1
|
Bolton AE, Hunter WM. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J 1973; 133:529-39. [PMID: 4733239 PMCID: PMC1177731 DOI: 10.1042/bj1330529] [Citation(s) in RCA: 2619] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
1. A new method is described for labelling proteins to high specific radioactivities with (125)I. The protein is treated with a (125)I-labelled acylating agent, iodinated 3-(4-hydroxyphenyl)propionic acid N-hydroxysuccinimide ester, which reacts with free amino groups in the protein molecule to attach the (125)I-labelled groups by amide bonds. 2. Three protein hormones have been labelled by this method, human growth hormone, human thyroid-stimulating hormone and human luteinizing hormone. Specific radioactivities of up to 170, 120 and 55muCi/mug respectively have been obtained for these hormones. 3. The immunoreactivity of these labelled hormones has been investigated by using a radioimmunoassay system specific for each hormone. These preparations have also been compared with and found to be equal or superior to labelled hormones prepared by chemical substitution of (125)I into tyrosine residues of the proteins by using the chloramine-t-oxidation procedure. 4. With some antisera the immunoreactivity of the antigen was diminished by the introduction of a single I atom into the tyrosyl groups, whereas antigen containing a single (125)I-labelled 3-(4-hydroxyphenyl)propionamide group showed the same immunoreactivity as the unmodified antigen.
Collapse
|
research-article |
52 |
2619 |
2
|
Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987; 28:1221-7. [PMID: 3678950 PMCID: PMC1433442 DOI: 10.1136/gut.28.10.1221] [Citation(s) in RCA: 2124] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Evidence for the occurrence of microbial breakdown of carbohydrate in the human colon has been sought by measuring short chain fatty acid (SCFA) concentrations in the contents of all regions of the large intestine and in portal, hepatic and peripheral venous blood obtained at autopsy of sudden death victims within four hours of death. Total SCFA concentration (mmol/kg) was low in the terminal ileum at 13 +/- 6 but high in all regions of the colon ranging from 131 +/- 9 in the caecum to 80 +/- 11 in the descending colon. The presence of branched chain fatty acids was also noted. A significant trend from high to low concentrations was found on passing distally from caecum to descending colon. pH also changed with region from 5.6 +/- 0.2 in the caecum to 6.6 +/- 0.1 in the descending colon. pH and SCFA concentrations were inversely related. Total SCFA (mumol/l) in blood was, portal 375 +/- 70, hepatic 148 +/- 42 and peripheral 79 +/- 22. In all samples acetate was the principal anion but molar ratios of the three principal SCFA changed on going from colonic contents to portal blood to hepatic vein indicating greater uptake of butyrate by the colonic epithelium and propionate by the liver. These data indicate that substantial carbohydrate, and possibly protein, fermentation is occurring in the human large intestine, principally in the caecum and ascending colon and that the large bowel may have a greater role to play in digestion than has previously been ascribed to it.
Collapse
|
research-article |
38 |
2124 |
3
|
Lin HV, Frassetto A, Kowalik EJ, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 2012; 7:e35240. [PMID: 22506074 PMCID: PMC3323649 DOI: 10.1371/journal.pone.0035240] [Citation(s) in RCA: 892] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/10/2012] [Indexed: 12/14/2022] Open
Abstract
Short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, are metabolites formed by gut microbiota from complex dietary carbohydrates. Butyrate and acetate were reported to protect against diet-induced obesity without causing hypophagia, while propionate was shown to reduce food intake. However, the underlying mechanisms for these effects are unclear. It was suggested that SCFAs may regulate gut hormones via their endogenous receptors Free fatty acid receptors 2 (FFAR2) and 3 (FFAR3), but direct evidence is lacking. We examined the effects of SCFA administration in mice, and show that butyrate, propionate, and acetate all protected against diet-induced obesity and insulin resistance. Butyrate and propionate, but not acetate, induce gut hormones and reduce food intake. As FFAR3 is the common receptor activated by butyrate and propionate, we examined these effects in FFAR3-deficient mice. The effects of butyrate and propionate on body weight and food intake are independent of FFAR3. In addition, FFAR3 plays a minor role in butyrate stimulation of Glucagon-like peptide-1, and is not required for butyrate- and propionate-dependent induction of Glucose-dependent insulinotropic peptide. Finally, FFAR3-deficient mice show normal body weight and glucose homeostasis. Stimulation of gut hormones and food intake inhibition by butyrate and propionate may represent a novel mechanism by which gut microbiota regulates host metabolism. These effects are largely intact in FFAR3-deficient mice, indicating additional mediators are required for these beneficial effects.
Collapse
|
Journal Article |
13 |
892 |
4
|
Cloarec O, Dumas ME, Craig A, Barton RH, Trygg J, Hudson J, Blancher C, Gauguier D, Lindon JC, Holmes E, Nicholson J. Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal Chem 2005; 77:1282-9. [PMID: 15732908 DOI: 10.1021/ac048630x] [Citation(s) in RCA: 644] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe here the implementation of the statistical total correlation spectroscopy (STOCSY) analysis method for aiding the identification of potential biomarker molecules in metabonomic studies based on NMR spectroscopic data. STOCSY takes advantage of the multicollinearity of the intensity variables in a set of spectra (in this case 1H NMR spectra) to generate a pseudo-two-dimensional NMR spectrum that displays the correlation among the intensities of the various peaks across the whole sample. This method is not limited to the usual connectivities that are deducible from more standard two-dimensional NMR spectroscopic methods, such as TOCSY. Moreover, two or more molecules involved in the same pathway can also present high intermolecular correlations because of biological covariance or can even be anticorrelated. This combination of STOCSY with supervised pattern recognition and particularly orthogonal projection on latent structure-discriminant analysis (O-PLS-DA) offers a new powerful framework for analysis of metabonomic data. In a first step O-PLS-DA extracts the part of NMR spectra related to discrimination. This information is then cross-combined with the STOCSY results to help identify the molecules responsible for the metabolic variation. To illustrate the applicability of the method, it has been applied to 1H NMR spectra of urine from a metabonomic study of a model of insulin resistance based on the administration of a carbohydrate diet to three different mice strains (C57BL/6Oxjr, BALB/cOxjr, and 129S6/SvEvOxjr) in which a series of metabolites of biological importance can be conclusively assigned and identified by use of the STOCSY approach.
Collapse
|
|
20 |
644 |
5
|
Abstract
The colonic microbiota plays an important role in human digestive physiology and makes a significant contribution to homeostasis in the large bowel. The microbiome probably comprises thousands of different bacterial species. The principal metabolic activities of colonic microorganisms are associated with carbohydrate and protein digestion. Nutrients of dietary and host origin support the growth of intestinal organisms. Short-chain fatty acids (SCFAs), predominantly acetate, propionate, and butyrate, are the principal metabolites generated during the catabolism of carbohydrates and proteins. In contrast, protein digestion yields a greater diversity of end products, including SCFAs, amines, phenols, indoles, thiols, CO2, H2, and H2S, many of which have toxic properties. The majority of SCFAs are absorbed from the gut and metabolized in various body tissues, making a relatively small but significant contribution to the body's daily energy requirements. Carbohydrate fermentation is, for the most part, a beneficial process in the large gut, because the growth of saccharolytic bacteria stimulates their requirements for toxic products associated with putrefaction, for incorporation into cellular proteins, thereby protecting the host. However, as digestive materials move along the gut, carbohydrates become depleted, which may be linked to the increased prevalence of colonic disease in the distal bowel.
Collapse
|
Review |
13 |
630 |
6
|
Louis P, Scott KP, Duncan SH, Flint HJ. Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 2008; 102:1197-208. [PMID: 17448155 DOI: 10.1111/j.1365-2672.2007.03322.x] [Citation(s) in RCA: 527] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent analyses of ribosomal RNA sequence diversity have demonstrated the extent of bacterial diversity in the human colon, and have provided new tools for monitoring changes in the composition of the gut microbial community. There is now an excellent opportunity to correlate ecological niches and metabolic activities with particular phylogenetic groups among the microbiota of the human gut. Bacteria that associate closely with particulate material and surfaces in the gut include specialized primary degraders of insoluble substrates, including resistant starch, plant structural polysaccharides and mucin. Butyrate-producing bacteria found in human faeces belong mainly to the clostridial clusters IV and XIVa. In vitro and in vivo evidence indicates that a group related to Roseburia and Eubacterium rectale plays a major role in mediating the butyrogenic effect of fermentable dietary carbohydrates. Additional cluster XIVa species can convert lactate to butyrate, while some members of the clostridial cluster IX convert lactate to propionate. The metabolic outputs of the gut microbial community depend not only on available substrate, but also on the gut environment, with pH playing a major role. Better understanding of the colonic microbial ecosystem will help to explain and predict the effects of dietary additives, including nondigestible carbohydrates, probiotics and prebiotics.
Collapse
|
Review |
17 |
527 |
7
|
Jiang Q, Christen S, Shigenaga MK, Ames BN. gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr 2001; 74:714-22. [PMID: 11722951 DOI: 10.1093/ajcn/74.6.714] [Citation(s) in RCA: 494] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
gamma-tocopherol is the major form of vitamin E in many plant seeds and in the US diet, but has drawn little attention compared with alpha-tocopherol, the predominant form of vitamin E in tissues and the primary form in supplements. However, recent studies indicate that gamma-tocopherol may be important to human health and that it possesses unique features that distinguish it from alpha-tocopherol. gamma-Tocopherol appears to be a more effective trap for lipophilic electrophiles than is alpha-tocopherol. gamma-Tocopherol is well absorbed and accumulates to a significant degree in some human tissues; it is metabolized, however, largely to 2,7,8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (gamma-CEHC), which is mainly excreted in the urine. gamma-CEHC, but not the corresponding metabolite derived from alpha-tocopherol, has natriuretic activity that may be of physiologic importance. Both gamma-tocopherol and gamma-CEHC, but not alpha-tocopherol, inhibit cyclooxygenase activity and, thus, possess antiinflammatory properties. Some human and animal studies indicate that plasma concentrations of gamma-tocopherol are inversely associated with the incidence of cardiovascular disease and prostate cancer. These distinguishing features of gamma-tocopherol and its metabolite suggest that gamma-tocopherol may contribute significantly to human health in ways not recognized previously. This possibility should be further evaluated, especially considering that high doses of alpha-tocopherol deplete plasma and tissue gamma-tocopherol, in contrast with supplementation with gamma-tocopherol, which increases both. We review current information on the bioavailability, metabolism, chemistry, and nonantioxidant activities of gamma-tocopherol and epidemiologic data concerning the relation between gamma-tocopherol and cardiovascular disease and cancer.
Collapse
|
Review |
24 |
494 |
8
|
ALDRIDGE WN. Serum esterases. I. Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination. Biochem J 1953; 53:110-7. [PMID: 13032041 PMCID: PMC1198110 DOI: 10.1042/bj0530110] [Citation(s) in RCA: 485] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
research-article |
72 |
485 |
9
|
Al-Lahham SH, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:1175-83. [PMID: 20691280 DOI: 10.1016/j.bbalip.2010.07.007] [Citation(s) in RCA: 373] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 12/13/2022]
Abstract
Undigested food is fermented in the colon by the microbiota and gives rise to various microbial metabolites. Short-chain fatty acids (SCFA), including acetic, propionic and butyric acid, are the principal metabolites produced. However, most of the literature focuses on butyrate and to a lesser extent on acetate; consequently, potential effects of propionic acid (PA) on physiology and pathology have long been underestimated. It has been demonstrated that PA lowers fatty acids content in liver and plasma, reduces food intake, exerts immunosuppressive actions and probably improves tissue insulin sensitivity. Thus increased production of PA by the microbiota might be considered beneficial in the context of prevention of obesity and diabetes type 2. The molecular mechanisms by which PA may exert this plethora of physiological effects are slowly being elucidated and include intestinal cyclooxygenase enzyme, the G-protein coupled receptors 41 and 43 and activation of the peroxisome proliferator-activated receptor γ, in turn inhibiting the sentinel transcription factor NF-κB and thus increasing the threshold for inflammatory responses in general. Taken together, PA emerges as a major mediator in the link between nutrition, gut microbiota and physiology.
Collapse
|
Review |
15 |
373 |
10
|
Cruz Viggi C, Rossetti S, Fazi S, Paiano P, Majone M, Aulenta F. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7536-43. [PMID: 24901501 DOI: 10.1021/es5016789] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Interspecies electron transfer mechanisms between Bacteria and Archaea play a pivotal role during methanogenic degradation of organic matter in natural and engineered anaerobic ecosystems. Growing evidence suggests that in syntrophic communities electron transfer does not rely exclusively on the exchange of diffusible molecules and energy carriers such as hydrogen or formate, rather microorganisms have the capability to exchange metabolic electrons in a more direct manner. Here, we show that supplementation of micrometer-size magnetite (Fe3O4) particles to a methanogenic sludge enhanced (up to 33%) the methane production rate from propionate, a key intermediate in the anaerobic digestion of organic matter and a model substrate to study energy-limited syntrophic communities. The stimulatory effect most probably resulted from the establishment of a direct interspecies electron transfer (DIET), based on magnetite particles serving as electron conduits between propionate-oxidizing acetogens and carbon dioxide-reducing methanogens. Theoretical calculations revealed that DIET allows electrons to be transferred among syntrophic partners at rates which are substantially higher than those attainable via interspecies H2 transfer. Besides the remarkable potential for improving anaerobic digestion, which is a proven biological strategy for renewable energy production, the herein described conduction-based DIET could also have a role in natural methane emissions from magnetite-rich soils and sediments.
Collapse
|
|
11 |
356 |
11
|
|
|
74 |
351 |
12
|
MacFabe DF, Cain DP, Rodriguez-Capote K, Franklin AE, Hoffman JE, Boon F, Taylor AR, Kavaliers M, Ossenkopp KP. Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res 2006; 176:149-69. [PMID: 16950524 DOI: 10.1016/j.bbr.2006.07.025] [Citation(s) in RCA: 341] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 07/13/2006] [Accepted: 07/24/2006] [Indexed: 11/29/2022]
Abstract
Clinical observations suggest that certain gut and dietary factors may transiently worsen symptoms in autism spectrum disorders (ASD), epilepsy and some inheritable metabolic disorders. Propionic acid (PPA) is a short chain fatty acid and an important intermediate of cellular metabolism. PPA is also a by-product of a subpopulation of human gut enterobacteria and is a common food preservative. We examined the behavioural, electrophysiological, neuropathological, and biochemical effects of treatment with PPA and related compounds in adult rats. Intraventricular infusions of PPA produced reversible repetitive dystonic behaviours, hyperactivity, turning behaviour, retropulsion, caudate spiking, and the progressive development of limbic kindled seizures, suggesting that this compound has central effects. Biochemical analyses of brain homogenates from PPA treated rats showed an increase in oxidative stress markers (e.g., lipid peroxidation and protein carbonylation) and glutathione S-transferase activity coupled with a decrease in glutathione and glutathione peroxidase activity. Neurohistological examinations of hippocampus and adjacent white matter (external capsule) of PPA treated rats revealed increased reactive astrogliosis (GFAP immunoreactivity) and activated microglia (CD68 immunoreactivity) suggestive of a neuroinflammatory process. This was coupled with a lack of cytotoxicity (cell counts, cleaved caspase 3' immunoreactivity), and an increase in phosphorylated CREB immunoreactivity. We propose that some types of autism may be partial forms of genetically inherited or acquired disorders involving altered PPA metabolism. Thus, intraventricular administration of PPA in rats may provide a means to model some aspects of human ASD in rats.
Collapse
|
Validation Study |
19 |
341 |
13
|
Abstract
Estrogens are reported to have both anxiogenic and anxiolytic properties. This dichotomous neurobiological response to estrogens may be mediated by the existence of two distinct estrogen receptor (ER) systems, ERalpha and ERbeta. In brain, ERalpha plays a critical role in regulating reproductive neuroendocrine function, whereas ERbeta may be more important in regulating nonreproductive functions. To determine whether estrogen's anxiolytic actions could be mediated by ERbeta, we examined anxiety-related behaviors after treatment with ER subtype-selective agonists. Ovariectomized female rats, divided into four treatment groups, were injected with the selective ERbeta agonist diarylpropionitrile (DPN), the ERalpha-selective agonist propyl-pyrazole-triol (PPT), 17beta-estradiol, or vehicle daily for 4d. After injections, behavior was monitored in the elevated plus maze or open field. Rats treated with DPN showed significantly decreased anxiety-related behaviors in both behavioral paradigms. In the elevated plus maze, DPN significantly increased the number of open arm entries and time spent on the open arms of the maze. Furthermore, DPN significantly reduced, whereas PPT increased, anxiogenic behaviors such as the number of fecal boli and time spent grooming. In the open field, DPN-treated females made more rears, interacted more with a novel object, and spent more time in the middle of the open field than did control or PPT-treated rats. To confirm that DPN's anxiolytic actions are ER mediated, the nonselective ER antagonist tamoxifen was administered alone or in combination with DPN. Tamoxifen blocked the previously identified anxiolytic actions of DPN. Taken together, these findings suggest that the anxiolytic properties of estrogens are ERbeta mediated.
Collapse
|
|
20 |
341 |
14
|
Hutt AJ, Caldwell J. The metabolic chiral inversion of 2-arylpropionic acids--a novel route with pharmacological consequences. J Pharm Pharmacol 1983; 35:693-704. [PMID: 6139449 DOI: 10.1111/j.2042-7158.1983.tb02874.x] [Citation(s) in RCA: 334] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
Review |
42 |
334 |
15
|
Hoyles L, Snelling T, Umlai UK, Nicholson JK, Carding SR, Glen RC, McArthur S. Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. MICROBIOME 2018; 6:55. [PMID: 29562936 PMCID: PMC5863458 DOI: 10.1186/s40168-018-0439-y] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/09/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Gut microbiota composition and function are symbiotically linked with host health and altered in metabolic, inflammatory and neurodegenerative disorders. Three recognised mechanisms exist by which the microbiome influences the gut-brain axis: modification of autonomic/sensorimotor connections, immune activation, and neuroendocrine pathway regulation. We hypothesised interactions between circulating gut-derived microbial metabolites, and the blood-brain barrier (BBB) also contribute to the gut-brain axis. Propionate, produced from dietary substrates by colonic bacteria, stimulates intestinal gluconeogenesis and is associated with reduced stress behaviours, but its potential endocrine role has not been addressed. RESULTS After demonstrating expression of the propionate receptor FFAR3 on human brain endothelium, we examined the impact of a physiologically relevant propionate concentration (1 μM) on BBB properties in vitro. Propionate inhibited pathways associated with non-specific microbial infections via a CD14-dependent mechanism, suppressed expression of LRP-1 and protected the BBB from oxidative stress via NRF2 (NFE2L2) signalling. CONCLUSIONS Together, these results suggest gut-derived microbial metabolites interact with the BBB, representing a fourth facet of the gut-brain axis that warrants further attention.
Collapse
|
research-article |
7 |
334 |
16
|
McNabney SM, Henagan TM. Short Chain Fatty Acids in the Colon and Peripheral Tissues: A Focus on Butyrate, Colon Cancer, Obesity and Insulin Resistance. Nutrients 2017; 9:E1348. [PMID: 29231905 PMCID: PMC5748798 DOI: 10.3390/nu9121348] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Increased dietary fiber consumption has been associated with many beneficial effects, including amelioration of obesity and insulin resistance. These effects may be due to the increased production of short chain fatty acids, including propionate, acetate and butyrate, during fermentation of the dietary fiber in the colon. Indeed, oral and dietary supplementation of butyrate alone has been shown to prevent high fat-diet induced obesity and insulin resistance. This review focuses on sources of short chain fatty acids, with emphasis on sources of butyrate, mechanisms of fiber and butyrate metabolism in the gut and its protective effects on colon cancer and the peripheral effects of butyrate supplementation in peripheral tissues in the prevention and reversal of obesity and insulin resistance.
Collapse
|
Review |
8 |
331 |
17
|
Miller TL, Wolin MJ. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol 1996; 62:1589-92. [PMID: 8633856 PMCID: PMC167932 DOI: 10.1128/aem.62.5.1589-1592.1996] [Citation(s) in RCA: 325] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The pathways of short-chain fatty acid (SCFA; acetate, propionate, and butyrate) formation from glucose were determined for the human fecal microbial communities of two subjects. The pathways were identified by radioisotope analysis of the SCFA and CO2 obtained after incubation of fecal suspensions with glucose under 20% CO2 with [1-14C]glucose, [3,4-14C]glucose, or 14CO2. Acetate was chemically degraded to learn the labeling of the methyl and carboxyl carbons. The labeling of CO2 and acetate showed that the major route of glucose catabolism was the Embden-Meyerhof-Parnas pathway, with production of CO2 from pyruvate carboxyl carbon. Labeling of the methyl and carboxyl carbons of acetate by 14CO2 or [3,4-14C]glucose proved that acetate was formed from CO2 by the Wood-Ljungdahl pathway. CO2 reduction accounted for about one-third of the acetate formed by suspensions from subject 1 and about one-fourth of the acetate formed by suspensions from subject 2. Propionate was formed by a CO2 fixation pathway, and butyrate was formed by classical routes of acetyl-S coenzyme A condensation. The amount of CO2 formed from [1-14C] glucose and acetate labeling patterns obtained with the other 14C precursors indicated that the Entner-Doudoroff, transketolase-transaldolase, and heterolactic pathways were not significant. Fermentation of cabbage cellulose by subject 1 followed the same pathways as were used for glucose. The results with suspensions from subject 2 suggested that some radioactive acetate was formed from the C-3 of glucose by the Bifidobacterium pathway.
Collapse
|
research-article |
29 |
325 |
18
|
Jacobson A, Lam L, Rajendram M, Tamburini F, Honeycutt J, Pham T, Van Treuren W, Pruss K, Stabler SR, Lugo K, Bouley DM, Vilches-Moure JG, Smith M, Sonnenburg JL, Bhatt AS, Huang KC, Monack D. A Gut Commensal-Produced Metabolite Mediates Colonization Resistance to Salmonella Infection. Cell Host Microbe 2018; 24:296-307.e7. [PMID: 30057174 PMCID: PMC6223613 DOI: 10.1016/j.chom.2018.07.002] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/10/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
The intestinal microbiota provides colonization resistance against pathogens, limiting pathogen expansion and transmission. These microbiota-mediated mechanisms were previously identified by observing loss of colonization resistance after antibiotic treatment or dietary changes, which severely disrupt microbiota communities. We identify a microbiota-mediated mechanism of colonization resistance against Salmonella enterica serovar Typhimurium (S. Typhimurium) by comparing high-complexity commensal communities with different levels of colonization resistance. Using inbred mouse strains with different infection dynamics and S. Typhimurium intestinal burdens, we demonstrate that Bacteroides species mediate colonization resistance against S. Typhimurium by producing the short-chain fatty acid propionate. Propionate directly inhibits pathogen growth in vitro by disrupting intracellular pH homeostasis, and chemically increasing intestinal propionate levels protects mice from S. Typhimurium. In addition, administering susceptible mice Bacteroides, but not a propionate-production mutant, confers resistance to S. Typhimurium. This work provides mechanistic understanding into the role of individualized microbial communities in host-to-host variability of pathogen transmission.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
321 |
19
|
Epstein CB, Waddle JA, Hale W, Davé V, Thornton J, Macatee TL, Garner HR, Butow RA. Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 2001; 12:297-308. [PMID: 11179416 PMCID: PMC30944 DOI: 10.1091/mbc.12.2.297] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mitochondrial dysfunction can lead to diverse cellular and organismal responses. We used DNA microarrays to characterize the transcriptional responses to different mitochondrial perturbations in Saccharomyces cerevisiae. We examined respiratory-deficient petite cells and respiratory-competent wild-type cells treated with the inhibitors of oxidative phosphorylation antimycin, carbonyl cyanide m-chlorophenylhydrazone, or oligomycin. We show that respiratory deficiency, but not inhibition of mitochondrial ATP synthesis per se, induces a suite of genes associated with both peroxisomal activities and metabolite-restoration (anaplerotic) pathways that would mitigate the loss of a complete tricarboxylic acid cycle. The array data suggested, and direct microscopic observation of cells expressing a derivative of green fluorescent protein with a peroxisomal matrix-targeting signal confirmed, that respiratory deficiency dramatically induces peroxisome biogenesis. Transcript profiling of cells harboring null alleles of RTG1, RTG2, or RTG3, genes known to control signaling from mitochondria to the nucleus, suggests that there are multiple pathways of cross-talk between these organelles in yeast.
Collapse
|
research-article |
24 |
320 |
20
|
Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M. 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Neurol Sci 1991; 18:492-8. [PMID: 1782616 DOI: 10.1017/s0317167100032212] [Citation(s) in RCA: 319] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
3-Nitropropionic acid (3-NPA)--a suicide inhibitor of succinate dehydrogenase--is a widely distributed plant and fungal neurotoxin known to induce a damage to basal ganglia, hippocampus, spinal tracts and peripheral nerves in animals. Recent reports from Northern China indicate that 3-NPA is also likely to be responsible for the development of putaminal necrosis with delayed dystonia in children after ingestion of mildewed sugar cane. This article discusses the role of 3-NPA in the causation of the disease in China, its neurotoxic effects in animals and the potential role for this compound as a probe of selective neuronal vulnerability.
Collapse
|
Review |
34 |
319 |
21
|
Kartal B, Rattray J, van Niftrik LA, van de Vossenberg J, Schmid MC, Webb RI, Schouten S, Fuerst JA, Damsté JS, Jetten MSM, Strous M. Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 2007; 30:39-49. [PMID: 16644170 DOI: 10.1016/j.syapm.2006.03.004] [Citation(s) in RCA: 317] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Indexed: 10/24/2022]
Abstract
The bacteria that mediate the anaerobic oxidation of ammonium (anammox) are detected worldwide in natural and man-made ecosystems, and contribute up to 50% to the loss of inorganic nitrogen in the oceans. Two different anammox species rarely live in a single habitat, suggesting that each species has a defined but yet unknown niche. Here we describe a new anaerobic ammonium oxidizing bacterium with a defined niche: the co-oxidation of propionate and ammonium. The new anammox species was enriched in a laboratory scale bioreactor in the presence of ammonium and propionate. Interestingly, this particular anammox species could out-compete other anammox bacteria and heterotrophic denitrifiers for the oxidation of propionate in the presence of ammonium, nitrite and nitrate. We provisionally named the new species Candidatus "Anammoxoglobus propionicus".
Collapse
|
|
18 |
317 |
22
|
Oldendorf WH. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. THE AMERICAN JOURNAL OF PHYSIOLOGY 1973; 224:1450-3. [PMID: 4712154 DOI: 10.1152/ajplegacy.1973.224.6.1450] [Citation(s) in RCA: 313] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
|
52 |
313 |
23
|
Muñoz-Elías EJ, Upton AM, Cherian J, McKinney JD. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 2006; 60:1109-22. [PMID: 16689789 DOI: 10.1111/j.1365-2958.2006.05155.x] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Growth of bacteria and fungi on fatty acid substrates requires the catabolic beta-oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl-CoA generated by beta-oxidation of odd-chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of methylcitrate synthase (MCS) and methylcitrate dehydratase (MCD) but not 2-methylisocitrate lyase (MCL). Although MCLs share limited homology with isocitrate lyases (ICLs) of the glyoxylate cycle, these enzymes are thought to be functionally non-overlapping. Previously we reported that the M. tuberculosis ICL isoforms 1 and 2 are jointly required for growth on fatty acids, in macrophages, and in mice. ICL-deficient bacteria could not grow on propionate, suggesting that in M. tuberculosis ICL1 and ICL2 might function as ICLs in the glyoxylate cycle and as MCLs in the methylcitrate cycle. Here we provide biochemical and genetic evidence supporting this interpretation. The role of the methylcitrate cycle in M. tuberculosis metabolism was further evaluated by constructing a mutant strain in which prpC (encoding MCS) and prpD (encoding MCD) were deleted. The DeltaprpDC strain could not grow on propionate media in vitro or in murine bone marrow-derived macrophages infected ex vivo; growth under these conditions was restored by complementation with a plasmid containing prpDC. Paradoxically, bacterial growth and persistence, and tissue pathology, were indistinguishable in mice infected with wild-type or DeltaprpDC bacteria.
Collapse
|
|
19 |
263 |
24
|
Brandstetter H, Kühne A, Bode W, Huber R, von der Saal W, Wirthensohn K, Engh RA. X-ray structure of active site-inhibited clotting factor Xa. Implications for drug design and substrate recognition. J Biol Chem 1996; 271:29988-92. [PMID: 8939944 DOI: 10.1074/jbc.271.47.29988] [Citation(s) in RCA: 243] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The 3.0-A resolution x-ray structure of human des-Gla-coagulation factor Xa (fXa) has been determined in complex with the synthetic inhibitor DX-9065a. The binding geometry is characterized primarily by two interaction sites: the naphthamidine group is fixed in the S1 pocket by a typical salt bridge to Asp-189, while the pyrrolidine ring binds in the unique aryl-binding site (S4) of fXa. Unlike the large majority of inhibitor complexes with serine proteinases, Gly-216 (S3) does not contribute to hydrogen bond formation. In contrast to typical thrombin binding modes, the S2 site of fXa cannot be used by DX-9065a since it is blocked by Tyr-99, and the aryl-binding site (S4) of fXa is lined by carbonyl oxygen atoms that can accommodate positive charges. This has implications for natural substrate recognition as well as for drug design.
Collapse
|
|
29 |
243 |
25
|
Jiang Q, Ames BN. Gamma-tocopherol, but not alpha-tocopherol, decreases proinflammatory eicosanoids and inflammation damage in rats. FASEB J 2003; 17:816-22. [PMID: 12724340 DOI: 10.1096/fj.02-0877com] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gamma-tocopherol (gammaT), the major form of vitamin E in U.S. diets, and its physiological metabolite 2, 7, 8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (gamma-CEHC), in contrast to alpha-tocopherol (alphaT), the primary vitamin E in supplements, inhibit cyclooxygenase-catalyzed synthesis of prostaglandin E2 (PGE2) in activated macrophages and epithelial cells. Here we report that in carrageenan-induced inflammation in male Wistar rats, administration of gammaT (33 or 100 mg/kg) and gamma-CEHC (2 mg/pouch), but not alphaT (33 mg/kg), significantly reduced PGE2 synthesis at the site of inflammation. gammaT, but not alphaT, significantly inhibited the formation of leukotriene B4, a potent chemotactic agent synthesized by the 5-lipoxygenase of neutrophils. Although gammaT had no effect on neutrophil infiltration, it significantly attenuated the partial loss of food consumption caused by inflammation-associated discomfort. Administration of gammaT led consistently to a significant reduction of inflammation-mediated increase in 8-isoprostane, a biomarker of lipid peroxidation. gammaT at 100 mg/kg reduced TNF-alpha (65%;P=0.069), total nitrate/nitrite (40%;P=0.1), and lactate dehydrogenase activity (30%;P=0.067). Collectively, gammaT inhibits proinflammatory PGE2 and LTB4, decreases TNF-alpha, and attenuates inflammation-mediated damage. These findings provide strong evidence that gammaT shows anti-inflammatory activities in vivo that may be important for human disease prevention and therapy.
Collapse
|
Comparative Study |
22 |
240 |