a heterotrimeric protein that transfers methionyl-initiator tRNA(Met) to the small ribosomal subunit in a ternary complex with GTP. The eIF2 phosphorylated on serine 51 of its alpha subunit [eIF2(alphaP)] acts as competitive inhibitor of its guanine nucleotide exchange factor, eIF2B, impairing formation of the ternary complex and thereby inhibiting translation initiation. eIF2B is comprised of catalytic and regulatory subcomplexes harboring independent eIF2 binding sites; however, it was unknown whether the alpha subunit of eIF2 directly contacts any eIF2B subunits or whether this interaction is modulated by phosphorylation. We found that recombinant eIF2alpha (glutathione S-transferase [GST]-SUI2) bound to the eIF2B regulatory subcomplex in vitro, in a manner stimulated by Ser-51 phosphorylation. Genetic data suggest that this direct interaction also occurred in vivo, allowing overexpressed SUI2 to compete with eIF2(alphaP) holoprotein for binding to the eIF2B regulatory subcomplex. Mutations in SUI2 and in the eIF2B regulatory subunit GCD7 that eliminated inhibition of eIF2B by eIF2(alphaP) also impaired binding of phosphorylated GST-SUI2 to the eIF2B regulatory subunits. These findings provide strong evidence that tight binding of phosphorylated SUI2 to the eIF2B regulatory subcomplex is crucial for the inhibition of eIF2B and attendant downregulation of protein synthesis exerted by eIF2(alphaP). We propose that this regulatory interaction prevents association of the eIF2B catalytic subcomplex with the beta and gamma subunits of eIF2 in the manner required for GDP-GTP exchange.
Collapse
|
research-article |
24 |
269 |
5
|
Abstract
The phylogenetic origin of eukaryotes has been unclear because eukaryotic nuclear genes have diverged substantially from prokaryotic ones. The genes coding for elongation factor EF-1 alpha were compared among various organisms. The EF-1 alpha sequences of eukaryotes contained an 11-amino acid segment that was also found in eocytes (extremely thermophilic, sulfur-metabolizing bacteria) but that was absent in all other bacteria. The related (paralogous) genes encoding elongation factor EF-2 and initiation factor IF-2 also lacked the 11-amino acid insert. These data imply that the eocytes are the closest surviving relatives (sister taxon) of the eukaryotes.
Collapse
|
Comparative Study |
33 |
263 |
6
|
Foerster EG, Mukherjee T, Cabral-Fernandes L, Rocha JD, Girardin SE, Philpott DJ. How autophagy controls the intestinal epithelial barrier. Autophagy 2022; 18:86-103. [PMID: 33906557 PMCID: PMC8865220 DOI: 10.1080/15548627.2021.1909406] [Citation(s) in RCA: 214] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Macroautophagy/autophagy is a cellular catabolic process that results in lysosome-mediated recycling of organelles and protein aggregates, as well as the destruction of intracellular pathogens. Its role in the maintenance of the intestinal epithelium is of particular interest, as several autophagy-related genes have been associated with intestinal disease. Autophagy and its regulatory mechanisms are involved in both homeostasis and repair of the intestine, supporting intestinal barrier function in response to cellular stress through tight junction regulation and protection from cell death. Furthermore, a clear role has emerged for autophagy not only in secretory cells but also in intestinal stem cells, where it affects their metabolism, as well as their proliferative and regenerative capacity. Here, we review the physiological role of autophagy in the context of intestinal epithelial maintenance and how genetic mutations affecting autophagy contribute to the development of intestinal disease.Abbreviations: AKT1S1: AKT1 substrate 1; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; APC: APC regulator of WNT signaling pathway; ATF6: activating transcription factor 6; ATG: autophagy related; atg16l1[ΔIEC] mice: mice with a specific deletion of Atg16l1 in intestinal epithelial cells; ATP: adenosine triphosphate; BECN1: beclin 1; bsk/Jnk: basket; CADPR: cyclic ADP ribose; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CD: Crohn disease; CDH1/E-cadherin: cadherin 1; CF: cystic fibrosis; CFTR: CF transmembrane conductance regulator; CGAS: cyclic GMP-AMP synthase; CLDN2: claudin 2; CoPEC: colibactin-producing E. coli; CRC: colorectal cancer; CYP1A1: cytochrome P450 family 1 subfamily A member 1; DC: dendritic cell; DDIT3: DNA damage inducible transcript 3; DEPTOR: DEP domain containing MTOR interacting protein; DSS: dextran sulfate sodium; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EIF2A: eukaryotic translation initiation factor 2A; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2AK4/GCN2: eukaryotic translation initiation factor 2 alpha kinase 4; ER: endoplasmic reticulum; ERN1: endoplasmic reticulum to nucleus signaling 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; HSPA5/GRP78: heat shock protein family A (Hsp70) member 5; IBD: inflammatory bowel disease; IEC: intestinal epithelial cell; IFN: interferon; IFNG/IFNγ:interferon gamma; IL: interleukin; IRGM: immunity related GTPase M; ISC: intestinal stem cell; LGR5: leucine rich repeat containing G protein-coupled receptor 5; LRRK2: leucine rich repeat kinase 2; MAP1LC3A/LC3: microtubule associated protein 1 light chain 3 alpha; MAPK/JNK: mitogen-activated protein kinase; MAPK14/p38 MAPK: mitogen-activated protein kinase 14; MAPKAP1: MAPK associated protein 1; MAVS: mitochondrial antiviral signaling protein; miRNA: microRNA; MLKL: mixed lineage kinase domain like pseudokinase; MLST8: MTOR associated protein, LST8 homolog; MNV: murine norovirus; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NLRP: NLR family pyrin domain containing; NOD: nucleotide binding oligomerization domain containing; NRBF2: nuclear receptor binding factor 2; OPTN: optineurin; OXPHOS: oxidative phosphorylation; P: phosphorylation; Patj: PATJ crumbs cell polarity complex component; PE: phosphatidyl-ethanolamine; PI3K: phosphoinositide 3-kinase; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PPARG: peroxisome proliferator activated receptor gamma; PRR5: proline rich 5; PRR5L: proline rich 5 like; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RER: rough endoplasmic reticulum; RHEB: Ras homolog, MTORC1 binding; RICTOR: RPTOR independent companion of MTOR complex 2; RIPK1: receptor interacting serine/threonine kinase 1; ROS: reactive oxygen species; RPTOR: regulatory associated protein of MTOR complex 1; RPS6KB1: ribosomal protein S6 kinase B1; SH3GLB1: SH3 domain containing GRB2 like, endophilin B1; SNP: single-nucleotide polymorphism; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; TA: transit-amplifying; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; TGM2: transglutaminase 2; TJ: tight junction; TJP1/ZO1: tight junction protein 1; TNBS: 2,4,6-trinitrobenzene sulfonic acid; TNF/TNFα: tumor necrosis factor; Tor: target of rapamycin; TRAF: TNF receptor associated factor; TRIM11: tripartite motif containing 11; TRP53: transformation related protein 53; TSC: TSC complex subunit; Ub: ubiquitin; UC: ulcerative colitis; ULK1: unc-51 like autophagy activating kinase 1; USO1/p115: USO1 vesicle transport factor; UVRAG: UV radiation resistance associated; WIPI: WD repeat domain, phosphoinositide interacting; WNT: WNT family member; XBP1: X-box binding protein 1; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.
Collapse
|
Review |
3 |
214 |
7
|
Rosenwald IB, Rhoads DB, Callanan LD, Isselbacher KJ, Schmidt EV. Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2 alpha in response to growth induction by c-myc. Proc Natl Acad Sci U S A 1993; 90:6175-8. [PMID: 8327497 PMCID: PMC46890 DOI: 10.1073/pnas.90.13.6175] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although activation of c-myc is a critical step in the development of lymphomas and other tumors, its normal function(s) in cell growth remain obscure because few myc-regulated genes are known. myc expression normally increases in response to mitogens and peaks in G1 when additional protein synthesis is required for cell-cycle progression. Protein synthesis is controlled by the availability of translation initiation factors, including the mRNA cap binding protein (eIF-4E) and the alpha subunit of the eIF-2 complex that binds the initiator Met-tRNA. Consequently we examined eIF-4E and eIF-2 alpha for evidence of regulation by c-myc. Expression of eIF-4E and eIF-2 alpha correlated with c-myc expression in fibroblasts after growth stimulation. In addition, expression of eIF-4E and eIF-2 alpha was increased in myc-transformed rat embryo fibroblasts but was not increased in ras-transformed cells. Transcription rates of eIF-4E and eIF-2 alpha mRNAs were regulated by c-myc in cells expressing an estrogen receptor-Myc fusion protein. Finally, electrophoretic mobility-shift assays identified a sequence element in the eIF-2 alpha promoter, TCCGCAT-GCGCG, which was specifically retarded by extracts of myc-expressing cells. c-myc is thought to deregulate the growth of cancer cells by activating transcription, suggesting that specific genes regulated by c-myc should also function as oncogenes. In previous studies these translation initiation factors could induce neoplastic growth because overexpression of eIF-4E-transformed cells and inhibition of a suppressor of eIF-2 alpha (eIF-2 alpha kinase) also caused malignant transformation. Our studies suggest that one important biological function of c-myc may be to increase cell growth by increasing expression of eIF-4E and eIF-2 alpha.
Collapse
|
research-article |
32 |
200 |
8
|
Abstract
We determined the rates of mRNA and protein chain elongation on the lacZ gene during exponential growth on different carbon sources. The RNA chain elongation rate was calculated from measurements of the time elapsing between induction of lacZ expression and detection of specific hybridization with a probe near the 3' end of the mRNA. The elongation rate for the transcripts decreased 40% when the growth rate decreased by a factor of 4, and it always correlated with the rate of translation elongation. A similar growth rate dependency was seen for transcription on the infB gene and on a part of the rrnB gene fused to a synthetic, inducible promoter. However, the untranslated RNA chain specified by the rrnB gene was elongated nearly twice as fast as the two mRNA species encoded by infB and lacZ.
Collapse
|
research-article |
31 |
173 |
9
|
Caldas T, Laalami S, Richarme G. Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J Biol Chem 2000; 275:855-60. [PMID: 10625618 DOI: 10.1074/jbc.275.2.855] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elongation factor G(EF-G) and initiation factor 2 (IF2) are involved in the translocation of ribosomes on mRNA and in the binding of initiator tRNA to the 30 S ribosomal subunit, respectively. Here we report that the Escherichia coli EF-G and IF2 interact with unfolded and denatured proteins, as do molecular chaperones that are involved in protein folding and protein renaturation after stress. EF-G and IF2 promote the functional folding of citrate synthase and alpha-glucosidase after urea denaturation. They prevent the aggregation of citrate synthase under heat shock conditions, and they form stable complexes with unfolded proteins such as reduced carboxymethyl alpha-lactalbumin. Furthermore, the EF-G and IF2-dependent renaturations of citrate synthase are stimulated by GTP, and the GTPase activity of EF-G and IF2 is stimulated by the permanently unfolded protein, reduced carboxymethyl alpha-lactalbumin. The concentrations at which these chaperone-like functions occur are lower than the cellular concentrations of EF-G and IF2. These results suggest that EF-G and IF2, in addition to their role in translation, might be implicated in protein folding and protection from stress.
Collapse
|
|
25 |
116 |
10
|
Sattlegger E, Hinnebusch AG. Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starved cells. EMBO J 2000; 19:6622-33. [PMID: 11101534 PMCID: PMC305848 DOI: 10.1093/emboj/19.23.6622] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
GCN2 stimulates GCN4 translation in amino acid-starved cells by phosphorylating the alpha-subunit of translation initiation factor 2. GCN2 function in vivo requires the GCN1/GCN20 complex, which binds to the N-terminal domain of GCN2. A C-terminal segment of GCN1 (residues 2052-2428) was found to be necessary and sufficient for binding GCN2 in vivo and in vitro. Overexpression of this fragment in wild-type cells impaired association of GCN2 with native GCN1 and had a dominant Gcn(-) phenotype, dependent on Arg2259 in the GCN1 fragment. Substitution of Arg2259 with Ala in full-length GCN1 abolished complex formation with native GCN2 and destroyed GCN1 regulatory function. Consistently, the Gcn(-) phenotype of gcn1-R2259A, but not that of gcn1Delta, was suppressed by overexpressing GCN2. These findings prove that GCN2 binding to the C-terminal domain of GCN1, dependent on Arg2259, is required for high level GCN2 function in vivo. GCN1 expression conferred sensitivity to paromomycin in a manner dependent on its ribosome binding domain, supporting the idea that GCN1 binds near the ribosomal acceptor site to promote GCN2 activation by uncharged tRNA.
Collapse
|
research-article |
25 |
115 |
11
|
Choi SK, Lee JH, Zoll WL, Merrick WC, Dever TE. Promotion of met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast. Science 1998; 280:1757-60. [PMID: 9624054 DOI: 10.1126/science.280.5370.1757] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Delivery of the initiator methionine transfer RNA (Met-tRNAiMet) to the ribosome is a key step in the initiation of protein synthesis. Previous results have indicated that this step is catalyzed by the structurally dissimilar translation factors in prokaryotes and eukaryotes-initiation factor 2 (IF2) and eukaryotic initiation factor 2 (eIF2), respectively. A bacterial IF2 homolog has been identified in both eukaryotes and archaea. By using a combination of molecular genetic and biochemical studies, the Saccharomyces cerevisiae IF2 homolog is shown to function in general translation initiation by promoting Met-tRNAiMet binding to ribosomes. Thus, the mechanism of protein synthesis in eukaryotes and prokaryotes is more similar than was previously realized.
Collapse
|
|
27 |
108 |
12
|
Grill S, Gualerzi CO, Londei P, Bläsi U. Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation. EMBO J 2000; 19:4101-10. [PMID: 10921890 PMCID: PMC306601 DOI: 10.1093/emboj/19.15.4101] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translation initiation in bacteria involves a stochastic binding mechanism in which the 30S ribosomal subunit first binds either to mRNA or to initiator tRNA, fMet-tRNA(f)(Met). Leaderless lambda cI mRNA did not form a binary complex with 30S ribosomes, which argues against the view that ribosomal recruitment signals other than a 5'-terminal start codon are essential for translation initiation of these mRNAs. We show that, in Escherichia coli, translation initiation factor 2 (IF2) selectively stimulates translation of lambda cI mRNA in vivo and in vitro. These experiments suggest that the start codon of leaderless mRNAs is recognized by a 30S-fMet-tRNA(f)(Met)-IF2 complex, an intermediate equivalent to that obligatorily formed during translation initiation in eukaryotes. We further show that leaderless lambda cI mRNA is faithfully translated in vitro in both archaebacterial and eukaryotic translation systems. This suggests that translation of leaderless mRNAs reflects a fundamental capability of the translational apparatus of all three domains of life and lends support to the hypothesis that the translation initiation pathway is universally conserved.
Collapse
|
research-article |
25 |
103 |
13
|
Kyrpides NC, Woese CR. Archaeal translation initiation revisited: the initiation factor 2 and eukaryotic initiation factor 2B alpha-beta-delta subunit families. Proc Natl Acad Sci U S A 1998; 95:3726-30. [PMID: 9520434 PMCID: PMC19904 DOI: 10.1073/pnas.95.7.3726] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As the amount of available sequence data increases, it becomes apparent that our understanding of translation initiation is far from comprehensive and that prior conclusions concerning the origin of the process are wrong. Contrary to earlier conclusions, key elements of translation initiation originated at the Universal Ancestor stage, for homologous counterparts exist in all three primary taxa. Herein, we explore the evolutionary relationships among the components of bacterial initiation factor 2 (IF-2) and eukaryotic IF-2 (eIF-2)/eIF-2B, i.e., the initiation factors involved in introducing the initiator tRNA into the translation mechanism and performing the first step in the peptide chain elongation cycle. All Archaea appear to posses a fully functional eIF-2 molecule, but they lack the associated GTP recycling function, eIF-2B (a five-subunit molecule). Yet, the Archaea do posses members of the gene family defined by the (related) eIF-2B subunits alpha, beta, and delta, although these are not specifically related to any of the three eukaryotic subunits. Additional members of this family also occur in some (but by no means all) Bacteria and even in some eukaryotes. The functional significance of the other members of this family is unclear and requires experimental resolution. Similarly, the occurrence of bacterial IF-2-like molecules in all Archaea and in some eukaryotes further complicates the picture of translation initiation. Overall, these data lend further support to the suggestion that the rudiments of translation initiation were present at the Universal Ancestor stage.
Collapse
|
research-article |
27 |
87 |
14
|
Tomsic J, Vitali LA, Daviter T, Savelsbergh A, Spurio R, Striebeck P, Wintermeyer W, Rodnina MV, Gualerzi CO. Late events of translation initiation in bacteria: a kinetic analysis. EMBO J 2000; 19:2127-36. [PMID: 10790378 PMCID: PMC305682 DOI: 10.1093/emboj/19.9.2127] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Binding of the 50S ribosomal subunit to the 30S initiation complex and the subsequent transition from the initiation to the elongation phase up to the synthesis of the first peptide bond represent crucial steps in the translation pathway. The reactions that characterize these transitions were analyzed by quench-flow and fluorescence stopped-flow kinetic techniques. IF2-dependent GTP hydrolysis was fast (30/s) followed by slow P(i) release from the complex (1.5/s). The latter step was rate limiting for subsequent A-site binding of EF-Tu small middle dotGTP small middle dotPhe-tRNA(Phe) ternary complex. Most of the elemental rate constants of A-site binding were similar to those measured on poly(U), with the notable exception of the formation of the first peptide bond which occurred at a rate of 0.2/s. Omission of GTP or its replacement with GDP had no effect, indicating that neither the adjustment of fMet-tRNA(fMet) in the P site nor the release of IF2 from the ribosome required GTP hydrolysis.
Collapse
MESH Headings
- Codon/genetics
- Dipeptides/biosynthesis
- Dipeptides/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Fluorescence
- Guanosine Diphosphate/metabolism
- Guanosine Triphosphate/metabolism
- Hydrolysis
- Kinetics
- N-Formylmethionine/metabolism
- Peptide Chain Elongation, Translational
- Peptide Chain Initiation, Translational
- Peptide Elongation Factor Tu/metabolism
- Peptide Initiation Factors/metabolism
- Phenylalanine/metabolism
- Phosphates/metabolism
- Prokaryotic Initiation Factor-2
- Protein Binding
- Protein Biosynthesis/genetics
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
|
research-article |
25 |
87 |
15
|
Cameron DM, Thompson J, March PE, Dahlberg AE. Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome. J Mol Biol 2002; 319:27-35. [PMID: 12051934 DOI: 10.1016/s0022-2836(02)00235-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bacterial translational GTPases (initiation factor IF2, elongation factors EF-G and EF-Tu and release factor RF3) are involved in all stages of translation, and evidence indicates that they bind to overlapping sites on the ribosome, whereupon GTP hydrolysis is triggered. We provide evidence for a common ribosomal binding site for EF-G and IF2. IF2 prevents the binding of EF-G to the ribosome, as shown by Western blot analysis and fusidic acid-stabilized EF-G.GDP.ribosome complex formation. Additionally, IF2 inhibits EF-G-dependent GTP hydrolysis on 70 S ribosomes. The antibiotics thiostrepton and micrococcin, which bind to part of the EF-G binding site and interfere with the function of the factor, also affect the function of IF2. While thiostrepton is a strong inhibitor of EF-G-dependent GTP hydrolysis, GTP hydrolysis by IF2 is stimulated by the drug. Micrococcin stimulates GTP hydrolysis by both factors. We show directly that these drugs act by destabilizing the interaction of EF-G with the ribosome, and provide evidence that they have similar effects on IF2.
Collapse
|
|
23 |
79 |
16
|
Lee JH, Choi SK, Roll-Mecak A, Burley SK, Dever TE. Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2. Proc Natl Acad Sci U S A 1999; 96:4342-7. [PMID: 10200264 PMCID: PMC16334 DOI: 10.1073/pnas.96.8.4342] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Binding of initiator methionyl-tRNA to ribosomes is catalyzed in prokaryotes by initiation factor (IF) IF2 and in eukaryotes by eIF2. The discovery of both IF2 and eIF2 homologs in yeast and archaea suggested that these microbes possess an evolutionarily intermediate protein synthesis apparatus. We describe the identification of a human IF2 homolog, and we demonstrate by using in vivo and in vitro assays that human IF2 functions as a translation factor. In addition, we show that archaea IF2 can substitute for its yeast homolog both in vivo and in vitro. We propose a universally conserved function for IF2 in facilitating the proper binding of initiator methionyl-tRNA to the ribosomal P site.
Collapse
|
research-article |
26 |
76 |
17
|
Guenneugues M, Caserta E, Brandi L, Spurio R, Meunier S, Pon CL, Boelens R, Gualerzi CO. Mapping the fMet-tRNA(f)(Met) binding site of initiation factor IF2. EMBO J 2000; 19:5233-40. [PMID: 11013225 PMCID: PMC302095 DOI: 10.1093/emboj/19.19.5233] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interaction between fMet-tRNA(f)(Met) and Bacillus stearothermophilus translation initiation factor IF2 has been characterized. We demonstrate that essentially all thermodynamic determinants governing the stability and the specificity of this interaction are localized within the acceptor hexanucleotide fMet-3'ACCAAC of the initiator tRNA and a fairly small area at the surface of the beta-barrel structure of the 90-amino acid C-terminal domain of IF2 (IF2 C-2). A weak but specific interaction between IF2 C-2 and formyl-methionyl was also demonstrated. The surface of IF2 C-2 interacting with fMet-tRNA(f)(Met) has been mapped using two independent approaches, site- directed mutagenesis and NMR spectroscopy, which yielded consistent results. The binding site comprises C668 and G715 located in a groove accommodating the methionyl side-chain, R700, in the vicinity of the formyl group, Y701 and K702 close to the acyl bond between fMet and tRNA(f)(Met), and the surface lined with residues K702-S660, along which the acceptor arm of the initiator tRNA spans in the direction 3' to 5'.
Collapse
|
research-article |
25 |
75 |
18
|
La Teana A, Pon CL, Gualerzi CO. Translation of mRNAs with degenerate initiation triplet AUU displays high initiation factor 2 dependence and is subject to initiation factor 3 repression. Proc Natl Acad Sci U S A 1993; 90:4161-5. [PMID: 8483930 PMCID: PMC46466 DOI: 10.1073/pnas.90.9.4161] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The influence of the rare initiation triplet AUU on mRNA translation was investigated by comparing the activity of two pairs of model mRNAs that differ in the length of Shine-Dalgarno and spacer sequences. Irrespective of the initiation triplet (AUG or AUU), all mRNAs had similar template activity in vitro, but translation of AUU mRNAs depended more on initiation factor (IF) 2 and less on IF3 than that of AUG mRNAs. Increasing the IF3/ribosome ratio from 2 to 10 progressively inhibited the AUU mRNAs and abolished their capacity to compete for translating ribosomes with other mRNAs but did not affect activity of the AUG mRNAs. The effects induced by IF3 are from its different influence on on- and off-rates of the transition 30S preinitiation complex<==>30S initiation complex; depending on the nature of the initiation triplet (AUG or AUU) of the mRNA, IF3 shifts the position of equilibrium toward binding or dissociation of fMet-tRNA, respectively. Stimulation of fMet-tRNA binding and dissociation yields superimposable IF3 titration curves that saturate at an IF3/30S ratio of approximately 1, indicating that the data are from the interaction of one molecule of IF3 with the same 30S binding site. Both effects are either lost or strongly reduced with 30S mutants defective in IF3 binding. Translational repression of AUU mRNAs by IF3 is from the factor-dependent dissociation of fMet-tRNA from 30S subunits, which becomes relevant when excess IF3 interferes with the formation of 70S initiation complex, presumably by interacting with 50S subunit.
Collapse
|
research-article |
32 |
73 |
19
|
Vogel U, Jensen KF. Effects of the antiterminator BoxA on transcription elongation kinetics and ppGpp inhibition of transcription elongation in Escherichia coli. J Biol Chem 1995; 270:18335-40. [PMID: 7629155 DOI: 10.1074/jbc.270.31.18335] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It has been shown previously that two different mRNA chains (lacZ and infB) are elongated at a rate of approximately 40 nucleotides (nt)/s during steady state growth on minimal medium and that the rate of mRNA chain elongation is inhibited by ppGpp in vivo. On the other hand, it was found that a truncated ribosomal RNA chain was elongated at a rate of approximately 80 nt/s, independent of growth condition (Vogel, U., and Jensen, K. F. (1994) J. Biol. Chem. 269, 16236-16241). We reasoned that the different transcriptional behavior of mRNA genes and rRNA operons might be caused by the antiterminator sequences present in the rRNA operons. To test this possibility, we have (a) inserted the minimal antiterminator boxA sequence between the promoter and the lacZ and infB genes and (b) deleted the antiterminator sequences from the rRNA transcription unit and measured transcription elongation rates in vivo on the resulting hybrid genes. We found that insertion of boxA in front of the coding region of lacZ increased the transcription elongation rate from 42 nt/s to 69 nt/s during steady state growth and that it eliminated the ppGpp-dependent decrease in the transcription elongation rate during the stringent response. On the other hand, deletion of the antiterminator sequences from the rRNA operon resulted in a reduced transcription elongation rate, but the elongation rate was still insensitive to changes in the ppGpp pool. These results are consistent with the hypothesis that the antiterminator boxA is a primary determinant of the rate of transcription elongation rate.
Collapse
|
Comparative Study |
30 |
62 |
20
|
Brock S, Szkaradkiewicz K, Sprinzl M. Initiation factors of protein biosynthesis in bacteria and their structural relationship to elongation and termination factors. Mol Microbiol 1998; 29:409-17. [PMID: 9720861 DOI: 10.1046/j.1365-2958.1998.00893.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Initiation of protein biosynthesis in bacteria requires three initiation factors: initiation factor 1, initiation factor 2 and initiation factor 3. The mechanism by which initiation factors form the 70S initiation complex with initiator fMet-tRNA(fMet) interacting with the initiation codon in the ribosomal P site and the second mRNA codon exposed in the A site is not yet understood. Here, we present a model for the function of initiation factors 1 and 2 that is based on the analysis of sequence homologies, biochemical evidence and the present knowledge of the three-dimensional structures of translation factors and ribosomes. The model predicts that initiation factors 1 and 2 interact with the ribosomal A site mimicking the structure of the elongation factor G. We present data that extend the mimicry hypothesis to initiation factors 1 and 2, originally postulated for the aminoacyl-tRNA x elongation factor Tu x GTP ternary complex, elongation factor G and release factors.
Collapse
|
Review |
27 |
60 |
21
|
Luchin S, Putzer H, Hershey JW, Cenatiempo Y, Grunberg-Manago M, Laalami S. In vitro study of two dominant inhibitory GTPase mutants of Escherichia coli translation initiation factor IF2. Direct evidence that GTP hydrolysis is necessary for factor recycling. J Biol Chem 1999; 274:6074-9. [PMID: 10037688 DOI: 10.1074/jbc.274.10.6074] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently shown that the Escherichia coli initiation factor 2 (IF2) G-domain mutants V400G and H448E do not support cell survival and have a strong negative effect on growth even in the presence of wild-type IF2. We have isolated both mutant proteins and performed an in vitro study of their main functions. The affinity of both mutant proteins for GTP is almost unchanged compared with wild-type IF2. However, the uncoupled GTPase activity of the V400G and H448E mutants is severely impaired, the Vmax values being 11- and 40-fold lower, respectively. Both mutant forms promoted fMet-tRNAfMet binding to 70 S ribosomes with similar efficiencies and were as sensitive to competitive inhibition by GDP as wild-type IF2. Formation of the first peptide bond, as measured by the puromycin reaction, was completely inhibited in the presence of the H448E mutant but still significant in the case of the V400G mutant. Sucrose density gradient centrifugation revealed that, in contrast to wild-type IF2, both mutant proteins stay blocked on the ribosome after formation of the 70 S initiation complex. This probably explains their dominant negative effect in vivo. Our results underline the importance of GTP hydrolysis for the recycling of IF2.
Collapse
|
|
26 |
58 |
22
|
La Teana A, Pon CL, Gualerzi CO. Late events in translation initiation. Adjustment of fMet-tRNA in the ribosomal P-site. J Mol Biol 1996; 256:667-75. [PMID: 8642589 DOI: 10.1006/jmbi.1996.0116] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The requirements for the adjustment of fMet-tRNA in the ribosomal P-site have been analyzed by studying the formation of fMet-puromycin in a Bacillus stearothermophilus system. The binding of fMet-tRNA to the 30 S ribosomal subunit is not drastically affected by the omission of GTP, mRNA, mRNA and GTP, or by replacing GTP with GTP analogues. The adjustment of fMet-tRNA in the P site has stricter requirements and fMet-puromycin formation occurred at its maximum rate and extent when fMet-tRNA was bound to 30 S subunits programmed with the AUG triplet or with an mRNA in the presence of GTP. Neither GTP nor the mRNA, however, were found to be essential. Omission of GTP caused only a slight reduction in the rate of fMet-puromycin formation without a significant change of the activation energy, while omission of the template resulted in a requirement for a higher activation energy. In the absence of both GTP and template, however, essentially no fMet-puromycin was formed, indicating that these components cooperate in the adjustment of the initiator tRNA in the P-site. The contribution of various structural elements of the mRNA in determining this adjustment was investigated. It was found that the codon-anticodon interaction and the filling of the ribosomal mRNA channel with a polyribonucleotide are necessary (but not sufficient singly) for the correct orientation of the initiator tRNA in the absence of GTP. The nature of the initiation triplet and the occurrence and/or the strength of the Shine-Dalgarno interaction were also found to contribute to the orientation of the bound fMet-tRNA.
Collapse
|
|
29 |
58 |
23
|
Spurio R, Brandi L, Caserta E, Pon CL, Gualerzi CO, Misselwitz R, Krafft C, Welfle K, Welfle H. The C-terminal subdomain (IF2 C-2) contains the entire fMet-tRNA binding site of initiation factor IF2. J Biol Chem 2000; 275:2447-54. [PMID: 10644698 DOI: 10.1074/jbc.275.4.2447] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous protein unfolding studies had suggested that IF2 C, the 24. 5-kDa fMet-tRNA binding domain of Bacillus stearothermophilus translation initiation factor IF2, may consist of two subdomains. In the present work, the four Phe residues of IF2 C (positions 531, 599, 657, and 721) were replaced with Trp, yielding four variant proteins having intrinsic fluorescence markers in different positions of the molecule. Comparison of the circular dichroism and Trp fluorescence changes induced by increasing concentrations of guanidine hydrochloride demonstrated that IF2 C indeed consists of two subdomains: the more stable N-terminal (IF2 C-1) subdomain containing Trp-599, and the less stable C-terminal (IF2 C-2) subdomain containing Trp-721. Isolated subdomain IF2 C-2, which consists of just 110 amino acids (from Glu-632 to Ala-741), was found to bind fMet-tRNA with the same specificity and affinity as native IF2 or IF2 C-domain. Trimming IF2 C-2 from both N and C termini demonstrated that the minimal fragment still capable of fMet-binding consists of 90 amino acids. IF2 C-2 was further characterized by circular dichroism; by urea-, guanidine hydrochloride-, and temperature-induced unfolding; and by differential scanning calorimetry. The results indicate that IF2 C-2 is a globular molecule containing predominantly beta structures (25% antiparallel and 8% parallel beta strands) and turns (19%) whose structural properties are not grossly affected by the presence or absence of the N-terminal subdomain IF2 C-1.
Collapse
|
|
25 |
57 |
24
|
Karimi R, Pavlov MY, Heurgué-Hamard V, Buckingham RH, Ehrenberg M. Initiation factors IF1 and IF2 synergistically remove peptidyl-tRNAs with short polypeptides from the P-site of translating Escherichia coli ribosomes. J Mol Biol 1998; 281:241-52. [PMID: 9698545 DOI: 10.1006/jmbi.1998.1953] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel function of initiation factors IF1 and IF2 in Escherichia coli translation has been identified. It is shown that these factors efficiently catalyse dissociation of peptidyl-tRNAs with polypeptides of different length from the P-site of E. coli ribosomes, and that the simultaneous presence of both factors is required for induction of drop-off. The factor-induced drop-off occurs with both sense and stop codons in the A-site and competes with peptide elongation or termination. The efficiency with which IF1 and IF2 catalyse drop-off decreases with increasing length of the nascent polypeptide, but is quite significant for hepta-peptidyl-tRNAs, the longest polypeptide chains studied. In the absence of IF1 and IF2 the rate of drop-off varies considerably for different peptidyl-tRNAs, and depends both on the length and sequence of the nascent peptide. Efficient factor-catalysed drop-off requires GTP but not GTP hydrolysis, as shown in experiments without guanine nucleotides, with GDP or with the non-cleavable analogue GMP-PNP.Simultaneous overexpression of IF1 and IF2 in vivo inhibits cell growth specifically in some peptidyl-tRNA hydrolase deficient mutants, suggesting that initiation factor-catalysed drop-off of peptidyl-tRNA can occur on a significant scale in the bacterial cell. Consequences for the bacterial physiology of this previously unknown function of IF1 and IF2 are discussed.
Collapse
|
|
27 |
57 |
25
|
Meunier S, Spurio R, Czisch M, Wechselberger R, Guenneugues M, Gualerzi CO, Boelens R. Structure of the fMet-tRNA(fMet)-binding domain of B. stearothermophilus initiation factor IF2. EMBO J 2000; 19:1918-26. [PMID: 10775275 PMCID: PMC302012 DOI: 10.1093/emboj/19.8.1918] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The three-dimensional structure of the fMet-tRNA(fMet) -binding domain of translation initiation factor IF2 from Bacillus stearothermophilus has been determined by heteronuclear NMR spectroscopy. Its structure consists of six antiparallel beta-strands, connected via loops, and forms a closed beta-barrel similar to domain II of elongation factors EF-Tu and EF-G, despite low sequence homology. Two structures of the ternary complexes of the EF-Tu small middle dotaminoacyl-tRNA small middle dot GDP analogue have been reported and were used to propose and discuss the possible fMet-tRNA(fMet)-binding site of IF2.
Collapse
|
research-article |
25 |
53 |