1
|
Weaver ICG, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7:847-54. [PMID: 15220929 DOI: 10.1038/nn1276] [Citation(s) in RCA: 3778] [Impact Index Per Article: 179.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 05/26/2004] [Indexed: 12/28/2022]
Abstract
Here we report that increased pup licking and grooming (LG) and arched-back nursing (ABN) by rat mothers altered the offspring epigenome at a glucocorticoid receptor (GR) gene promoter in the hippocampus. Offspring of mothers that showed high levels of LG and ABN were found to have differences in DNA methylation, as compared to offspring of 'low-LG-ABN' mothers. These differences emerged over the first week of life, were reversed with cross-fostering, persisted into adulthood and were associated with altered histone acetylation and transcription factor (NGFI-A) binding to the GR promoter. Central infusion of a histone deacetylase inhibitor removed the group differences in histone acetylation, DNA methylation, NGFI-A binding, GR expression and hypothalamic-pituitary-adrenal (HPA) responses to stress, suggesting a causal relation among epigenomic state, GR expression and the maternal effect on stress responses in the offspring. Thus we show that an epigenomic state of a gene can be established through behavioral programming, and it is potentially reversible.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
3778 |
2
|
|
Review |
17 |
2585 |
3
|
McGowan PO, Sasaki A, D'Alessio AC, Dymov S, Labonté B, Szyf M, Turecki G, Meaney MJ. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 2009; 12:342-8. [PMID: 19234457 PMCID: PMC2944040 DOI: 10.1038/nn.2270] [Citation(s) in RCA: 2123] [Impact Index Per Article: 132.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 01/09/2009] [Indexed: 01/11/2023]
Abstract
Maternal care influences hypothalamic-pituitary-adrenal (HPA) function in the rat through epigenetic programming of glucocorticoid receptor expression. In humans, childhood abuse alters HPA stress responses and increases the risk of suicide. We examined epigenetic differences in a neuron-specific glucocorticoid receptor (NR3C1) promoter between postmortem hippocampus obtained from suicide victims with a history of childhood abuse and those from either suicide victims with no childhood abuse or controls. We found decreased levels of glucocorticoid receptor mRNA, as well as mRNA transcripts bearing the glucocorticoid receptor 1F splice variant and increased cytosine methylation of an NR3C1 promoter. Patch-methylated NR3C1 promoter constructs that mimicked the methylation state in samples from abused suicide victims showed decreased NGFI-A transcription factor binding and NGFI-A-inducible gene transcription. These findings translate previous results from rat to humans and suggest a common effect of parental care on the epigenetic regulation of hippocampal glucocorticoid receptor expression.
Collapse
|
Comparative Study |
16 |
2123 |
4
|
Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 2000; 343:1350-4. [PMID: 11070098 DOI: 10.1056/nejm200011093431901] [Citation(s) in RCA: 1648] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The DNA-repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) inhibits the killing of tumor cells by alkylating agents. MGMT activity is controlled by a promoter; methylation of the promoter silences the gene in cancer, and the cells no longer produce MGMT. We examined gliomas to determine whether methylation of the MGMT promoter is related to the responsiveness of the tumor to alkylating agents. METHODS We analyzed the MGMT promoter in tumor DNA by a methylation-specific polymerase-chain-reaction assay. The gliomas were obtained from patients who had been treated with carmustine (1,3-bis(2-chloroethyl)-1-nitrosourea, or BCNU). The molecular data were correlated with the clinical outcome. RESULTS The MGMT promoter was methylated in gliomas from 19 of 47 patients (40 percent). This finding was associated with regression of the tumor and prolonged overall and disease-free survival. It was an independent and stronger prognostic factor than age, stage, tumor grade, or performance status. CONCLUSIONS Methylation of the MGMT promoter in gliomas is a useful predictor of the responsiveness of the tumors to alkylating agents.
Collapse
|
|
25 |
1648 |
5
|
Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, Maloney PR, Willson TM, Kliewer SA. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 2000; 6:517-26. [PMID: 11030332 DOI: 10.1016/s1097-2765(00)00051-4] [Citation(s) in RCA: 1511] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bile acids repress the transcription of cytochrome P450 7A1 (CYP7A1), which catalyzes the rate-limiting step in bile acid biosynthesis. Although bile acids activate the farnesoid X receptor (FXR), the mechanism underlying bile acid-mediated repression of CYP7A1 remained unclear. We have used a potent, nonsteroidal FXR ligand to show that FXR induces expression of small heterodimer partner 1 (SHP-1), an atypical member of the nuclear receptor family that lacks a DNA-binding domain. SHP-1 represses expression of CYP7A1 by inhibiting the activity of liver receptor homolog 1 (LRH-1), an orphan nuclear receptor that is known to regulate CYP7A1 expression positively. This bile acid-activated regulatory cascade provides a molecular basis for the coordinate suppression of CYP7A1 and other genes involved in bile acid biosynthesis.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/biosynthesis
- Blotting, Northern
- Cells, Cultured
- Cholesterol 7-alpha-Hydroxylase/genetics
- Cholesterol 7-alpha-Hydroxylase/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Enzymologic/physiology
- Hepatocytes/cytology
- Hepatocytes/enzymology
- Humans
- Intracellular Signaling Peptides and Proteins
- Male
- Promoter Regions, Genetic/physiology
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- RNA, Messenger/analysis
- Rats
- Rats, Inbred F344
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
Collapse
|
|
25 |
1511 |
6
|
Kliewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, McKee DD, Oliver BB, Willson TM, Zetterström RH, Perlmann T, Lehmann JM. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 1998; 92:73-82. [PMID: 9489701 DOI: 10.1016/s0092-8674(00)80900-9] [Citation(s) in RCA: 1144] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Steroid hormones exert profound effects on differentiation, development, and homeostasis in higher eukaryotes through interactions with nuclear receptors. We describe a novel orphan nuclear receptor, termed the pregnane X receptor (PXR), that is activated by naturally occurring steroids such as pregnenolone and progesterone, and synthetic glucocorticoids and antiglucocorticoids. PXR exists as two isoforms, PXR.1 and PXR.2, that are differentially activated by steroids. Notably, PXR.1 is efficaciously activated by pregnenolone 16alpha-carbonitrile, a glucocorticoid receptor antagonist that induces the expression of the CYP3A family of steroid hydroxylases and modulates sterol and bile acid biosynthesis in vivo. Our results provide evidence for the existence of a novel steroid hormone signaling pathway with potential implications in the regulation of steroid hormone and sterol homeostasis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aryl Hydrocarbon Hydroxylases
- Base Sequence
- Cloning, Molecular
- Conserved Sequence/genetics
- Conserved Sequence/physiology
- Cytochrome P-450 CYP3A
- Cytochrome P-450 Enzyme System/genetics
- Embryo, Mammalian/chemistry
- Embryo, Mammalian/metabolism
- Gene Expression/genetics
- Gene Expression/physiology
- Genes/genetics
- Glucocorticoids/chemical synthesis
- Glucocorticoids/metabolism
- Glucocorticoids/pharmacology
- Histone Acetyltransferases
- Mice
- Molecular Sequence Data
- Nuclear Receptor Coactivator 1
- Oxidoreductases, N-Demethylating/genetics
- Pregnane X Receptor
- Pregnanes/chemical synthesis
- Pregnanes/metabolism
- Pregnanes/pharmacology
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/physiology
- Protein Binding
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Steroid/genetics
- Signal Transduction
- Steroids/physiology
- Transcription Factors/metabolism
Collapse
|
|
27 |
1144 |
7
|
Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 2000; 6:507-15. [PMID: 11030331 DOI: 10.1016/s1097-2765(00)00050-2] [Citation(s) in RCA: 1136] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The catabolism of cholesterol into bile acids is regulated by oxysterols and bile acids, which induce or repress transcription of the pathway's rate-limiting enzyme cholesterol 7alpha-hydroxylase (CYP7A1). The nuclear receptor LXRalpha binds oxysterols and mediates feed-forward induction. Here, we show that repression is coordinately regulated by a triumvirate of nuclear receptors, including the bile acid receptor, FXR; the promoter-specific activator, LRH-1; and the promoter-specific repressor, SHP. Feedback repression of CYP7A1 is accomplished by the binding of bile acids to FXR, which leads to transcription of SHP. Elevated SHP protein then inactivates LRH-1 by forming a heterodimeric complex that leads to promoter-specific repression of both CYP7A1 and SHP. These results reveal an elaborate autoregulatory cascade mediated by nuclear receptors for the maintenance of hepatic cholesterol catabolism.
Collapse
|
|
25 |
1136 |
8
|
Zhong H, Voll RE, Ghosh S. Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1998; 1:661-71. [PMID: 9660950 DOI: 10.1016/s1097-2765(00)80066-0] [Citation(s) in RCA: 989] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The transcriptional activity of NF-kappa B is stimulated upon phosphorylation of its p65 subunit on serine 276 by protein kinase A (PKA). The transcriptional coactivator CPB/p300 associates with NF-kappa B p65 through two sites, an N-terminal domain that interacts with the C-terminal region of unphosphorylated p65, and a second domain that only interacts with p65 phosphorylated on serine 276. Accessibility to both sites is blocked in unphosphorylated p65 through an intramolecular masking of the N terminus by the C-terminal region of p65. Phosphorylation by PKA both weakens the interaction between the N- and C-terminal regions of p65 and creates an additional site for interaction with CBP/p300. Therefore, PKA regulates the transcriptional activity of NF-kappa B by modulating its interaction with CBP/p300.
Collapse
|
|
27 |
989 |
9
|
Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M, Zaret KS. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 2002; 9:279-89. [PMID: 11864602 DOI: 10.1016/s1097-2765(02)00459-8] [Citation(s) in RCA: 909] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transcription factors HNF3 (FoxA) and GATA-4 are the earliest known to bind the albumin gene enhancer in liver precursor cells in embryos. To understand how they access sites in silent chromatin, we assembled nucleosome arrays containing albumin enhancer sequences and compacted them with linker histone. HNF3 and GATA-4, but not NF-1, C/EBP, and GAL4-AH, bound their sites in compacted chromatin and opened the local nucleosomal domain in the absence of ATP-dependent enzymes. The ability of HNF3 to open chromatin is mediated by a high affinity DNA binding site and by the C-terminal domain of the protein, which binds histones H3 and H4. Thus, factors that potentiate transcription in development are inherently capable of initiating chromatin opening events.
Collapse
|
|
23 |
909 |
10
|
Shi Y, Seto E, Chang LS, Shenk T. Transcriptional repression by YY1, a human GLI-Krüppel-related protein, and relief of repression by adenovirus E1A protein. Cell 1991; 67:377-88. [PMID: 1655281 DOI: 10.1016/0092-8674(91)90189-6] [Citation(s) in RCA: 854] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A sequence within the transcription control region of the adeno-associated virus P5 promoter has been shown to mediate transcriptional activation by the adenovirus E1A protein. We report here that this same element mediates transcriptional repression in the absence of E1A. Two cellular proteins have been found to bind to overlapping regions within this sequence element. One of these proteins, YY1, is responsible for the repression. E1A relieves repression exerted by YY1 and further activates transcription through its binding site. A YY1-specific cDNA has been isolated. Its sequence reveals YY1 to be a zinc finger protein that belongs to the GLI-Krüppel gene family. The product of the cDNA binds to YY1 sites. When fused to the GAL4 DNA-binding domain, it is capable of repressing transcription directed by a promoter that contains GAL4-binding sites, and E1A proteins can relieve the repression and activate transcription through the fusion protein.
Collapse
|
|
34 |
854 |
11
|
Abstract
Previously, we found that Rb can actively repress transcription of cell cycle genes by binding and inactivating transcription factors at the promoter. Here, we demonstrate that Rb can also repress transcription of endogenous cell cycle genes containing E2F sites through recruitment of histone deacetylase, which deacetylates histones on the promoter, thereby promoting formation of nucleosomes that inhibit transcription. These two mechanisms of repression by Rb are selective-some promoters and transcription factors are blocked by this recruitment of histone deacetylase, whereas others are resistant to histone deacetylase activity and are repressed directly by inhibition of transcription factors.
Collapse
|
|
27 |
758 |
12
|
Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME. CREB: a major mediator of neuronal neurotrophin responses. Neuron 1997; 19:1031-47. [PMID: 9390517 DOI: 10.1016/s0896-6273(00)80395-5] [Citation(s) in RCA: 755] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neurotrophins regulate neuronal survival, differentiation, and synaptic function. To understand how neurotrophins elicit such diverse responses, we elucidated signaling pathways by which brain-derived neurotrophic factor (BDNF) activates gene expression in cultured neurons and hippocampal slices. We found, unexpectedly, that the transcription factor cyclic AMP response element-binding protein (CREB) is an important regulator of BDNF-induced gene expression. Exposure of neurons to BDNF stimulates CREB phosphorylation and activation via at least two signaling pathways: by a calcium/calmodulin-dependent kinase IV (CaMKIV)-regulated pathway that is activated by the release of intracellular calcium and by a Ras-dependent pathway. These findings reveal a previously unrecognized, CaMK-dependent mechanism by which neurotrophins activate CREB and suggest that CREB plays a central role in mediating neurotrophin responses in neurons.
Collapse
|
|
28 |
755 |
13
|
Abstract
Studies of 3D chromatin organization have suggested that chromosomes are hierarchically organized into large compartments composed of smaller domains called topologically associating domains (TADs). Recent evidence suggests that compartments are smaller than previously thought and that the transcriptional or chromatin state is responsible for interactions leading to the formation of small compartmental domains in all organisms. In vertebrates, CTCF forms loop domains, probably via an extrusion process involving cohesin. CTCF loops cooperate with compartmental domains to establish the 3D organization of the genome. The continuous extrusion of the chromatin fibre by cohesin may also be responsible for the establishment of enhancer-promoter interactions and stochastic aspects of the transcription process. These observations suggest that the 3D organization of the genome is an emergent property of chromatin and its components, and thus may not be only a determinant but also a consequence of its function.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
727 |
14
|
Yamane K, Toumazou C, Tsukada YI, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y. JHDM2A, a JmjC-Containing H3K9 Demethylase, Facilitates Transcription Activation by Androgen Receptor. Cell 2006; 125:483-95. [PMID: 16603237 DOI: 10.1016/j.cell.2006.03.027] [Citation(s) in RCA: 627] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 02/13/2006] [Accepted: 03/23/2006] [Indexed: 12/13/2022]
Abstract
Covalent modification of histones plays an important role in regulating chromatin dynamics and transcription. Histone methylation was thought to be an irreversible modification until recently. Using a biochemical assay coupled with chromatography, we have purified a JmjC domain-containing protein, JHDM2A, which specifically demethylates mono- and dimethyl-H3K9. Similar to JHDM1, JHDM2A-mediated histone demethylation requires cofactors Fe(II) and alpha-ketoglutarate. Mutational studies indicate that a JmjC domain and a zinc finger present in JHDM2A are required for its enzymatic activity. Overexpression of JHDM2A greatly reduced the H3K9 methylation level in vivo. Knockdown of JHDM2A results in an increase in the dimethyl-K9 levels at the promoter region of a subset of genes concomitant with decrease in their expression. Finally, JHDM2A exhibits hormone-dependent recruitment to androgen-receptor target genes, resulting in H3K9 demethylation and transcriptional activation. Thus, our work identifies a histone demethylase and links its function to hormone-dependent transcriptional activation.
Collapse
|
|
19 |
627 |
15
|
Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 1997; 88:695-705. [PMID: 9054509 DOI: 10.1016/s0092-8674(00)81912-1] [Citation(s) in RCA: 618] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mutation-induced recessive alleles (mlo) of the barley Mlo locus confer a leaf lesion phenotype and broad spectrum resistance to the fungal pathogen, Erysiphe graminis f. sp. hordei. The gene has been isolated using a positional cloning approach. Analysis of 11 mutagen-induced mlo alleles revealed mutations leading in each case to alterations of the deduced Mlo wild-type amino acid sequence. Susceptible intragenic recombinants, isolated from mlo heteroallelic crosses, show restored Mlo wild-type sequences. The deduced 60 kDa protein is predicted to be membrane-anchored by at least six membrane-spanning helices. The findings are compatible with a dual negative control function of the Mlo protein in leaf cell death and in the onset of pathogen defense; absence of Mlo primes the responsiveness for the onset of multiple defense functions.
Collapse
|
|
28 |
618 |
16
|
Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R. Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 2005; 187:1591-603. [PMID: 15716429 PMCID: PMC1063999 DOI: 10.1128/jb.187.5.1591-1603.2005] [Citation(s) in RCA: 615] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The sigmaS (or RpoS) subunit of RNA polymerase is the master regulator of the general stress response in Escherichia coli. While nearly absent in rapidly growing cells, sigmaS is strongly induced during entry into stationary phase and/or many other stress conditions and is essential for the expression of multiple stress resistances. Genome-wide expression profiling data presented here indicate that up to 10% of the E. coli genes are under direct or indirect control of sigmaS and that sigmaS should be considered a second vegetative sigma factor with a major impact not only on stress tolerance but on the entire cell physiology under nonoptimal growth conditions. This large data set allowed us to unequivocally identify a sigmaS consensus promoter in silico. Moreover, our results suggest that sigmaS-dependent genes represent a regulatory network with complex internal control (as exemplified by the acid resistance genes). This network also exhibits extensive regulatory overlaps with other global regulons (e.g., the cyclic AMP receptor protein regulon). In addition, the global regulatory protein Lrp was found to affect sigmaS and/or sigma70 selectivity of many promoters. These observations indicate that certain modules of the sigmaS-dependent general stress response can be temporarily recruited by stress-specific regulons, which are controlled by other stress-responsive regulators that act together with sigma70 RNA polymerase. Thus, not only the expression of genes within a regulatory network but also the architecture of the network itself can be subject to regulation.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
615 |
17
|
Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DEH, Truong HT, Russo SJ, Laplant Q, Sasaki TS, Whistler KN, Neve RL, Self DW, Nestler EJ. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 2006; 48:303-14. [PMID: 16242410 DOI: 10.1016/j.neuron.2005.09.023] [Citation(s) in RCA: 581] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 08/04/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
Given that cocaine induces neuroadaptations through regulation of gene expression, we investigated whether chromatin remodeling at specific gene promoters may be a key mechanism. We show that cocaine induces specific histone modifications at different gene promoters in striatum, a major neural substrate for cocaine's behavioral effects. At the cFos promoter, H4 hyperacetylation is seen within 30 min of a single cocaine injection, whereas no histone modifications were seen with chronic cocaine, consistent with cocaine's ability to induce cFos acutely, but not chronically. In contrast, at the BDNF and Cdk5 promoters, genes that are induced by chronic, but not acute, cocaine, H3 hyperacetylation was observed with chronic cocaine only. DeltaFosB, a cocaine-induced transcription factor, appears to mediate this regulation of the Cdk5 gene. Furthermore, modulating histone deacetylase activity alters locomotor and rewarding responses to cocaine. Thus, chromatin remodeling is an important regulatory mechanism underlying cocaine-induced neural and behavioral plasticity.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
581 |
18
|
Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF. Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/- mice: a direct role for Stat5 in Bcl-X(L) induction. Cell 1999; 98:181-91. [PMID: 10428030 DOI: 10.1016/s0092-8674(00)81013-2] [Citation(s) in RCA: 557] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The erythropoietin receptor (EpoR) is essential for production of red blood cells; a principal function of EpoR is to rescue committed erythroid progenitors from apoptosis. Stat5 is rapidly activated following EpoR stimulation, but its function in erythropoiesis has been unclear since adult Stat5a-/-5b-/- mice have normal steady-state hematocrit. Here we show that Stat5 is essential for the high erythropoietic rate during fetal development. Stat5a-/-5b-/- embryos are severely anemic; erythroid progenitors are present in low numbers, show higher levels of apoptosis, and are less responsive to Epo. These findings are explained by a crucial role for Stat5 in EpoR's antiapoptotic signaling: it mediates the immediate-early induction of Bcl-X(L) in erythroid cells through direct binding to the Bcl-X promoter.
Collapse
|
|
26 |
557 |
19
|
Cosma MP, Tanaka T, Nasmyth K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 1999; 97:299-311. [PMID: 10319811 DOI: 10.1016/s0092-8674(00)80740-0] [Citation(s) in RCA: 555] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gene activation in eukaryotes requires chromatin remodeling complexes like Swi/Snf and histone acetylases like SAGA. How these factors are recruited to promoters is not yet understood. Using CHIP, we measured recruitment of Swi/Snf, SAGA, the repressor Ash1p, and transcription factors Swi5p and SBF to the HO endonuclease promoter as cells progress through the yeast cell cycle. Swi5p's entry into nuclei at the end of anaphase recruits Swi/Snf, which then recruits SAGA. These two factors then facilitate SBF's binding. Ash1p, which only accumulates in daughter cell nuclei, binds to HO soon after Swi5p and aborts recruitment of Swi/Snf, SAGA, and SBF. Swi5p remains at HO for only 5 min. Swi/Snf's and SAGA's subsequent persistence at HO is self sustaining and constitutes an "epigenetic memory" of HO's transient interaction with Swi5p.
Collapse
|
|
26 |
555 |
20
|
Lieb JD, Liu X, Botstein D, Brown PO. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet 2001; 28:327-34. [PMID: 11455386 DOI: 10.1038/ng569] [Citation(s) in RCA: 522] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We determined the distribution of repressor-activator protein 1 (Rap1) and the accessory silencing proteins Sir2, Sir3 and Sir4 in vivo on the entire yeast genome, at a resolution of 2 kb. Rap1 is central to the cellular economy during rapid growth, targeting 294 loci, about 5% of yeast genes, and participating in the activation of 37% of all RNA polymerase II initiation events in exponentially growing cells. Although the DNA sequence recognized by Rap1 is found in both coding and intergenic sequences, the binding of Rap1 to the genome was highly specific to intergenic regions with the potential to act as promoters. This global phenomenon, which may be a general characteristic of sequence-specific transcriptional factors, indicates the existence of a genome-wide molecular mechanism for marking promoter regions.
Collapse
|
|
24 |
522 |
21
|
Bonello S, Zähringer C, BelAiba RS, Djordjevic T, Hess J, Michiels C, Kietzmann T, Görlach A. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol 2007; 27:755-61. [PMID: 17272744 DOI: 10.1161/01.atv.0000258979.92828.bc] [Citation(s) in RCA: 521] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Reactive oxygen species have been implicated as signaling molecules modulating the activity of redox-sensitive transcription factors such as nuclear factor kappa B (NF-kappaB). Recently, the transcription factor hypoxia-inducible factor-1 (HIF-1), known to mediate gene expression by hypoxia, has been found to be also activated by nonhypoxic factors in a redox-sensitive manner. We therefore aimed to elucidate the link between these 2 important redox-sensitive transcription factors. METHODS AND RESULTS In pulmonary artery smooth muscle cells, reactive oxygen species generated either by exogenous H2O2 or by a NOX4-containing NADPH oxidase stimulated by thrombin activated or induced NF-kappaB and HIF-1alpha. The reactive oxygen species-mediated HIF-1alpha induction occurred on the transcriptional level and was dependent on NF-kappaB. Transfection experiments with wild-type or mutant HIF-1alpha promoter constructs revealed the presence of a yet unidentified NF-kappaB binding element. Gel shift analyses and chromatin immunoprecipitation verified binding of NF-kappaB to this site. Furthermore, reactive oxygen species enhanced expression of plasminogen activator inhibitor-1, which was prevented by dominant-negative IkappaB or mutation of the HIF-1 binding site within the plasminogen activator inhibitor-1 promoter. CONCLUSION These findings show for the first time to our knowledge that reactive oxygen species directly link HIF-1alpha and NF-kappaB, implicating an important pathophysiological role of this novel pathway in disorders associated with elevated levels of reactive oxygen species.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
521 |
22
|
Peinado H, Quintanilla M, Cano A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 2003; 278:21113-23. [PMID: 12665527 DOI: 10.1074/jbc.m211304200] [Citation(s) in RCA: 518] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Snail transcription factor has been described recently as a strong repressor of E-cadherin in epithelial cell lines, where its stable expression leads to the loss of E-cadherin expression and induces epithelial-mesenchymal transitions and an invasive phenotype. The mechanisms regulating Snail expression in development and tumor progression are not yet known. We show here that transforming growth factor beta-1 (TGFbeta1) induces Snail expression in Madin-Darby canine kidney cells and triggers epithelial-mesenchymal transitions by a mechanism dependent on the MAPK signaling pathway. Furthermore, TGFbeta1 induces the activity of Snail promoter, whereas fibroblast growth factor-2 has a milder effect but cooperates with TGFbeta1 in the induction of Snail promoter. Interestingly, TGFbeta1-mediated induction of Snail promoter is blocked by a dominant negative form of H-Ras (N17Ras), whereas oncogenic H-Ras (V12Ras) induces Snail promoter activity and synergistically cooperates with TGFbeta1. The effects of TGFbeta1 on Snail promoter are dependent of MEK1/2 activity but are apparently independent of Smad4 activity. In addition, H-Ras-mediated induction of Snail promoter, alone or in the presence of TGFbeta1, depends on both MAPK and phosphatidylinositol 3-kinase activities. These data support that MAPK and phosphatidylinositol 3-kinase signaling pathways are implicated in TGFbeta1-mediated induction of Snail promoter, probably through Ras activation and its downstream effectors.
Collapse
|
|
22 |
518 |
23
|
Chen S, Wang QL, Nie Z, Sun H, Lennon G, Copeland NG, Gilbert DJ, Jenkins NA, Zack DJ. Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 1997; 19:1017-30. [PMID: 9390516 DOI: 10.1016/s0896-6273(00)80394-3] [Citation(s) in RCA: 511] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The otd/Otx gene family encodes paired-like homeodomain proteins that are involved in the regulation of anterior head structure and sensory organ development. Using the yeast one-hybrid screen with a bait containing the Ret 4 site from the bovine rhodopsin promoter, we have cloned a new member of the family, Crx (Cone rod homeobox). Crx encodes a 299 amino acid residue protein with a paired-like homeodomain near its N terminus. In the adult, it is expressed predominantly in photoreceptors and pinealocytes. In the developing mouse retina, it is expressed by embryonic day 12.5 (E12.5). Recombinant Crx binds in vitro not only to the Ret 4 site but also to the Ret 1 and BAT-1 sites. In transient transfection studies, Crx transactivates rhodopsin promoter-reporter constructs. Its activity is synergistic with that of Nrl. Crx also binds to and transactivates the genes for several other photoreceptor cell-specific proteins (interphotoreceptor retinoid-binding protein, beta-phosphodiesterase, and arrestin). Human Crx maps to chromosome 19q13.3, the site of a cone rod dystrophy (CORDII). These studies implicate Crx as a potentially important regulator of photoreceptor cell development and gene expression and also identify it as a candidate gene for CORDII and other retinal diseases.
Collapse
|
|
28 |
511 |
24
|
Weinberg EO, Shimpo M, De Keulenaer GW, MacGillivray C, Tominaga SI, Solomon SD, Rouleau JL, Lee RT. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation 2002; 106:2961-6. [PMID: 12460879 PMCID: PMC1460012 DOI: 10.1161/01.cir.0000038705.69871.d9] [Citation(s) in RCA: 492] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND We identified an interleukin-1 receptor family member, ST2, as a gene markedly induced by mechanical strain in cardiac myocytes and hypothesized that ST2 participates in the acute myocardial response to stress and injury. METHODS AND RESULTS ST2 mRNA was induced in cardiac myocytes by mechanical strain (4.7+/-0.9-fold) and interleukin-1beta (2.0+/-0.2-fold). Promoter analysis revealed that the proximal and not the distal promoter of ST2 is responsible for transcriptional activation in cardiac myocytes by strain and interleukin-1beta. In mice subjected to coronary artery ligation, serum ST2 was transiently increased compared with unoperated controls (20.8+/-4.4 versus 0.8+/-0.8 ng/mL, P<0.05). Soluble ST2 levels were increased in the serum of human patients (N=69) 1 day after myocardial infarction and correlated positively with creatine kinase (r=0.41, P<0.001) and negatively with ejection fraction (P=0.02). CONCLUSIONS These data identify ST2 release in response to myocardial infarction and suggest a role for this innate immune receptor in myocardial injury.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Angiotensin Receptor Antagonists
- Animals
- Animals, Newborn
- Biomarkers/blood
- Cells, Cultured
- Disease Models, Animal
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Humans
- Imidazoles/pharmacology
- Interleukin-1/pharmacology
- Interleukin-1 Receptor-Like 1 Protein
- Interleukin-4/pharmacology
- Lipopolysaccharides/pharmacology
- Membrane Proteins/blood
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Myocardial Infarction/blood
- Myocardial Infarction/metabolism
- Myocardium/cytology
- Myocardium/metabolism
- Nuclease Protection Assays
- Phorbol Esters/pharmacology
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/physiology
- Pyridines/pharmacology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1
- Receptors, Cell Surface
- Receptors, Interleukin
- Receptors, Interleukin-1/blood
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/metabolism
- Stress, Mechanical
- Stroke Volume
Collapse
|
research-article |
23 |
492 |
25
|
Descombes P, Chojkier M, Lichtsteiner S, Falvey E, Schibler U. LAP, a novel member of the C/EBP gene family, encodes a liver-enriched transcriptional activator protein. Genes Dev 1990; 4:1541-51. [PMID: 2253878 DOI: 10.1101/gad.4.9.1541] [Citation(s) in RCA: 481] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A gene, encoding a liver-enriched transcriptional activator protein (LAP) has been isolated. LAP is a 32-kD protein that stimulates the transcription of chimeric genes containing albumin D-promoter elements both in vivo and in vitro. LAP shares extensive sequence homology (71%) in its DNA-binding and leucine zipper domains with C/EBP. As a consequence, these two proteins show an indistinguishable DNA-binding specificity and readily heterodimerize. In addition, both genes, lap and cebp, are devoid of intervening sequences. Although correctly initiated transcripts from the LAP gene accumulate in the six examined tissues--liver, lung, spleen, kidney, brain, and testis--LAP protein is highly enriched in liver nuclei. Thus, the preferential accumulation of LAP protein in liver appears to be regulated post-transcriptionally.
Collapse
|
|
35 |
481 |