1
|
Kam TI, Hinkle JT, Dawson TM, Dawson VL. Microglia and astrocyte dysfunction in parkinson's disease. Neurobiol Dis 2020; 144:105028. [PMID: 32736085 PMCID: PMC7484088 DOI: 10.1016/j.nbd.2020.105028] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
While glia are essential for regulating the homeostasis in the normal brain, their dysfunction contributes to neurodegeneration in many brain diseases, including Parkinson's disease (PD). Recent studies have identified that PD-associated genes are expressed in glial cells as well as neurons and have crucial roles in microglia and astrocytes. Here, we discuss the role of microglia and astrocytes dysfunction in relation to PD-linked mutations and their implications in PD pathogenesis. A better understanding of microglia and astrocyte functions in PD may provide insights into neurodegeneration and novel therapeutic approaches for PD.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
222 |
2
|
Cao J, Chen X, Jiang L, Lu B, Yuan M, Zhu D, Zhu H, He Q, Yang B, Ying M. DJ-1 suppresses ferroptosis through preserving the activity of S-adenosyl homocysteine hydrolase. Nat Commun 2020; 11:1251. [PMID: 32144268 PMCID: PMC7060199 DOI: 10.1038/s41467-020-15109-y] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 02/20/2020] [Indexed: 11/08/2022] Open
Abstract
Ferroptosis is a newly characterized form of regulated cell death mediated by iron-dependent accumulation of lipid reactive oxygen species and holds great potential for cancer therapy. However, the molecular mechanisms underlying ferroptosis remain largely elusive. In this study, we define an integrative role of DJ-1 in ferroptosis. Inhibition of DJ-1 potently enhances the sensitivity of tumor cells to ferroptosis inducers both in vitro and in vivo. Metabolic analysis and metabolite rescue assay reveal that DJ-1 depletion inhibits the transsulfuration pathway by disrupting the formation of the S-adenosyl homocysteine hydrolase tetramer and impairing its activity. Consequently, more ferroptosis is induced when homocysteine generation is decreased, which might be the only source of glutathione biosynthesis when cystine uptake is blocked. Thus, our findings show that DJ-1 determines the response of cancer cells to ferroptosis, and highlight a candidate therapeutic target to potentially improve the effect of ferroptosis-based antitumor therapy.
Collapse
|
research-article |
5 |
168 |
3
|
Leggio L, Vivarelli S, L'Episcopo F, Tirolo C, Caniglia S, Testa N, Marchetti B, Iraci N. microRNAs in Parkinson's Disease: From Pathogenesis to Novel Diagnostic and Therapeutic Approaches. Int J Mol Sci 2017; 18:ijms18122698. [PMID: 29236052 PMCID: PMC5751299 DOI: 10.3390/ijms18122698] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 01/09/2023] Open
Abstract
Parkinson’s disease (PD) is the most prevalent central nervous system (CNS) movement disorder and the second most common neurodegenerative disease overall. PD is characterized by the progressive loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc) within the midbrain, accumulation of alpha-synuclein (α-SYN) in Lewy bodies and neurites and excessive neuroinflammation. The neurodegenerative processes typically begin decades before the appearance of clinical symptoms. Therefore, the diagnosis is achievable only when the majority of the relevant DAergic neurons have already died and for that reason available treatments are only palliative at best. The causes and mechanism(s) of this devastating disease are ill-defined but complex interactions between genetic susceptibility and environmental factors are considered major contributors to the etiology of PD. In addition to the role of classical gene mutations in PD, the importance of regulatory elements modulating gene expression has been increasingly recognized. One example is the critical role played by microRNAs (miRNAs) in the development and homeostasis of distinct populations of neurons within the CNS and, in particular, in the context of PD. Recent reports demonstrate how distinct miRNAs are involved in the regulation of PD genes, whereas profiling approaches are unveiling variations in the abundance of certain miRNAs possibly relevant either to the onset or to the progression of the disease. In this review, we provide an overview of the miRNAs recently found to be implicated in PD etiology, with particular focus on their potential relevance as PD biomarkers, as well as their possible use in PD targeted therapy.
Collapse
|
Review |
8 |
164 |
4
|
Zheng Q, Omans ND, Leicher R, Osunsade A, Agustinus AS, Finkin-Groner E, D'Ambrosio H, Liu B, Chandarlapaty S, Liu S, David Y. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nat Commun 2019; 10:1289. [PMID: 30894531 PMCID: PMC6426841 DOI: 10.1038/s41467-019-09192-z] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/22/2019] [Indexed: 12/16/2022] Open
Abstract
Cellular proteins continuously undergo non-enzymatic covalent modifications (NECMs) that accumulate under normal physiological conditions and are stimulated by changes in the cellular microenvironment. Glycation, the hallmark of diabetes, is a prevalent NECM associated with an array of pathologies. Histone proteins are particularly susceptible to NECMs due to their long half-lives and nucleophilic disordered tails that undergo extensive regulatory modifications; however, histone NECMs remain poorly understood. Here we perform a detailed analysis of histone glycation in vitro and in vivo and find it has global ramifications on histone enzymatic PTMs, the assembly and stability of nucleosomes, and chromatin architecture. Importantly, we identify a physiologic regulation mechanism, the enzyme DJ-1, which functions as a potent histone deglycase. Finally, we detect intense histone glycation and DJ-1 overexpression in breast cancer tumors. Collectively, our results suggest an additional mechanism for cellular metabolic damage through epigenetic perturbation, with implications in pathogenesis.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
141 |
5
|
Kim HS, Nam ST, Mun SH, Lee SK, Kim HW, Park YH, Kim B, Won KJ, Kim HR, Park YM, Kim HS, Beaven MA, Kim YM, Choi WS. DJ-1 controls bone homeostasis through the regulation of osteoclast differentiation. Nat Commun 2017; 8:1519. [PMID: 29142196 PMCID: PMC5688089 DOI: 10.1038/s41467-017-01527-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 09/25/2017] [Indexed: 11/09/2022] Open
Abstract
Receptor activator of NF-kB ligand (RANKL) generates intracellular reactive oxygen species (ROS), which increase RANKL-mediated signaling in osteoclast (OC) precursor bone marrow macrophages (BMMs). Here we show that a ROS scavenging protein DJ-1 negatively regulates RANKL-driven OC differentiation, also called osteoclastogenesis. DJ-1 ablation in mice leads to a decreased bone volume and an increase in OC numbers. In vitro, the activation of RANK-dependent signals is enhanced in DJ-1-deficient BMMs as compared to wild-type BMMs. DJ-1 suppresses the activation of both RANK-TRAF6 and RANK-FcRγ/Syk signaling pathways because of activation of Src homology region 2 domain-containing phosphatase-1, which is inhibited by ROS. Ablation of DJ-1 in mouse models of arthritis and RANKL-induced bone disease leads to an increase in the number of OCs, and exacerbation of bone damage. Overall, our results suggest that DJ-1 plays a role in bone homeostasis in normal physiology and in bone-associated pathology by negatively regulating osteoclastogenesis.
Collapse
|
Research Support, N.I.H., Intramural |
8 |
80 |
6
|
Oh SE, Park HJ, He L, Skibiel C, Junn E, Mouradian MM. The Parkinson's disease gene product DJ-1 modulates miR-221 to promote neuronal survival against oxidative stress. Redox Biol 2018; 19:62-73. [PMID: 30107296 PMCID: PMC6092527 DOI: 10.1016/j.redox.2018.07.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
DJ-1 is a highly conserved protein that protects neurons against oxidative stress and whose loss of function mutations are linked to recessively inherited Parkinson's disease (PD). While a number of signaling pathways have been shown to be regulated by DJ-1, its role in controlling cell survival through non-coding RNAs remains poorly understood. Here, using a microarray screen, we found that knocking down DJ-1 in human neuroblastoma cells results in down-regulation of microRNA-221 (miR-221). This is one of the most abundant miRNAs in the human brain and promotes neurite outgrowth and neuronal differentiation. Yet the molecular mechanism linking miR-221 to genetic forms of PD has not been studied. Consistent with the microarray data, miR-221 expression is also decreased in DJ-1-/- mouse brains. Re-introduction of wild-type DJ-1, but not its PD-linked pathogenic M26I mutant, restores miR-221 expression. Notably, over-expression of miR-221 is protective against 1-methyl-4-phenylpyridinium (MPP+)-induced cell death, while inhibition of endogenous miR-221 sensitizes cells to this toxin. Additionally, miR-221 down-regulates the expression of several pro-apoptotic proteins at basal conditions and prevents oxidative stress-induced up-regulation of bcl-2-like protein 11 (BIM). Accordingly, miR-221 protects differentiated DJ-1 knock-down ReNcell VM human dopaminergic neuronal cells from MPP+-induced neurite retraction and cell death. DJ-1 is a known activator of the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) pathway and may modulate miR-221 levels in part through this pathway. We found that inhibiting ERK1/2 decreases miR-221 levels, whereas over-expressing ERK1 in DJ-1 knock-down cells increases miR-221 levels. These findings point to a new cytoprotective mechanism by which DJ-1 may increase miR-221 expression through the MAPK/ERK pathway, subsequently leading to repression of apoptotic molecules. The inability of a pathogenic DJ-1 mutant to modulate miR-221 further supports the relevance of this mechanism in neuronal health and its failure in DJ-1-linked PD.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
70 |
7
|
Abdel-Aleem GA, Khaleel EF, Mostafa DG, Elberier LK. Neuroprotective effect of resveratrol against brain ischemia reperfusion injury in rats entails reduction of DJ-1 protein expression and activation of PI3K/Akt/GSK3b survival pathway. Arch Physiol Biochem 2016; 122:200-213. [PMID: 27109835 DOI: 10.1080/13813455.2016.1182190] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the current study, we aimed to investigate the mechanistic role of DJ-1/PI3K/Akt survival pathway in ischemia/reperfusion (I/R) induced cerebral damage and to investigate if the resveratrol (RES) mediates its ischemic neuroptotection through this pathway. RES administration to Sham rats boosted glutathione level and superoxide dismutase activity and downregulated inducible nitric oxide synthase expression without affecting redox levels of DJ-1 forms or components of PI3K/Akt pathway including PTEN, p-Akt or p/p-GSK3b. However, RES pre-administration to I/R rats reduced infarction area, oxidative stress, inflammation and apoptosis. Concomitantly, RES ameliorated the decreased levels of oxidized forms of DJ-1 and enhancing its reduction, increased the nuclear protein expression of Nfr-2 and led to activation of PI3K/Akt survival pathway. In conclusion, overoxidation of DJ-1 is a major factor that contributes to post-I/R cerebral damage and its reduction by RES could explain the neuroprotection offered by RES.
Collapse
|
|
9 |
66 |
8
|
Zhou W, Barkow JC, Freed CR. Running wheel exercise reduces α-synuclein aggregation and improves motor and cognitive function in a transgenic mouse model of Parkinson's disease. PLoS One 2017; 12:e0190160. [PMID: 29272304 PMCID: PMC5741244 DOI: 10.1371/journal.pone.0190160] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/08/2017] [Indexed: 01/01/2023] Open
Abstract
Exercise has been recommended to improve motor function in Parkinson patients, but its value in altering progression of disease is unknown. In this study, we examined the neuroprotective effects of running wheel exercise in mice. In adult wild-type mice, one week of running wheel activity led to significantly increased DJ-1 protein concentrations in muscle and plasma. In DJ-1 knockout mice, running wheel performance was much slower and Rotarod performance was reduced, suggesting that DJ-1 protein is required for normal motor activity. To see if exercise can prevent abnormal protein deposition and behavioral decline in transgenic animals expressing a mutant human form of α-synuclein in all neurons, we set up running wheels in the cages of pre-symptomatic animals at 12 months old. Activity was monitored for a 3-month period. After 3 months, motor and cognitive performance on the Rotarod and Morris Water Maze were significantly better in running animals compared to control transgenic animals with locked running wheels. Biochemical analysis revealed that running mice had significantly higher DJ-1, Hsp70 and BDNF concentrations and had significantly less α-synuclein aggregation in brain compared to control mice. By contrast, plasma concentrations of α-synuclein were significantly higher in exercising mice compared to control mice. Our results suggest that exercise may slow the progression of Parkinson's disease by preventing abnormal protein aggregation in brain.
Collapse
|
research-article |
8 |
60 |
9
|
Sharma N, Rao SP, Kalivendi SV. The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: Role of oxidative stress mediated downregulation of DJ-1 in Parkinson's disease. Free Radic Biol Med 2019; 135:28-37. [PMID: 30796974 DOI: 10.1016/j.freeradbiomed.2019.02.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with the degeneration of dopamine neurons of the substantia nigra pars compacta (SNpc) and the presence of intra-neuronal aggregates of α-synuclein and its post-translational products. Based on emerging reports on the association between glycated α-synuclein and PD; and the newly identified deglycase activity of DJ-1, we sought to find the relevance of deglycase activity of DJ-1 on glycation of α-synuclein and its plausible role in PD. Our results demonstrate that DJ-1 has a higher affinity towards the substrate methylglyoxal (MGO) (Km = 900 mM) as compared to its familial mutant, L166P (Km = 1900 mM). Also, CML α-synuclein (CML-syn) served as a substrate for the deglycase activity of DJ-1. Treatment of cells with Parkinsonian mimetic, 1-methyl-4-phenylpyridinium ion (MPP+); oxidants, such as H2O2 and methylglyoxal (MGO) lead to a dose-dependent decrease in the levels of DJ-1 with a concomitant increase in CML-syn. Also, MGO induced cytosolic α-synuclein aggregates in cells which stained positive with the anti-CML antibody. Further, unilateral stereotaxic administration of MGO into the SNpc of mice induced α-synuclein aggregates and CML-syn with a concomitant reduction in the number of TH positive neurons, protein levels of TH and DJ-1 at the site of injection. Interestingly, overexpression of DJ-1 enhanced the clearance of preformed CML-syn in cells, mitigated MGO induced CML-syn and intracellular α-synuclein aggregates. Overall, the findings of our present study demonstrate that DJ-1 plays a pivotal role in the glycation and aggregation of α-synuclein. Reduced DJ-1 activity due to mutations or oxidative stress may lead to the accumulation of glycated α-synuclein and its aggregates.
Collapse
|
|
6 |
57 |
10
|
Tanudjojo B, Shaikh SS, Fenyi A, Bousset L, Agarwal D, Marsh J, Zois C, Heman-Ackah S, Fischer R, Sims D, Melki R, Tofaris GK. Phenotypic manifestation of α-synuclein strains derived from Parkinson's disease and multiple system atrophy in human dopaminergic neurons. Nat Commun 2021; 12:3817. [PMID: 34155194 PMCID: PMC8217249 DOI: 10.1038/s41467-021-23682-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
α-Synuclein is critical in the pathogenesis of Parkinson's disease and related disorders, yet it remains unclear how its aggregation causes degeneration of human dopaminergic neurons. In this study, we induced α-synuclein aggregation in human iPSC-derived dopaminergic neurons using fibrils generated de novo or amplified in the presence of brain homogenates from Parkinson's disease or multiple system atrophy. Increased α-synuclein monomer levels promote seeded aggregation in a dose and time-dependent manner, which is associated with a further increase in α-synuclein gene expression. Progressive neuronal death is observed with brain-amplified fibrils and reversed by reduction of intraneuronal α-synuclein abundance. We identified 56 proteins differentially interacting with aggregates triggered by brain-amplified fibrils, including evasion of Parkinson's disease-associated deglycase DJ-1. Knockout of DJ-1 in iPSC-derived dopaminergic neurons enhance fibril-induced aggregation and neuronal death. Taken together, our results show that the toxicity of α-synuclein strains depends on aggregate burden, which is determined by monomer levels and conformation which dictates differential interactomes. Our study demonstrates how Parkinson's disease-associated genes influence the phenotypic manifestation of strains in human neurons.
Collapse
|
research-article |
4 |
51 |
11
|
Ma Z, Yang J, Yang Y, Wang X, Chen G, Shi A, Lu Y, Jia S, Kang X, Lu L. Rosmarinic acid exerts an anticancer effect on osteosarcoma cells by inhibiting DJ-1 via regulation of the PTEN-PI3K-Akt signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153186. [PMID: 32088353 DOI: 10.1016/j.phymed.2020.153186] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/02/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Osteosarcoma is the most common type of primary malignant bone tumor. This disease has exhibited a progressively lower survival rate over the past several decades, which has resulted in it becoming a main cause of death in humans. Rosmarinic acid (RA), a water-soluble polyphenolic phytochemical, exerts powerful anticancer effects against multiple types of cancer; however, its potential effects on osteosarcoma remain unknown. Hence, the present study investigated the efficacy of RA against osteosarcoma and aimed to clarify the mechanisms underlying this process. METHODS The effects of RA on cell viability, apoptosis, cell cycle distribution, migration, invasion, and signaling molecules were analyzed by CCK-8 assay, flowcytometric analysis, wound healing assay, Transwell assay, proteomic analysis, and use of shRNAs. RESULTS RA exerted anti-proliferation and pro-apoptotic effects on U2OS and MG63 osteosarcoma cells. Apoptosis was induced via extrinsic and intrinsic pathways by increasing the Bax/Bcl-2 ratio, triggering the intracellular production of reactive oxygen species (ROS), reducing the mitochondrial membrane potential (MMP), and upregulating the cleavage rates of caspase-8, caspase-9, and caspase-3. Additionally, RA suppressed the migration and invasion of osteosarcoma cells by inhibiting the expression levels of matrix metalloproteinase-2 and -9 (MMP-2 and -9), which are associated with a weakening of the epithelial-mesenchymal transition (EMT). Moreover, proteomic analyses identified DJ-1 as a potential target for RA. Several studies have indicated an oncogenic role for DJ-1 using knockdowns via the lentiviral-mediated transfection of shRNA, which caused the conspicuous suppression of cell proliferation, migration, and invasion as well as the arrest of cell cycle progression. At the molecular level, the expression levels of DJ-1, p-PI3K, and p-Akt were reduced, whereas the protein levels of phosphatase and tensin homologue (PTEN) were increased. CONCLUSION In conjunction with the high levels of DJ-1 expression in osteosarcoma tissues and cell lines, the present results suggested that RA exhibited anticancer effects in osteosarcoma cells by inhibiting DJ-1 via regulation of the PTEN-PI3K-Akt signaling pathway. Therefore, DJ-1 might be a biological target for RA in osteosarcoma cells.
Collapse
|
|
5 |
50 |
12
|
Zhang XL, Yuan YH, Shao QH, Wang ZZ, Zhu CG, Shi JG, Ma KL, Yan X, Chen NH. DJ-1 regulating PI3K-Nrf2 signaling plays a significant role in bibenzyl compound 20C-mediated neuroprotection against rotenone-induced oxidative insult. Toxicol Lett 2017; 271:74-83. [PMID: 28245986 DOI: 10.1016/j.toxlet.2017.02.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022]
Abstract
Oxidative stress is thought to be involved in the development of Parkinson's disease (PD). We previously reported that 20C, a bibenzyl compound isolated from Gastrodia elata, possesses antioxidative properties, but its in-depth molecular mechanisms against rotenone-induced neurotoxicity remains unknown. Recent studies indicate that without intact DJ-1, nuclear factor erythroid 2-related factor (Nrf2) protein becomes unstable, and the activity of Nrf2-mediated downstream antioxidant enzymes are thereby suppressed. In this study, we showed that 20C clearly protected PC12 and SH-SY5Y cells against rotenone-induced oxidative injury. Furthermore, 20C markedly up-regulated the levels of DJ-1, which in turn activated phosphoinositide-3-kinase (PI3K)/Akt signaling and inhibited glycogen synthase kinase 3β (GSK3β) activation, eventually promoted the nuclear translocation of Nrf2 and induced the expression of hemeoxygenase-1 (HO-1). The antioxidant effects of 20C could be partially blocked by ShRNA-mediated knockdown of DJ-1 and inhibition of the PI3K/Akt pathways with Akt1/2 kinase inhibitor, respectively. Conclusively, our findings confirm that DJ-1 is necessary for 20C-mediated protection against rotenone-induced oxidative damage, at least in part, by activating PI3K/Akt signaling, and subsequently enhancing the nuclear accumulation of Nrf2. The findings from our investigation suggest that 20C should be developed as a novel candidate for alleviating the consequences of PD in the future.
Collapse
|
|
8 |
45 |
13
|
Hauser DN, Mamais A, Conti MM, Primiani CT, Kumaran R, Dillman AA, Langston RG, Beilina A, Garcia JH, Diaz-Ruiz A, Bernier M, Fiesel FC, Hou X, Springer W, Li Y, de Cabo R, Cookson MR. Hexokinases link DJ-1 to the PINK1/parkin pathway. Mol Neurodegener 2017; 12:70. [PMID: 28962651 PMCID: PMC5622528 DOI: 10.1186/s13024-017-0212-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/19/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Early onset Parkinson's disease is caused by variants in PINK1, parkin, and DJ-1. PINK1 and parkin operate in pathways that preserve mitochondrial integrity, but the function of DJ-1 and how it relates to PINK1 and parkin is poorly understood. METHODS A series of unbiased high-content screens were used to analyze changes at the protein, RNA, and metabolite level in rodent brains lacking DJ-1. Results were validated using targeted approaches, and cellular assays were performed to probe the mechanisms involved. RESULTS We find that in both rat and mouse brains, DJ-1 knockout results in an age-dependent accumulation of hexokinase 1 in the cytosol, away from its usual location at the mitochondria, with subsequent activation of the polyol pathway of glucose metabolism in vivo. Both in the brain and in cultured cells, DJ-1 deficiency is associated with accumulation of the phosphatase PTEN that antagonizes the kinase AKT. In cells, addition of an inhibitor of AKT (MK2206) or addition of a peptide to dissociate association of hexokinases from mitochondria both inhibit the PINK1/parkin pathway, which works to maintain mitochondrial integrity. CONCLUSION Hexokinases are an important link between three major genetic causes of early onset Parkinson's disease. Because aging is associated with deregulated nutrient sensing, these results help explain why DJ-1 is associated with age-dependent disease.
Collapse
|
research-article |
8 |
44 |
14
|
Neves M, Grãos M, Anjo SI, Manadas B. Modulation of signaling pathways by DJ-1: An updated overview. Redox Biol 2022; 51:102283. [PMID: 35303520 PMCID: PMC8928136 DOI: 10.1016/j.redox.2022.102283] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/12/2023] Open
|
|
3 |
44 |
15
|
Srivastava S, Blower PJ, Aubdool AA, Hider RC, Mann GE, Siow RC. Cardioprotective effects of Cu (II)ATSM in human vascular smooth muscle cells and cardiomyocytes mediated by Nrf2 and DJ-1. Sci Rep 2016; 6:7. [PMID: 28442712 PMCID: PMC5431352 DOI: 10.1038/s41598-016-0012-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023] Open
Abstract
Cu(II)ATSM was developed as a hypoxia sensitive positron emission tomography agent. Recent reports have highlighted the neuroprotective properties of Cu(II)ATSM, yet there are no reports that it confers cardioprotection. We demonstrate that Cu(II)ATSM activates the redox-sensitive transcription factor Nrf2 in human coronary artery smooth muscle cells (HCASMC) and cardiac myocytes (HCM), leading to upregulation of antioxidant defense enzymes. Oral delivery of Cu(II)ATSM in mice induced expression of the Nrf2-regulated enzymes in the heart and aorta. In HCASMC, Cu(II)ATSM increased expression of the Nrf2 stabilizer DJ-1, and knockdown of Nrf2 or DJ-1 attenuated Cu(II)ATSM-mediated heme oxygenase-1 and NADPH quinone oxidoreductase-1 induction. Pre-treatment of HCASMC with Cu(II)ATSM protected against the pro-oxidant effects of angiotensin II (Ang II) by attenuating superoxide generation, apoptosis, proliferation and increases in intracellular calcium. Notably, Cu(II)ATSM-mediated protection against Ang II-induced HCASMC apoptosis was diminished by Nrf2 knockdown. Acute treatment with Cu(II)ATSM enhanced the association of DJ-1 with superoxide dismutase-1 (SOD1), paralleled by significant increases in intracellular Cu(II) levels and SOD1 activity. We describe a novel mechanism by which Cu(II)ATSM induces Nrf2-regulated antioxidant enzymes and protects against Ang II-mediated HCASMC dysfunction via activation of the Nrf2/DJ-1 axis. Cu(II)ATSM may provide a therapeutic strategy for cardioprotection via upregulation of antioxidant defenses.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Antioxidants/metabolism
- Apoptosis/drug effects
- Cardiotonic Agents/pharmacology
- Cell Proliferation/drug effects
- Coordination Complexes
- Coronary Vessels/cytology
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Organometallic Compounds/pharmacology
- Protein Deglycase DJ-1/metabolism
- Signal Transduction
- Thiosemicarbazones/pharmacology
- NF-E2-Related Factor 2/metabolism
Collapse
|
research-article |
9 |
41 |
16
|
Creed RB, Menalled L, Casey B, Dave KD, Janssens HB, Veinbergs I, van der Hart M, Rassoulpour A, Goldberg MS. Basal and Evoked Neurotransmitter Levels in Parkin, DJ-1, PINK1 and LRRK2 Knockout Rat Striatum. Neuroscience 2019; 409:169-179. [PMID: 31029729 DOI: 10.1016/j.neuroscience.2019.04.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the loss of neurons in the substantia nigra that project to the striatum and release dopamine (DA), which is required for normal movement. Common non-motor symptoms likely involve abnormalities with other neurotransmitters, such as serotonin, norepinephrine, acetylcholine, glycine, glutamate and gamma-aminobutyric acid (GABA). As part of a broad effort to provide better PD research tools, the Michael J. Fox Foundation for Parkinson's Research funded the generation and characterization of knockout (KO) rats for genes with PD-linked mutations, including PINK1, Parkin, DJ-1 and LRRK2. Here we extend the phenotypic characterization of these lines of KO rats to include in vivo microdialysis to measure both basal and potassium-induced release of the above neurotransmitters and their metabolites in the striatum of awake and freely moving rats at ages 4, 8 and 12 months compared to wild-type (WT) rats. We found age-dependent abnormalities in basal DA, glutamate and acetylcholine in PINK1 KO rats and age-dependent abnormalities in basal DA metabolites in Parkin and LRRK2 KO rats. Parkin KO rats had increased glycine release while DJ-1 KO rats had decreased glutamate release and increased acetylcholine release compared to WT rats. All lines except DJ-1 KO rats showed age-dependent changes in release of one or more neurotransmitters. Our data suggest these rats may be useful for studies of PD-related synaptic dysfunction and neurotransmitter dynamics as well as studies of the normal and pathogenic functions of these genes with PD-linked mutations.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
38 |
17
|
Sironi L, Restelli LM, Tolnay M, Neutzner A, Frank S. Dysregulated Interorganellar Crosstalk of Mitochondria in the Pathogenesis of Parkinson's Disease. Cells 2020; 9:cells9010233. [PMID: 31963435 PMCID: PMC7016713 DOI: 10.3390/cells9010233] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of Parkinson’s disease (PD), the second most common neurodegenerative disorder, is complex and involves the impairment of crucial intracellular physiological processes. Importantly, in addition to abnormal α-synuclein aggregation, the dysfunction of various mitochondria-dependent processes has been prominently implicated in PD pathogenesis. Besides the long-known loss of the organelles’ bioenergetics function resulting in diminished ATP synthesis, more recent studies in the field have increasingly focused on compromised mitochondrial quality control as well as impaired biochemical processes specifically localized to ER–mitochondria interfaces (such as lipid biosynthesis and calcium homeostasis). In this review, we will discuss how dysregulated mitochondrial crosstalk with other organelles contributes to PD pathogenesis.
Collapse
|
Review |
5 |
37 |
18
|
Mencke P, Boussaad I, Romano CD, Kitami T, Linster CL, Krüger R. The Role of DJ-1 in Cellular Metabolism and Pathophysiological Implications for Parkinson's Disease. Cells 2021; 10:347. [PMID: 33562311 PMCID: PMC7915027 DOI: 10.3390/cells10020347] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
DJ-1 is a multifunctional protein associated with pathomechanisms implicated in different chronic diseases including neurodegeneration, cancer and diabetes. Several of the physiological functions of DJ-1 are not yet fully understood; however, in the last years, there has been increasing evidence for a potential role of DJ-1 in the regulation of cellular metabolism. Here, we summarize the current knowledge on specific functions of DJ-1 relevant to cellular metabolism and their role in modulating metabolic pathways. Further, we illustrate pathophysiological implications of the metabolic effects of DJ-1 in the context of neurodegeneration in Parkinson´s disease.
Collapse
|
Review |
4 |
36 |
19
|
Zhang F, Yan Y, Peng W, Wang L, Wang T, Xie Z, Luo H, Zhang J, Dong W. PARK7 promotes repair in early steroid-induced osteonecrosis of the femoral head by enhancing resistance to stress-induced apoptosis in bone marrow mesenchymal stem cells via regulation of the Nrf2 signaling pathway. Cell Death Dis 2021; 12:940. [PMID: 34645791 PMCID: PMC8514492 DOI: 10.1038/s41419-021-04226-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Novel therapies for the treatment of early steroid-induced osteonecrosis of the femoral head (SONFH) are urgently needed in orthopedics. Transplantation of bone marrow mesenchymal stem cells (BMSCs) provides new strategies for treating this condition at the early stage. However, stress-induced apoptosis of BMSCs transplanted into the femoral head necrotic area limits the efficacy of BMSC transplantation. Inhibiting BMSC apoptosis is key to improving the efficacy of this procedure. In our previous studies, we confirmed that Parkinson disease protein 7 (PARK7) is active in antioxidant defense and can clear reactive oxygen species (ROS), protect the mitochondria, and impart resistance to stress-induced apoptosis in BMSCs. In this study, we investigated the mechanism driving this PARK7-mediated resistance to apoptosis in BMSCs. Our results indicate that PARK7 promoted the disintegration of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like echinacoside-associated protein 1 (Keap1) complex. The free Nrf2 then entered the nucleus and activated the genetic expression of manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), and other antioxidant enzymes that clear excessive ROS, thereby protecting BMSCs from stress-induced apoptosis. To further explore whether PARK7-mediated resistance to stress-induced apoptosis could improve the efficacy of BMSC transplantation in early-stage SONFH, we transplanted BMSCs-overexpressing PARK7 into rats with early-stage SONFH. We then evaluated the survival of transplanted BMSCs and bone regeneration in the femoral head necrotic area of these rats. The results indicated that PARK7 promoted the survival of BMSCs in the osteonecrotic area and improved the transplantation efficacy of BMSCs on early-stage SONFH. This study provides new ideas and methods for resisting the stress-induced apoptosis of BMSCs and improving the transplantation effect of BMSCs on early-stage SONFH.
Collapse
|
research-article |
4 |
35 |
20
|
Urano Y, Mori C, Fuji A, Konno K, Yamamoto T, Yashirogi S, Ando M, Saito Y, Noguchi N. 6-Hydroxydopamine induces secretion of PARK7/DJ-1 via autophagy-based unconventional secretory pathway. Autophagy 2018; 14:1943-1958. [PMID: 30112966 PMCID: PMC6152502 DOI: 10.1080/15548627.2018.1493043] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED PARK7/DJ-1 is a Parkinson disease- and cancer-associated protein that functions as a multifunctional protein involved in gene transcription regulation and anti-oxidative defense. Although PARK7 lacks the secretory signal sequence, it is secreted and plays important physiological and pathophysiological roles. Whereas secretory proteins that lack the endoplasmic reticulum-targeting signal sequence are secreted from cells by way of what is called the unconventional secretion mechanism, the specific processes responsible for causing PARK7 to be secreted across the plasma membrane have remained unclear. In the present study, we found that PARK7 secretion was increased by treatment with 6-OHDA via the unconventional secretory pathway in human neuroblastoma SH-SY5Y cells and MEF cells. We also found that 6-OHDA-induced PARK7 secretion was suppressed in Atg5-, Atg9-, or Atg16l1-deficient MEF cells or ATG16L1 knockdown SH-SY5Y cells, indicating that the autophagy-based unconventional secretory pathway is involved in PARK7 secretion. We moreover observed that 6-OHDA-derived electrophilic quinone induced oxidative stress as indicated by a decrease in glutathione levels, and that this was suppressed by pretreatment with antioxidant NAC. We further found that NAC treatment suppressed autophagy and PARK7 secretion. We also observed that 6-OHDA-induced autophagy was associated with activation of AMPK and ULK1 via a pathway which was independent of MTOR. Collectively these results suggest that electrophilic 6-OHDA quinone enhances oxidative stress, and that this is followed by AMPK-ULK1 pathway activation and induction of secretory autophagy to produce unconventional secretion of PARK7. ABBREVIATIONS 6-OHDA: 6-hydroxydopamine; AMPK: AMP-activated protein kinase; ATG: autophagy related; CAV1: caveolin 1; ER: endoplasmic reticulum; FN1: fibronectin 1; GSH: glutathione; IDE: insulin degrading enzyme; IL: interleukin; LDH: lactate dehydrogenase; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; MTOR: mechanistic target of rapamycin kinase; NAC: N-acetyl-L-cysteine; PARK7/DJ-1: Parkinsonism associated deglycase; PD: Parkinson disease; RPS6KB1/p70S6K: ribosomal protein S6 kinase B1; RPN1: ribophorin I; ROS: reactive oxygen species; ULK1: unc-51 like autophagy activating kinase 1; WT: wild-type.
Collapse
|
research-article |
7 |
34 |
21
|
Wang W, Zhao H, Chen B. DJ-1 protects retinal pericytes against high glucose-induced oxidative stress through the Nrf2 signaling pathway. Sci Rep 2020; 10:2477. [PMID: 32051471 PMCID: PMC7016111 DOI: 10.1038/s41598-020-59408-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/29/2020] [Indexed: 11/08/2022] Open
Abstract
Oxidative stress has been associated with the etipathogenesis of Diabetic retinopathy (DR). Studies have shown that DJ-1 plays an important role in regulating the reactive oxygen species (ROS) production and resistance to oxidative stress-induced apoptosis. This study aimed to investigate whether DJ-1 upregulates oxidative stress and prevents damage to retinal capillary pericytes by increasing antioxidant capacity through the Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Nrf2 is a redox-sensitive transcription factor that encode antioxidant enzymes and phase II metabolic enzymes, activation of Nrf2 functions is one of the critical defensive mechanisms against oxidative stress in many tissues. Our results showed after DJ-1 overexpression, apoptosis of rat retinal pericytes (RRPs) decreased, the ratio of B-cell lymphoma-2 (Bcl-2) to BCL2-Associated X Protein (BAX) increased, the production of ROS decreased, and the protein expression and activity of manganese superoxide dismutase (MnSOD, also called SOD2) and catalase (CAT) increased. DJ-1 overexpression activated Nrf2 expression, however, after Nrf2 silencing, apoptosis of RRPs increased, the ratio of Bcl-2 to BAX decreased, the production of ROS increased, the protein expression of MnSOD and CAT decreased, and the expression of heme oxygenase-1 (HO-1), NADP(H) quinone oxidoreductase (NQO1), glutamate-cysteine ligase catalytic subunit (GCLC) and modifier subunit (GCLM) decreased. These data suggest that enhancement of the Nrf2 pathway is a potential protective strategy for the treatment of DR. Therefore, DJ-1 may prevent high glucose-induced oxidative stress and RRPs apoptosis through the Nrf2 signaling pathway, thereby preventing the early onset and progression of DR.
Collapse
|
research-article |
5 |
31 |
22
|
Takahashi-Niki K, Ganaha Y, Niki T, Nakagawa S, Kato-Ose I, Iguchi-Ariga SMM, Ariga H. DJ-1 activates SIRT1 through its direct binding to SIRT1. Biochem Biophys Res Commun 2016; 474:131-136. [PMID: 27105916 DOI: 10.1016/j.bbrc.2016.04.084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 01/07/2023]
Abstract
The DJ-1 gene is a ras-dependent oncogene and also a causative gene for a familial form of Parkinson's disease park7. DJ-1 is a multi-functional protein and plays roles in regulation of cell growth, cells death, metabolism and mitochondrial homeostasis against oxidative stress. To explore various functions, DJ-1 associates with a number of proteins localized in the nucleus, cytoplasm and mitochondria. The oxidative status of a cysteine residue at an amino acid number 106 (C106) of DJ-1 determines the active level of DJ-1. Precise molecular mechanism of exploration of DJ-1 function is, however, not resolved. In this study, we identified Sirtuin family proteins (SIRT1, 2, and 4-6) as DJ-1-binding proteins, and DJ-1 associated with SIRT1 in cells. Sirtuins like DJ-1 also regulates growth, death and metabolism of cells and mitochondrial homeostasis. We found that DJ-1 stimulated deacetylase activity of SIRT1 and that SIRT1-suppressed transcriptional activity of SIRT1-target p53 was further decreased by DJ-1. Furthermore, SIRT1 activity was reduced in DJ-1-knockout cells, and this reduced activity was restored by re-introduction of wild-type DJ-1 but not of C106-mutant DJ-1 into DJ-1-knockout cells. It is first report showing direct connection of DJ-1 with SIRT1.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
31 |
23
|
Saito Y, Akazawa-Ogawa Y, Matsumura A, Saigoh K, Itoh S, Sutou K, Kobayashi M, Mita Y, Shichiri M, Hisahara S, Hara Y, Fujimura H, Takamatsu H, Hagihara Y, Yoshida Y, Hamakubo T, Kusunoki S, Shimohama S, Noguchi N. Oxidation and interaction of DJ-1 with 20S proteasome in the erythrocytes of early stage Parkinson's disease patients. Sci Rep 2016; 6:30793. [PMID: 27470541 PMCID: PMC4965792 DOI: 10.1038/srep30793] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/11/2016] [Indexed: 02/05/2023] Open
Abstract
Parkinson's disease (PD) is a progressive, age-related, neurodegenerative disorder, and oxidative stress is an important mediator in its pathogenesis. DJ-1, the product of the causative gene of a familial form of PD, plays a significant role in anti-oxidative defence to protect cells from oxidative stress. DJ-1 undergoes preferential oxidation at the cysteine residue at position 106 (Cys-106) under oxidative stress. Here, using specific antibodies against Cys-106-oxidized DJ-1 (oxDJ-1), it was found that the levels of oxDJ-1 in the erythrocytes of unmedicated PD patients (n = 88) were higher than in those of medicated PD patients (n = 62) and healthy control subjects (n = 33). Elevated oxDJ-1 levels were also observed in a non-human primate PD model. Biochemical analysis of oxDJ-1 in erythrocyte lysates showed that oxDJ-1 formed dimer and polymer forms, and that the latter interacts with 20S proteasome. These results clearly indicate a biochemical alteration in the blood of PD patients, which could be utilized as an early diagnosis marker for PD.
Collapse
|
research-article |
9 |
28 |
24
|
Lin Y, Chen Q, Liu Q, Zhou D, Lu X, Deng X, Yang H, Zheng H, Qiu Y. High expression of DJ-1 promotes growth and invasion via the PTEN-AKT pathway and predicts a poor prognosis in colorectal cancer. Cancer Med 2018; 7:809-819. [PMID: 29441725 PMCID: PMC5852339 DOI: 10.1002/cam4.1325] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer cell invasion and unlimited proliferation are key factors in patients with colorectal cancer (CRC). Increased protein deglycase DJ-1 in cancer cells is known to promote tumor growth; however, its role in CRC progression is not well defined. In this study, we investigated 100 CRC patients with disease stages I-IV to determine whether DJ-1 could serve as a prognostic biomarker in CRC. These results showed that DJ-1 expression in CRC tissues was higher than that in normal colon tissues and was associated with the (Tumor Node Metastasis) TNM stage. CRC patients with low DJ-1 expression had a longer overall survival than those with high expression, and multivariate and univariate analyses indicated that DJ-1 expression was an independent prognostic factor for overall survival in CRC. Furthermore, DJ-1 overexpression in two colon cancer cell lines, HCT116 and SW480, activated protein kinase AKT and downregulated tumor suppressor PTEN, whereas DJ-1 knockdown upregulated PTEN expression and effectively suppressed CRC cell invasion and proliferation both in vitro and in vivo, revealing a mechanism underlying DJ-1 pro-oncogenic activity in CRC. Treatment of MK2206, the specific AKT inhibitor, significantly decreased DJ-1-mediated cell proliferation and mobility in vitro. Taken together, these results suggest that DJ-1 may be a novel prognostic biomarker and potential therapeutic target in human CRC.
Collapse
|
research-article |
7 |
25 |
25
|
Jun YW, Kool ET. Small Substrate or Large? Debate Over the Mechanism of Glycation Adduct Repair by DJ-1. Cell Chem Biol 2020; 27:1117-1123. [PMID: 32783963 PMCID: PMC8442549 DOI: 10.1016/j.chembiol.2020.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
Glycation, the term for non-enzymatic covalent reactions between aldehyde metabolites and nucleophiles on biopolymers, results in deleterious cellular damage and diseases. Since Parkinsonism-associated protein DJ-1 was proposed as a novel deglycase that directly repairs glycated adducts, it has been considered a major contributor to glycation damage repair. Recently, an interesting debate over the mechanism of glycation repair by DJ-1 has emerged, focusing on whether the substrate of DJ-1 is glycated adducts or the free small aldehydes. The physiological significance of DJ-1 on glycation defense also remains in question. This debate is complicated by the fact that glycated biomolecular adducts are in rapid equilibrium with free aldehydes. Here, we summarize experimental evidence for the two possibilities, highlighting both consistencies and conflicts. We discuss the experimental complexities from a mechanistic perspective, and suggest classes of experiments that should help clarify this debate.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
25 |