1
|
D'Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, Tomaszewski JE, Renshaw AA, Kaplan I, Beard CJ, Wein A. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998; 280:969-74. [PMID: 9749478 DOI: 10.1001/jama.280.11.969] [Citation(s) in RCA: 3419] [Impact Index Per Article: 126.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONTEXT Interstitial radiation (implant) therapy is used to treat clinically localized adenocarcinoma of the prostate, but how it compares with other treatments is not known. OBJECTIVE To estimate control of prostate-specific antigen (PSA) after radical prostatectomy (RP), external beam radiation (RT), or implant with or without neoadjuvant androgen deprivation therapy in patients with clinically localized prostate cancer. DESIGN Retrospective cohort study of outcome data compared using Cox regression multivariable analyses. SETTING AND PATIENTS A total of 1872 men treated between January 1989 and October 1997 with an RP (n = 888) or implant with or without neoadjuvant androgen deprivation therapy (n = 218) at the Hospital of the University of Pennsylvania, Philadelphia, or RT (n = 766) at the Joint Center for Radiation Therapy, Boston, Mass, were enrolled. MAIN OUTCOME MEASURE Actuarial freedom from PSA failure (defined as PSA outcome). RESULTS The relative risk (RR) of PSA failure in low-risk patients (stage T1c, T2a and PSA level < or =10 ng/mL and Gleason score < or =6) treated using RT, implant plus androgen deprivation therapy, or implant therapy was 1.1 (95% confidence interval [CI], 0.5-2.7), 0.5 (95% CI, 0.1-1.9), and 1.1 (95% CI, 0.3-3.6), respectively, compared with those patients treated with RP. The RRs of PSA failure in the intermediate-risk patients (stage T2b or Gleason score of 7 or PSA level >10 and < or =20 ng/mL) and high-risk patients (stage T2c or PSA level >20 ng/mL or Gleason score > or =8) treated with implant compared with RP were 3.1 (95% CI, 1.5-6.1) and 3.0 (95% CI, 1.8-5.0), respectively. The addition of androgen deprivation to implant therapy did not improve PSA outcome in high-risk patients but resulted in a PSA outcome that was not statistically different compared with the results obtained using RP or RT in intermediate-risk patients. These results were unchanged when patients were stratified using the traditional rankings of biopsy Gleason scores of 2 through 4 vs 5 through 6 vs 7 vs 8 through 10. CONCLUSIONS Low-risk patients had estimates of 5-year PSA outcome after treatment with RP, RT, or implant with or without neoadjuvant androgen deprivation that were not statistically different, whereas intermediate- and high-risk patients treated with RP or RT did better then those treated by implant. Prospective randomized trials are needed to verify these findings.
Collapse
|
Comparative Study |
27 |
3419 |
2
|
Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22:969-76. [PMID: 15258594 DOI: 10.1038/nbt994] [Citation(s) in RCA: 2917] [Impact Index Per Article: 138.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 05/17/2004] [Indexed: 11/09/2022]
Abstract
We describe the development of multifunctional nanoparticle probes based on semiconductor quantum dots (QDs) for cancer targeting and imaging in living animals. The structural design involves encapsulating luminescent QDs with an ABC triblock copolymer and linking this amphiphilic polymer to tumor-targeting ligands and drug-delivery functionalities. In vivo targeting studies of human prostate cancer growing in nude mice indicate that the QD probes accumulate at tumors both by the enhanced permeability and retention of tumor sites and by antibody binding to cancer-specific cell surface biomarkers. Using both subcutaneous injection of QD-tagged cancer cells and systemic injection of multifunctional QD probes, we have achieved sensitive and multicolor fluorescence imaging of cancer cells under in vivo conditions. We have also integrated a whole-body macro-illumination system with wavelength-resolved spectral imaging for efficient background removal and precise delineation of weak spectral signatures. These results raise new possibilities for ultrasensitive and multiplexed imaging of molecular targets in vivo.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
2917 |
3
|
de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, Gravis G, Bodrogi I, Mackenzie MJ, Shen L, Roessner M, Gupta S, Sartor AO. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 2010; 376:1147-54. [PMID: 20888992 DOI: 10.1016/s0140-6736(10)61389-x] [Citation(s) in RCA: 2408] [Impact Index Per Article: 160.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Cabazitaxel is a novel tubulin-binding taxane drug with antitumour activity in docetaxel-resistant cancers. We aimed to compare the efficacy and safety of cabazitaxel plus prednisone with those of mitoxantrone plus prednisone in men with metastatic castration-resistant prostate cancer with progressive disease after docetaxel-based treatment. METHODS We undertook an open-label randomised phase 3 trial in men with metastatic castration-resistant prostate cancer who had received previous hormone therapy, but whose disease had progressed during or after treatment with a docetaxel-containing regimen. Participants were treated with 10 mg oral prednisone daily, and were randomly assigned to receive either 12 mg/m(2) mitoxantrone intravenously over 15-30 min or 25 mg/m(2) cabazitaxel intravenously over 1 h every 3 weeks. The random allocation schedule was computer-generated; patients and treating physicians were not masked to treatment allocation, but the study team was masked to the data analysis. The primary endpoint was overall survival. Secondary endpoints included progression-free survival and safety. Analysis was by intention to treat. This study is registered at ClinicalTrials.gov, NCT00417079. FINDINGS 755 men were allocated to treatment groups (377 mitoxantrone, 378 cabazitaxel) and were included in the intention-to-treat analysis. At the cutoff for the final analysis (Sept 25, 2009), median survival was 15·1 months (95% CI 14·1-16·3) in the cabazitaxel group and 12·7 months (11·6-13·7) in the mitoxantrone group. The hazard ratio for death of men treated with cabazitaxel compared with those taking mitoxantrone was 0·70 (95% CI 0·59-0·83, p<0·0001). Median progression-free survival was 2·8 months (95% CI 2·4-3·0) in the cabazitaxel group and 1·4 months (1·4-1·7) in the mitoxantrone group (HR 0·74, 0·64-0·86, p<0·0001). The most common clinically significant grade 3 or higher adverse events were neutropenia (cabazitaxel, 303 [82%] patients vs mitoxantrone, 215 [58%]) and diarrhoea (23 [6%] vs one [<1%]). 28 (8%) patients in the cabazitaxel group and five (1%) in the mitoxantrone group had febrile neutropenia. INTERPRETATION Treatment with cabazitaxel plus prednisone has important clinical antitumour activity, improving overall survival in patients with metastatic castration-resistant prostate cancer whose disease has progressed during or after docetaxel-based therapy. FUNDING Sanofi-Aventis.
Collapse
|
Clinical Trial, Phase III |
15 |
2408 |
4
|
The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015; 163:1011-25. [PMID: 26544944 PMCID: PMC4695400 DOI: 10.1016/j.cell.2015.10.025] [Citation(s) in RCA: 2300] [Impact Index Per Article: 230.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/14/2015] [Accepted: 10/06/2015] [Indexed: 12/12/2022]
Abstract
There is substantial heterogeneity among primary prostate cancers, evident in the spectrum of molecular abnormalities and its variable clinical course. As part of The Cancer Genome Atlas (TCGA), we present a comprehensive molecular analysis of 333 primary prostate carcinomas. Our results revealed a molecular taxonomy in which 74% of these tumors fell into one of seven subtypes defined by specific gene fusions (ERG, ETV1/4, and FLI1) or mutations (SPOP, FOXA1, and IDH1). Epigenetic profiles showed substantial heterogeneity, including an IDH1 mutant subset with a methylator phenotype. Androgen receptor (AR) activity varied widely and in a subtype-specific manner, with SPOP and FOXA1 mutant tumors having the highest levels of AR-induced transcripts. 25% of the prostate cancers had a presumed actionable lesion in the PI3K or MAPK signaling pathways, and DNA repair genes were inactivated in 19%. Our analysis reveals molecular heterogeneity among primary prostate cancers, as well as potentially actionable molecular defects.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
2300 |
5
|
Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2006; 65:10946-51. [PMID: 16322242 DOI: 10.1158/0008-5472.can-05-2018] [Citation(s) in RCA: 2032] [Impact Index Per Article: 106.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Existing therapies for prostate cancer eradicates the bulk of cells within a tumor. However, most patients go on to develop androgen-independent disease that remains incurable by current treatment strategies. There is now increasing evidence in some malignancies that the tumor cells are organized as a hierarchy originating from rare stem cells that are responsible for maintaining the tumor. We report here the identification and characterization of a cancer stem cell population from human prostate tumors, which possess a significant capacity for self-renewal. These cells are also able to regenerate the phenotypically mixed populations of nonclonogenic cells, which express differentiated cell products, such as androgen receptor and prostatic acid phosphatase. The cancer stem cells have a CD44+/alpha2beta1hi/CD133+ phenotype, and we have exploited these markers to isolate cells from a series of prostate tumors with differing Gleason grade and metastatic states. Approximately 0.1% of cells in any tumor expressed this phenotype, and there was no correlation between the number of CD44+/alpha2beta1hi/CD133+ cells and tumor grade. The identification of a prostate cancer stem cell provides a powerful tool to investigate the tumorigenic process and to develop therapies targeted to the stem cell.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
2032 |
6
|
Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009; 457:910-4. [PMID: 19212411 PMCID: PMC2724746 DOI: 10.1038/nature07762] [Citation(s) in RCA: 1657] [Impact Index Per Article: 103.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 01/06/2009] [Indexed: 12/11/2022]
Abstract
Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumours, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we profiled more than 1,126 metabolites across 262 clinical samples related to prostate cancer (42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer and metastatic disease. Sarcosine, an N-methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly increased during prostate cancer progression to metastasis and can be detected non-invasively in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine-N-methyl transferase, the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase, induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Here, by profiling the metabolomic alterations of prostate cancer progression, we reveal sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
1657 |
7
|
Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, Cordon-Cardo C, Pandolfi PP. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005; 436:725-30. [PMID: 16079851 PMCID: PMC1939938 DOI: 10.1038/nature03918] [Citation(s) in RCA: 1566] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 06/15/2005] [Indexed: 02/07/2023]
Abstract
Cellular senescence has been theorized to oppose neoplastic transformation triggered by activation of oncogenic pathways in vitro, but the relevance of senescence in vivo has not been established. The PTEN and p53 tumour suppressors are among the most commonly inactivated or mutated genes in human cancer including prostate cancer. Although they are functionally distinct, reciprocal cooperation has been proposed, as PTEN is thought to regulate p53 stability, and p53 to enhance PTEN transcription. Here we show that conditional inactivation of Trp53 in the mouse prostate fails to produce a tumour phenotype, whereas complete Pten inactivation in the prostate triggers non-lethal invasive prostate cancer after long latency. Strikingly, combined inactivation of Pten and Trp53 elicits invasive prostate cancer as early as 2 weeks after puberty and is invariably lethal by 7 months of age. Importantly, acute Pten inactivation induces growth arrest through the p53-dependent cellular senescence pathway both in vitro and in vivo, which can be fully rescued by combined loss of Trp53. Furthermore, we detected evidence of cellular senescence in specimens from early-stage human prostate cancer. Our results demonstrate the relevance of cellular senescence in restricting tumorigenesis in vivo and support a model for cooperative tumour suppression in which p53 is an essential failsafe protein of Pten-deficient tumours.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
1566 |
8
|
Metzger E, Wissmann M, Yin N, Müller JM, Schneider R, Peters AHFM, Günther T, Buettner R, Schüle R. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 2005; 437:436-9. [PMID: 16079795 DOI: 10.1038/nature04020] [Citation(s) in RCA: 1362] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 07/08/2005] [Indexed: 12/11/2022]
Abstract
Gene regulation in eukaryotes requires the coordinate interaction of chromatin-modulating proteins with specific transcription factors such as the androgen receptor. Gene activation and repression is specifically regulated by histone methylation status at distinct lysine residues. Here we show that lysine-specific demethylase 1 (LSD1; also known as BHC110) co-localizes with the androgen receptor in normal human prostate and prostate tumour. LSD1 interacts with androgen receptor in vitro and in vivo, and stimulates androgen-receptor-dependent transcription. Conversely, knockdown of LSD1 protein levels abrogates androgen-induced transcriptional activation and cell proliferation. Chromatin immunoprecipitation analyses demonstrate that androgen receptor and LSD1 form chromatin-associated complexes in a ligand-dependent manner. LSD1 relieves repressive histone marks by demethylation of histone H3 at lysine 9 (H3-K9), thereby leading to de-repression of androgen receptor target genes. Furthermore, we identify pargyline as an inhibitor of LSD1. Pargyline blocks demethylation of H3-K9 by LSD1 and consequently androgen-receptor-dependent transcription. Thus, modulation of LSD1 activity offers a new strategy to regulate androgen receptor functions. Here, we link demethylation of a repressive histone mark with androgen-receptor-dependent gene activation, thus providing a mechanism by which demethylases control specific gene expression.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
1362 |
9
|
Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM. Delineation of prognostic biomarkers in prostate cancer. Nature 2001; 412:822-6. [PMID: 11518967 DOI: 10.1038/35090585] [Citation(s) in RCA: 1175] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Prostate cancer is the most frequently diagnosed cancer in American men. Screening for prostate-specific antigen (PSA) has led to earlier detection of prostate cancer, but elevated serum PSA levels may be present in non-malignant conditions such as benign prostatic hyperlasia (BPH). Characterization of gene-expression profiles that molecularly distinguish prostatic neoplasms may identify genes involved in prostate carcinogenesis, elucidate clinical biomarkers, and lead to an improved classification of prostate cancer. Using microarrays of complementary DNA, we examined gene-expression profiles of more than 50 normal and neoplastic prostate specimens and three common prostate-cancer cell lines. Signature expression profiles of normal adjacent prostate (NAP), BPH, localized prostate cancer, and metastatic, hormone-refractory prostate cancer were determined. Here we establish many associations between genes and prostate cancer. We assessed two of these genes-hepsin, a transmembrane serine protease, and pim-1, a serine/threonine kinase-at the protein level using tissue microarrays consisting of over 700 clinically stratified prostate-cancer specimens. Expression of hepsin and pim-1 proteins was significantly correlated with measures of clinical outcome. Thus, the integration of cDNA microarray, high-density tissue microarray, and linked clinical and pathology data is a powerful approach to molecular profiling of human cancer.
Collapse
|
|
24 |
1175 |
10
|
Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 2010; 38:662-74. [PMID: 20541999 PMCID: PMC2886305 DOI: 10.1016/j.molcel.2010.03.021] [Citation(s) in RCA: 1087] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 01/27/2010] [Accepted: 03/26/2010] [Indexed: 01/09/2023]
Abstract
Expression of the INK4b/ARF/INK4a tumor suppressor locus in normal and cancerous cell growth is controlled by methylation of histone H3 at lysine 27 (H3K27me) as directed by the Polycomb group proteins. The antisense noncoding RNA ANRIL of the INK4b/ARF/INK4a locus is also important for expression of the protein-coding genes in cis, but its mechanism has remained elusive. Here we report that chromobox 7 (CBX7) within the polycomb repressive complex 1 binds to ANRIL, and both CBX7 and ANRIL are found at elevated levels in prostate cancer tissues. In concert with H3K27me recognition, binding to RNA contributes to CBX7 function, and disruption of either interaction impacts the ability of CBX7 to repress the INK4b/ARF/INK4a locus and control senescence. Structure-guided analysis reveals the molecular interplay between noncoding RNA and H3K27me as mediated by the conserved chromodomain. Our study suggests a mechanism by which noncoding RNA participates directly in epigenetic transcriptional repression.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
1087 |
11
|
Keating NL, O'Malley AJ, Smith MR. Diabetes and cardiovascular disease during androgen deprivation therapy: observational study of veterans with prostate cancer. J Natl Cancer Inst 2012; 24:4448-56. [PMID: 16983113 DOI: 10.1200/jco.2006.06.2497] [Citation(s) in RCA: 1076] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Androgen deprivation therapy with a gonadotropin-releasing hormone (GnRH) agonist is associated with increased fat mass and insulin resistance in men with prostate cancer, but the risk of obesity-related disease during treatment has not been well studied. We assessed whether androgen deprivation therapy is associated with an increased incidence of diabetes and cardiovascular disease. Patients and Methods Observational study of a population-based cohort of 73,196 fee-for-service Medicare enrollees age 66 years or older who were diagnosed with locoregional prostate cancer during 1992 to 1999 and observed through 2001. We used Cox proportional hazards models to assess whether treatment with GnRH agonists or orchiectomy was associated with diabetes, coronary heart disease, myocardial infarction, and sudden cardiac death. Results More than one third of men received a GnRH agonist during follow-up. GnRH agonist use was associated with increased risk of incident diabetes (adjusted hazard ratio [HR], 1.44; P < .001), coronary heart disease (adjusted HR, 1.16; P < .001), myocardial infarction (adjusted HR, 1.11; P = .03), and sudden cardiac death (adjusted HR, 1.16; P = .004). Men treated with orchiectomy were more likely to develop diabetes (adjusted HR, 1.34; P < .001) but not coronary heart disease, myocardial infarction, or sudden cardiac death (all P > .20). Conclusion GnRH agonist treatment for men with locoregional prostate cancer may be associated with an increased risk of incident diabetes and cardiovascular disease. The benefits of GnRH agonist treatment should be weighed against these potential risks. Additional research is needed to identify populations of men at highest risk of treatment-related complications and to develop strategies to prevent treatment-related diabetes and cardiovascular disease.
Collapse
|
Published Erratum |
13 |
1076 |
12
|
Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, True LD, Nelson PS. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 2008; 68:4447-54. [PMID: 18519708 PMCID: PMC2536685 DOI: 10.1158/0008-5472.can-08-0249] [Citation(s) in RCA: 1067] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Therapy for advanced prostate cancer centers on suppressing systemic androgens and blocking activation of the androgen receptor (AR). Despite anorchid serum androgen levels, nearly all patients develop castration-resistant disease. We hypothesized that ongoing steroidogenesis within prostate tumors and the maintenance of intratumoral androgens may contribute to castration-resistant growth. Using mass spectrometry and quantitative reverse transcription-PCR, we evaluated androgen levels and transcripts encoding steroidogenic enzymes in benign prostate tissue, untreated primary prostate cancer, metastases from patients with castration-resistant prostate cancer, and xenografts derived from castration-resistant metastases. Testosterone levels within metastases from anorchid men [0.74 ng/g; 95% confidence interval (95% CI), 0.59-0.89] were significantly higher than levels within primary prostate cancers from untreated eugonadal men (0.23 ng/g; 95% CI, 0.03-0.44; P < 0.0001). Compared with primary prostate tumors, castration-resistant metastases displayed alterations in genes encoding steroidogenic enzymes, including up-regulated expression of FASN, CYP17A1, HSD3B1, HSD17B3, CYP19A1, and UGT2B17 and down-regulated expression of SRD5A2 (P < 0.001 for all). Prostate cancer xenografts derived from castration-resistant tumors maintained similar intratumoral androgen levels when passaged in castrate compared with eugonadal animals. Metastatic prostate cancers from anorchid men express transcripts encoding androgen-synthesizing enzymes and maintain intratumoral androgens at concentrations capable of activating AR target genes and maintaining tumor cell survival. We conclude that intracrine steroidogenesis may permit tumors to circumvent low levels of circulating androgens. Maximal therapeutic efficacy in the treatment of castration-resistant prostate cancer will require novel agents capable of inhibiting intracrine steroidogenic pathways within the prostate tumor microenvironment.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
1067 |
13
|
Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JM, Papaemmanuil E, Brewer DS, Kallio HM, Högnäs G, Annala M, Kivinummi K, Goody V, Latimer C, O’Meara S, Dawson KJ, Isaacs W, Emmert-Buck MR, Nykter M, Foster C, Kote-Jarai Z, Easton D, Whitaker HC, ICGC Prostate Group, Neal DE, Cooper CS, Eeles RA, Visakorpi T, Campbell PJ, McDermott U, Wedge DC, Bova GS. The evolutionary history of lethal metastatic prostate cancer. Nature 2015; 520:353-357. [PMID: 25830880 PMCID: PMC4413032 DOI: 10.1038/nature14347] [Citation(s) in RCA: 1039] [Impact Index Per Article: 103.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 02/23/2015] [Indexed: 02/07/2023]
Abstract
Cancers emerge from an ongoing Darwinian evolutionary process, often leading to multiple competing subclones within a single primary tumour. This evolutionary process culminates in the formation of metastases, which is the cause of 90% of cancer-related deaths. However, despite its clinical importance, little is known about the principles governing the dissemination of cancer cells to distant organs. Although the hypothesis that each metastasis originates from a single tumour cell is generally supported, recent studies using mouse models of cancer demonstrated the existence of polyclonal seeding from and interclonal cooperation between multiple subclones. Here we sought definitive evidence for the existence of polyclonal seeding in human malignancy and to establish the clonal relationship among different metastases in the context of androgen-deprived metastatic prostate cancer. Using whole-genome sequencing, we characterized multiple metastases arising from prostate tumours in ten patients. Integrated analyses of subclonal architecture revealed the patterns of metastatic spread in unprecedented detail. Metastasis-to-metastasis spread was found to be common, either through de novo monoclonal seeding of daughter metastases or, in five cases, through the transfer of multiple tumour clones between metastatic sites. Lesions affecting tumour suppressor genes usually occur as single events, whereas mutations in genes involved in androgen receptor signalling commonly involve multiple, convergent events in different metastases. Our results elucidate in detail the complex patterns of metastatic spread and further our understanding of the development of resistance to androgen-deprivation therapy in prostate cancer.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
1039 |
14
|
Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinänen R, Palmberg C, Palotie A, Tammela T, Isola J, Kallioniemi OP. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995; 9:401-6. [PMID: 7795646 DOI: 10.1038/ng0495-401] [Citation(s) in RCA: 1029] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overexpression of amplified genes is often associated with the acquisition of resistance to cancer therapeutic agents in vitro. We have identified a similar molecular mechanism in vivo for endocrine treatment failure in human prostate cancer which involves amplification of the androgen receptor (AR) gene. Comparative genomic hybridization shows that amplification of the Xq11-q13 region (the location), is common in tumours recurring during androgen deprivation therapy. We found high-level AR amplification in seven of 23 (30%) recurrent tumours, but in none of the specimens taken from the same patients prior to therapy. Our results suggest that AR amplification emerges during androgen deprivation therapy by facilitating tumour cell growth in low androgen concentrations.
Collapse
|
|
30 |
1029 |
15
|
Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer 2014; 14:342-57. [PMID: 24705652 DOI: 10.1038/nrc3691] [Citation(s) in RCA: 936] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vitamin D is not really a vitamin but the precursor to the potent steroid hormone calcitriol, which has widespread actions throughout the body. Calcitriol regulates numerous cellular pathways that could have a role in determining cancer risk and prognosis. Although epidemiological and early clinical trials are inconsistent, and randomized control trials in humans do not yet exist to conclusively support a beneficial role for vitamin D, accumulating results from preclinical and some clinical studies strongly suggest that vitamin D deficiency increases the risk of developing cancer and that avoiding deficiency and adding vitamin D supplements might be an economical and safe way to reduce cancer incidence and improve cancer prognosis and outcome.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
936 |
16
|
Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A 2004; 101:7618-23. [PMID: 15128949 PMCID: PMC419655 DOI: 10.1073/pnas.0307512101] [Citation(s) in RCA: 935] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 03/30/2004] [Indexed: 01/03/2023] Open
Abstract
The signaling pathways mediated by Rho family GTPases have been implicated in many aspects of cell biology. The specificity of the pathways is achieved in part by the selective interaction between Dbl family guanine nucleotide exchange factors (GEFs) and their Rho GTPase substrates. Here, we report a first-generation small-molecule inhibitor of Rac GTPase targeting Rac activation by GEF. The chemical compound NSC23766 was identified by a structure-based virtual screening of compounds that fit into a surface groove of Rac1 known to be critical for GEF specification. In vitro it could effectively inhibit Rac1 binding and activation by the Rac-specific GEF Trio or Tiam1 in a dose-dependent manner without interfering with the closely related Cdc42 or RhoA binding or activation by their respective GEFs or with Rac1 interaction with BcrGAP or effector PAK1. In cells, it potently blocked serum or platelet-derived growth factor-induced Rac1 activation and lamellipodia formation without affecting the activity of endogenous Cdc42 or RhoA. Moreover, this compound reduced Trio or Tiam1 but not Vav, Lbc, Intersectin, or a constitutively active Rac1 mutant-stimulated cell growth and suppressed Trio, Tiam1, or Ras-induced cell transformation. When applied to human prostate cancer PC-3 cells, it was able to inhibit the proliferation, anchorage-independent growth and invasion phenotypes that require the endogenous Rac1 activity. Thus, NSC23766 constitutes a Rac-specific small-molecule inhibitor that could be useful to study the role of Rac in various cellular functions and to reverse tumor cell phenotypes associated with Rac deregulation.
Collapse
|
research-article |
21 |
935 |
17
|
Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, Keer HN, Balk SP. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 1995; 332:1393-8. [PMID: 7723794 DOI: 10.1056/nejm199505253322101] [Citation(s) in RCA: 859] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Metastatic prostate cancer is a leading cause of cancer-related death in men. The rate of response to androgen ablation is high, but most patients relapse as a result of the outgrowth of androgen-independent tumor cells. The androgen receptor, which binds testosterone and stimulates the transcription of androgen-responsive genes, regulates the growth of prostate cells. We analyzed the androgen-receptor genes from samples of metastatic androgen-independent prostate cancers to determine whether mutations in the gene have a role in androgen independence. METHODS Complementary DNA was synthesized from metastatic prostate cancers in 10 patients with androgen-independent prostate cancer, and the expression of the androgen-receptor gene was estimated by amplification with the polymerase chain reaction. Exons B through H of the gene were cloned, and mutations were identified by DNA sequencing. The functional effects of the mutations were assessed in cells transfected with mutant genes. RESULTS All androgen-independent tumors expressed high levels of androgen-receptor gene transcripts, relative to the levels expressed by an androgen-independent prostate-cancer cell line (LNCaP). Point mutations in the androgen-receptor gene were identified in metastatic cells from 5 of the 10 patients examined. One mutation was in the same codon as the mutation found previously in the androgen-independent prostate-cancer cell line. The mutations were not detected in the primary tumors from of the two patients. Functional studies of two of the mutant androgen receptors demonstrated that they could be activated by progesterone and estrogen. CONCLUSIONS Most metastatic androgen-independent prostate cancers express high levels of androgen-receptor gene transcripts. Mutations in androgen-receptor genes are not uncommon and may provide a selective growth advantage after androgen ablation.
Collapse
|
|
30 |
859 |
18
|
Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 1999; 103:159-65. [PMID: 9916127 PMCID: PMC407882 DOI: 10.1172/jci5028] [Citation(s) in RCA: 857] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Features that distinguish tumor vasculatures from normal blood vessels are sought to enable the destruction of preformed tumor vessels. We show that blood vessels in both a xenografted tumor and primary human tumors contain a sizable fraction of immature blood vessels that have not yet recruited periendothelial cells. These immature vessels are selectively obliterated as a consequence of vascular endothelial growth factor (VEGF) withdrawal. In a xenografted glioma, the selective vulnerability of immature vessels to VEGF loss was demonstrated by downregulating VEGF transgene expression using a tetracycline-regulated expression system. In human prostate cancer, the constitutive production of VEGF by the glandular epithelium was suppressed as a consequence of androgen-ablation therapy. VEGF loss led, in turn, to selective apoptosis of endothelial cells in vessels devoid of periendothelial cells. These results suggest that the unique dependence on VEGF of blood vessels lacking periendothelial cells can be exploited to reduce an existing tumor vasculature.
Collapse
|
research-article |
26 |
857 |
19
|
Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, Han M, Partin AW, Vessella RL, Isaacs WB, Bova GS, Luo J. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 2009; 69:16-22. [PMID: 19117982 PMCID: PMC2614301 DOI: 10.1158/0008-5472.can-08-2764] [Citation(s) in RCA: 841] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Suppression of androgen production and function provides palliation but not cure in men with prostate cancer (PCa). Therapeutic failure and progression to hormone-refractory PCa (HRPC) are often accompanied by molecular alterations involving the androgen receptor (AR). In this study, we report novel forms of AR alteration that are prevalent in HRPC. Through in silico sequence analysis and subsequent experimental validation studies, we uncovered seven AR variant transcripts lacking the reading frames for the ligand-binding domain due to splicing of "intronic" cryptic exons to the upstream exons encoding the AR DNA-binding domain. We focused on the two most abundantly expressed variants, AR-V1 and AR-V7, for more detailed analysis. AR-V1 and AR-V7 mRNA showed an average 20-fold higher expression in HRPC (n = 25) when compared with hormone-naive PCa (n = 82; P < 0.0001). Among the hormone-naive PCa, higher expression of AR-V7 predicted biochemical recurrence following surgical treatment (P = 0.012). Polyclonal antibodies specific to AR-V7 detected the AR-V7 protein frequently in HRPC specimens but rarely in hormone-naive PCa specimens. AR-V7 was localized in the nuclei of cultured PCa cells under androgen-depleted conditions, and constitutively active in driving the expression of canonical androgen-responsive genes, as revealed by both AR reporter assays and expression microarray analysis. These results suggest a novel mechanism for the development of HRPC that warrants further investigation. In addition, as expression markers for lethal PCa, these novel AR variants may be explored as potential biomarkers and therapeutic targets for advanced PCa.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
841 |
20
|
Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, Brenner JC, Yu J, Kim JH, Han B, Tan P, Kumar-Sinha C, Lonigro RJ, Palanisamy N, Maher CA, Chinnaiyan AM. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008; 322:1695-9. [PMID: 19008416 PMCID: PMC2684823 DOI: 10.1126/science.1165395] [Citation(s) in RCA: 831] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a mammalian histone methyltransferase that contributes to the epigenetic silencing of target genes and regulates the survival and metastasis of cancer cells. EZH2 is overexpressed in aggressive solid tumors by mechanisms that remain unclear. Here we show that the expression and function of EZH2 in cancer cell lines are inhibited by microRNA-101 (miR-101). Analysis of human prostate tumors revealed that miR-101 expression decreases during cancer progression, paralleling an increase in EZH2 expression. One or both of the two genomic loci encoding miR-101 were somatically lost in 37.5% of clinically localized prostate cancer cells (6 of 16) and 66.7% of metastatic disease cells (22 of 33). We propose that the genomic loss of miR-101 in cancer leads to overexpression of EZH2 and concomitant dysregulation of epigenetic pathways, resulting in cancer progression.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
831 |
21
|
Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, Limbad C, Demaria M, Li P, Hubbard GB, Ikeno Y, Javors M, Desprez PY, Benz CC, Kapahi P, Nelson PS, Campisi J. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 2015; 17:1049-61. [PMID: 26147250 PMCID: PMC4691706 DOI: 10.1038/ncb3195] [Citation(s) in RCA: 826] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
Abstract
The TOR (target of rapamycin) kinase limits longevity by poorly understood mechanisms. Rapamycin suppresses the mammalian TORC1 complex, which regulates translation, and extends lifespan in diverse species, including mice. We show that rapamycin selectively blunts the pro-inflammatory phenotype of senescent cells. Cellular senescence suppresses cancer by preventing cell proliferation. However, as senescent cells accumulate with age, the senescence-associated secretory phenotype (SASP) can disrupt tissues and contribute to age-related pathologies, including cancer. MTOR inhibition suppressed the secretion of inflammatory cytokines by senescent cells. Rapamycin reduced IL6 and other cytokine mRNA levels, but selectively suppressed translation of the membrane-bound cytokine IL1A. Reduced IL1A diminished NF-κB transcriptional activity, which controls much of the SASP; exogenous IL1A restored IL6 secretion to rapamycin-treated cells. Importantly, rapamycin suppressed the ability of senescent fibroblasts to stimulate prostate tumour growth in mice. Thus, rapamycin might ameliorate age-related pathologies, including late-life cancer, by suppressing senescence-associated inflammation.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
826 |
22
|
Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, Febbo PG, Balk SP. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 2006; 66:2815-25. [PMID: 16510604 DOI: 10.1158/0008-5472.can-05-4000] [Citation(s) in RCA: 818] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Androgen receptor (AR) plays a central role in prostate cancer, and most patients respond to androgen deprivation therapies, but they invariably relapse with a more aggressive prostate cancer that has been termed hormone refractory or androgen independent. To identify proteins that mediate this tumor progression, gene expression in 33 androgen-independent prostate cancer bone marrow metastases versus 22 laser capture-microdissected primary prostate cancers was compared using Affymetrix oligonucleotide microarrays. Multiple genes associated with aggressive behavior were increased in the androgen-independent metastatic tumors (MMP9, CKS2, LRRC15, WNT5A, EZH2, E2F3, SDC1, SKP2, and BIRC5), whereas a candidate tumor suppressor gene (KLF6) was decreased. Consistent with castrate androgen levels, androgen-regulated genes were reduced 2- to 3-fold in the androgen-independent tumors. Nonetheless, they were still major transcripts in these tumors, indicating that there was partial reactivation of AR transcriptional activity. This was associated with increased expression of AR (5.8-fold) and multiple genes mediating androgen metabolism (HSD3B2, AKR1C3, SRD5A1, AKR1C2, AKR1C1, and UGT2B15). The increase in aldo-keto reductase family 1, member C3 (AKR1C3), the prostatic enzyme that reduces adrenal androstenedione to testosterone, was confirmed by real-time reverse transcription-PCR and immunohistochemistry. These results indicate that enhanced intracellular conversion of adrenal androgens to testosterone and dihydrotestosterone is a mechanism by which prostate cancer cells adapt to androgen deprivation and suggest new therapeutic targets.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
818 |
23
|
Scher HI, Sawyers CL. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 2005; 23:8253-61. [PMID: 16278481 DOI: 10.1200/jco.2005.03.4777] [Citation(s) in RCA: 796] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prostate cancers that are progressing on medical and surgical therapies designed to ablate the action of androgens continue to express androgen receptor (AR) and to depend on signaling through the receptor for growth. A more clinically relevant classification of castration-resistant disease focuses on the mechanisms of receptor activation, which include (1) changes in the level of ligand(s) in tumor tissue; (2) increased levels of the protein due to gene amplification or altered mRNA expression; (3) activating mutations in the receptor that affect structure and function; (4) changes in coregulatory molecules including coactivators and corepressors; and (5) factors that lead to activation of the receptor independent of the level of ligand or receptor allowing kinase cross talk. From an AR perspective, the term "hormone refractory" is inappropriate. On the basis of this schema, we discuss strategies that are focused on the AR either directly or indirectly, as single agents or in combination, that are in clinical development.
Collapse
|
Review |
20 |
796 |
24
|
Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT, Berman DM, Beachy PA. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 2004; 431:707-12. [PMID: 15361885 DOI: 10.1038/nature02962] [Citation(s) in RCA: 790] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2004] [Accepted: 08/23/2004] [Indexed: 11/09/2022]
Abstract
Metastatic cancers adopt certain properties of normal cells in developing or regenerating organs, such as the ability to proliferate and alter tissue organization. We find here that activity of the Hedgehog (Hh) signalling pathway, which has essential roles in developmental patterning, is required for regeneration of prostate epithelium, and that continuous pathway activation transforms prostate progenitor cells and renders them tumorigenic. Elevated pathway activity furthermore distinguishes metastatic from localized prostate cancer, and pathway manipulation can modulate invasiveness and metastasis. Pathway activity is triggered in response to endogenous expression of Hh ligands, and is dependent upon the expression of Smoothened, an essential Hh response component that is not expressed in benign prostate epithelial cells. Monitoring and manipulating Hh pathway activity may thus offer significant improvements in diagnosis and treatment of prostate cancers with metastatic potential.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
790 |
25
|
Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani SK. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 2005; 435:1262-6. [PMID: 15988529 DOI: 10.1038/nature03672] [Citation(s) in RCA: 769] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 04/25/2005] [Indexed: 02/07/2023]
Abstract
Aberrations in post-translational modifications of histones have been shown to occur in cancer cells but only at individual promoters; they have not been related to clinical outcome. Other than being targeted to promoters, modifications of histones, such as acetylation and methylation of lysine and arginine residues, also occur over large regions of chromatin including coding regions and non-promoter sequences, which are referred to as global histone modifications. Here we show that changes in global levels of individual histone modifications are also associated with cancer and that these changes are predictive of clinical outcome. Through immunohistochemical staining of primary prostatectomy tissue samples, we determined the percentage of cells that stained for the histone acetylation and dimethylation of five residues in histones H3 and H4. Grouping of samples with similar patterns of modifications identified two disease subtypes with distinct risks of tumour recurrence in patients with low-grade prostate cancer. These histone modification patterns were predictors of outcome independently of tumour stage, preoperative prostate-specific antigen levels, and capsule invasion. Thus, widespread changes in specific histone modifications indicate previously undescribed molecular heterogeneity in prostate cancer and might underlie the broad range of clinical behaviour in cancer patients.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
769 |