1
|
Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007; 12:9-22. [PMID: 17613433 DOI: 10.1016/j.ccr.2007.05.008] [Citation(s) in RCA: 2292] [Impact Index Per Article: 127.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/10/2007] [Accepted: 05/18/2007] [Indexed: 11/21/2022]
Abstract
The mammalian target of rapamycin (mTOR) has emerged as a critical effector in cell-signaling pathways commonly deregulated in human cancers. This has led to the prediction that mTOR inhibitors may be useful in oncology, and derivatives of one such molecule, rapamycin (from which mTOR derives its name), are currently in clinical development. In this review, we discuss recent progress in understanding mTOR signaling, paying particular attention to its relevance in cancer. We further discuss the use of rapamycin in oncology and conclude with a discussion on the future of mTOR-targeted therapy.
Collapse
|
Review |
18 |
2292 |
2
|
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a key signal transduction system that links oncogenes and multiple receptor classes to many essential cellular functions, and is perhaps the most commonly activated signalling pathway in human cancer. This pathway therefore presents both an opportunity and a challenge for cancer therapy. Even as inhibitors that target PI3K isoforms and other major nodes in the pathway, including AKT and mammalian target of rapamycin (mTOR), reach clinical trials, major issues remain. Here, we highlight recent progress that has been made in our understanding of the PI3K pathway and discuss the potential of and challenges for the development of therapeutic agents that target this pathway in cancer.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
2147 |
3
|
Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, Heckel A, van Meel J, Rieder CL, Peters JM. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 2003; 161:281-94. [PMID: 12707311 PMCID: PMC2172906 DOI: 10.1083/jcb.200208092] [Citation(s) in RCA: 920] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The proper segregation of sister chromatids in mitosis depends on bipolar attachment of all chromosomes to the mitotic spindle. We have identified the small molecule Hesperadin as an inhibitor of chromosome alignment and segregation. Our data imply that Hesperadin causes this phenotype by inhibiting the function of the mitotic kinase Aurora B. Mammalian cells treated with Hesperadin enter anaphase in the presence of numerous monooriented chromosomes, many of which may have both sister kinetochores attached to one spindle pole (syntelic attachment). Hesperadin also causes cells arrested by taxol or monastrol to enter anaphase within <1 h, whereas cells in nocodazole stay arrested for 3-5 h. Together, our data suggest that Aurora B is required to generate unattached kinetochores on monooriented chromosomes, which in turn could promote bipolar attachment as well as maintain checkpoint signaling.
Collapse
|
research-article |
22 |
920 |
4
|
Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci 2008; 28:6926-37. [PMID: 18596167 PMCID: PMC2676733 DOI: 10.1523/jneurosci.0800-08.2008] [Citation(s) in RCA: 859] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 05/05/2008] [Accepted: 05/15/2008] [Indexed: 12/16/2022] Open
Abstract
Macroautophagy, a major pathway for organelle and protein turnover, has been implicated in the neurodegeneration of Alzheimer's disease (AD). The basis for the profuse accumulation of autophagic vacuoles (AVs) in affected neurons of the AD brain, however, is unknown. In this study, we show that constitutive macroautophagy in primary cortical neurons is highly efficient, because newly formed autophagosomes are rapidly cleared by fusion with lysosomes, accounting for their scarcity in the healthy brain. Even after macroautophagy is strongly induced by suppressing mTOR (mammalian target of rapamycin) kinase activity with rapamycin or nutrient deprivation, active cathepsin-positive autolysosomes rather than LC3-II-positive autophagosomes predominate, implying efficient autophagosome clearance in healthy neurons. In contrast, selectively impeding late steps in macroautophagy by inhibiting cathepsin-mediated proteolysis within autolysosomes with cysteine- and aspartyl-protease inhibitors caused a marked accumulation of electron-dense double-membrane-limited AVs, containing cathepsin D and incompletely degraded LC3-II in perikarya and neurites. Similar structures accumulated in large numbers when fusion of autophagosomes with lysosomes was slowed by disrupting their transport on microtubules with vinblastine. Finally, we find that the autophagic vacuoles accumulating after protease inhibition or prolonged vinblastine treatment strongly resembled AVs that collect in dystrophic neurites in the AD brain and in an AD mouse model. We conclude that macroautophagy is constitutively active and highly efficient in healthy neurons and that the autophagic pathology observed in AD most likely arises from impaired clearance of AVs rather than strong autophagy induction alone. Therapeutic modulation of autophagy in AD may, therefore, require targeting late steps in the autophagic pathway.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
859 |
5
|
Abstract
The intracellular signalling field is dominated by the mitogen-activated protein kinase (MAPK) cascade and its control, which involves the small GTPase Ras and sequential kinase activation. Until recently, ERK1 and ERK2 were the only cloned and well-characterized mammalian MAPKs; diverse ligand-stimulated, proline-directed protein phosphorylation events were attributed to these kinases. The recent discovery of two other MAPK subtypes, the JNK/SAPK subfamily and p38/RK (mammalian equivalents of HOG1 in yeast), reveals extreme complexity within the family and, most intriguingly, the existence in mammalian cells of parallel MAPK cascades that can be activated simultaneously.
Collapse
|
Review |
30 |
781 |
6
|
Abstract
Mitogen-activated protein kinases (MAPKs) are activated by dual phosphorylation on threonine and tyrosine in response to a wide array of extracellular stimuli. In the yeast Saccharomyces cerevisiae, a series of extracellular stimuli. In the yeast Saccharomyces cerevisiae, a series of MAPK signal transduction pathways have been demonstrated to control many cellular functions. By contrast, mammalian MAPKs are more poorly understood. However, recent studies have established important roles for three separate groups of mammalian MAPKs, which are characterized by distinct dual phosphorylation motifs. Together, these protein kinases mediate signal transduction in mammalian tissues and control many aspects of cellular physiology.
Collapse
|
Review |
31 |
735 |
7
|
Rousseau S, Houle F, Landry J, Huot J. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 1997; 15:2169-77. [PMID: 9393975 DOI: 10.1038/sj.onc.1201380] [Citation(s) in RCA: 665] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a potent chemotactic agent for endothelial cells. Yet the signalling pathways that modulate the motogenic effects of VEGF in vascular endothelial cells are still ill defined. In the present study, we found in primary cultures of human umbilical vein endothelial cells (HUVEC) that VEGF increased cell migration and induced a marked reorganization of the microfilament network that was characterized by the formation of stress fibers and the recruitment of vinculin to focal adhesions. VEGF also stimulated the mitogen activated protein (MAP) kinases ERK (extracellular signal-regulated kinase) and p38 (stress activated protein kinase-2), but not SAPK1/JNK (stress activated protein kinase-1/c-Jun NH2-terminal kinase). Activation of p38 resulted in activation of MAP kinase activated protein kinase-2/3 and phosphorylation of the F-actin polymerization modulator, heat shock protein 27 (HSP27). Inhibiting the VEGF-induced activation of ERK with PD098059 did not influence actin organization or cell migration but totally inhibited the VEGF-induced incorporation of thymidine into DNA. Inhibition of p38 activity by the specific inhibitor SB203580 led to an inhibition of HSP27 phosphorylation, actin reorganization and cell migration. The results indicate that the p38 pathway conveys the VEGF signal to microfilaments inducing rearrangements of the actin cytoskeleton that regulate cell migration. By modulating cell migration, p38 may thus be an important regulator of angiogenesis.
Collapse
|
|
28 |
665 |
8
|
Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A, Walz G, Piontek KB, Germino GG, Weimbs T. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 2006; 103:5466-71. [PMID: 16567633 PMCID: PMC1459378 DOI: 10.1073/pnas.0509694103] [Citation(s) in RCA: 599] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Indexed: 01/07/2023] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is a common genetic disorder that frequently leads to renal failure. Mutations in polycystin-1 (PC1) underlie most cases of ADPKD, but the function of PC1 has remained poorly understood. No preventive treatment for this disease is available. Here, we show that the cytoplasmic tail of PC1 interacts with tuberin, and the mTOR pathway is inappropriately activated in cyst-lining epithelial cells in human ADPKD patients and mouse models. Rapamycin, an inhibitor of mTOR, is highly effective in reducing renal cystogenesis in two independent mouse models of PKD. Treatment of human ADPKD transplant-recipient patients with rapamycin results in a significant reduction in native polycystic kidney size. These results indicate that PC1 has an important function in the regulation of the mTOR pathway and that this pathway provides a target for medical therapy of ADPKD.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
599 |
9
|
Behrens A, Sibilia M, Wagner EF. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 1999; 21:326-9. [PMID: 10080190 DOI: 10.1038/6854] [Citation(s) in RCA: 558] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
c-Jun is a major component of the heterodimeric transcription factor AP-1 and is essential for embryonic development, as fetuses lacking Jun die at mid-gestation with impaired hepatogenesis and primary Jun-/- fibroblasts have a severe proliferation defect and undergo premature senescence in vitro. c-Jun and AP-1 activities are regulated by c-Jun N-terminal phosphorylation (JNP) at serines 63 and 73 through Jun N-terminal kinases(JNKs). JNP is thought to be required for the anti-apoptotic function of c-Jun during hepatogenesis, as mice lacking the JNK kinase SEK1 exhibit liver defects similar to those seen in Jun-/- fetuses. To investigate the physiological relevance of JNP, we replaced endogenous Jun by a mutant Jun allele with serines 63 and 73 mutated to alanines (Jun(tm1wag); hereafter referred to as JunAA). Here we show that primary JunAA fibroblasts have proliferation- and stress-induced apoptotic defects, accompanied by reduced AP-1 activity. JunAA mice are viable and fertile, smaller than controls and resistant to epileptic seizures and neuronal apoptosis induced by the excitatory amino acid kainate. Primary mutant neurons are also protected from apoptosis and exhibit unaltered JNK activity. Our results provide evidence that JNP is dispensable for mouse development, and identify c-Jun as the essential substrate of JNK signalling during kainate-induced neuronal apoptosis.
Collapse
|
|
26 |
558 |
10
|
Abstract
Sirolimus is the USAN-assigned generic name for the natural product rapamycin. Sirolimus is produced by a strain of Streptomyces hygroscopicus, isolated from a soil sample collected from Rapa Nui commonly known as Easter Island. Although sirolimus was isolated as an antifungal agent with potent anticandida activity, subsequent studies revealed impressive antitumor and immunosuppressive activities. Sirolimus demonstrates activity against several murine tumors, such as B16 43 melanocarcinoma, Colon 26 tumor, EM ependymoblastoma, and mammary and colon 38 solid tumors. Sirolimus is a potent inhibitor of antigen-induced proliferation of T cells, B cells, and antibody production. Demonstration of the potent immunosuppressive activity of sirolimus in animal models of organ transplantation led to clinical trials and subsequent approval by regulatory authorities for prophylaxis of renal graft rejection. Interest in sirolimus as an immunosuppressive therapy in organ transplantation derives from its unique mechanism of action, its unique side-effect profile, and its ability to synergize with other immunosuppressive agents. The molecular mechanism underlying the antifungal, antiproliferative, and immunosuppressive activities of sirolimus is the same. Sirolimus forms an immunosuppressive complex with intracellular protein, FKBP12. This complex blocks the activation of the cell-cycle-specific kinase, TOR. The downstream events that follow the inactivation of TOR result in the blockage of cell-cycle progression at the juncture of G1 and S phase.
Collapse
|
Review |
22 |
530 |
11
|
Galanis E, Buckner JC, Maurer MJ, Kreisberg JI, Ballman K, Boni J, Peralba JM, Jenkins RB, Dakhil SR, Morton RF, Jaeckle KA, Scheithauer BW, Dancey J, Hidalgo M, Walsh DJ. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 2005; 23:5294-304. [PMID: 15998902 DOI: 10.1200/jco.2005.23.622] [Citation(s) in RCA: 525] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Temsirolimus (CCI-779) is a small-molecule inhibitor of the mammalian target of rapamycin (mTOR) and represents a rational therapeutic target against glioblastoma multiforme (GBM). METHODS Recurrent GBM patients with < or = 1 chemotherapy regimen for progressive disease were eligible. Temsirolimus was administered in a 250-mg intravenous dose weekly. RESULTS Sixty-five patients were treated. The incidence of grade 3 or higher nonhematologic toxicity was 51%, and consisted mostly of hypercholesterolemia (11%), hypertriglyceridemia (8%), and hyperglycemia (8%). Grade 3 hematologic toxicity was observed in 11% of patients. Temsirolimus peak concentration (Cmax), and sirolimus Cmax and area under the concentration-time curve were decreased in patients receiving p450 enzyme-inducing anticonvulsants (EIACs) by 73%, 47%, and 50%, respectively, but were still within the therapeutic range of preclinical models. Twenty patients (36%) had evidence of improvement in neuroimaging, consisting of decrease in T2 signal abnormality +/- decrease in T1 gadolinium enhancement, on stable or reduced steroid doses. Progression-free survival at 6 months was 7.8% and median overall survival was 4.4 months. Median time to progression (TTP) for all patients was 2.3 months and was significantly longer for responders (5.4 months) versus nonresponders (1.9 months). Development of grade 2 or higher hyperlipidemia in the first two treatment cycles was associated with a higher percentage of radiographic response (71% v 31%; P = .04). Significant correlation was observed between radiographic improvement and high levels of phosphorylated p70s6 kinase in baseline tumor samples (P = .04). CONCLUSION Temsirolimus is well tolerated in recurrent GBM patients. Despite the effect of EIACs on temsirolimus metabolism, therapeutic levels were achieved. Radiographic improvement was observed in 36% of temsirolimus-treated patients, and was associated with significantly longer TTP. High levels of phosphorylated p70s6 kinase in baseline tumor samples appear to predict a patient population more likely to derive benefit from treatment. These findings should be validated in other studies of mTOR inhibitors.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
525 |
12
|
Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J Clin Oncol 2009; 27:2278-87. [PMID: 19332717 PMCID: PMC2738634 DOI: 10.1200/jco.2008.20.0766] [Citation(s) in RCA: 502] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 01/21/2009] [Indexed: 12/21/2022] Open
Abstract
The serine-threonine kinase mammalian target of rapamycin (mTOR) plays a major role in the regulation of protein translation, cell growth, and metabolism. Alterations of the mTOR signaling pathway are common in cancer, and thus mTOR is being actively pursued as a therapeutic target. Rapamycin and its analogs (rapalogs) have proven effective as anticancer agents in a broad range of preclinical models. Clinical trials using rapalogs have demonstrated important clinical benefits in several cancer types; however, objective response rates achieved with single-agent therapy have been modest. Rapalogs may be more effective in combination with other anticancer agents, including chemotherapy and targeted therapies. It is increasingly apparent that the mTOR signaling network is quite complex, and rapamycin treatment leads to different signaling responses in different cell types. A better understanding of mTOR signaling, the mechanism of action of rapamycin, and the identification of biomarkers of response will lead to more optimal targeting of this pathway for cancer therapy.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
502 |
13
|
Kauffman HM, Cherikh WS, Cheng Y, Hanto DW, Kahan BD. Maintenance immunosuppression with target-of-rapamycin inhibitors is associated with a reduced incidence of de novo malignancies. Transplantation 2006; 80:883-9. [PMID: 16249734 DOI: 10.1097/01.tp.0000184006.43152.8d] [Citation(s) in RCA: 463] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Immunosuppressive drug therapy has been identified as one etiological factor in the increased incidence of and deaths from malignancies in renal transplant recipients. In animal models, calcineurin inhibitors have a positive growth effect, whereas target-of-rapamycin (TOR) inhibitors have a negative growth effect on malignant cells. METHODS A multivariate analysis of posttransplant malignancies in 33,249 deceased donor primary solitary renal recipients reported by 264 kidney transplant programs to the Organ Procurement and Transplantation Network database from July 1, 1996 to December 31, 2001 was performed. Data were censored at 963 days to allow comparable follow-up time among drug treatment groups. The incidence and relative risks of any de novo malignancy (skin and solid) and for non-skin solid malignancies in patients receiving TOR inhibitors compared to patients receiving calcineurin inhibitors were the primary endpoints. RESULTS The incidence rates of patients with any de novo posttransplant malignancy were 0.60% with sirolimus/everolimus alone, 0.60% with sirolimus/everolimus + cyclosporine/tacrolimus, and 1.81% with cyclosporine/tacrolimus (P<0.0001); the rates with a de novo solid tumor were 0%, 0.47%, and 1.00%, respectively. In the Cox regression model the relative risk associated with sirolimus/everolimus immunosuppression for any de novo cancer was 0.39 (95% CI: 0.24-0.64; P=0.0002) and for de novo solid cancer was 0.44 (0.24-0.82; P=0.0092). Other significant risk factors were male sex, adult age group, white race, and history of a malignancy. CONCLUSIONS Maintenance immunosuppression with the TOR inhibitor drugs, sirolimus and everolimus, is associated with a significantly reduced risk of developing any posttransplant de novo malignancy and non-skin solid malignancy.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
463 |
14
|
Wieman HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell 2007; 18:1437-46. [PMID: 17301289 PMCID: PMC1838986 DOI: 10.1091/mbc.e06-07-0593] [Citation(s) in RCA: 453] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 12/22/2006] [Accepted: 02/02/2007] [Indexed: 12/22/2022] Open
Abstract
Cells require growth factors to support glucose metabolism for survival and growth. It is unclear, however, how noninsulin growth factors may regulate glucose uptake and glucose transporters. We show that the hematopoietic growth factor interleukin (IL)3, maintained the glucose transporter Glut1 on the cell surface and promoted Rab11a-dependent recycling of intracellular Glut1. IL3 required phosphatidylinositol-3 kinase activity to regulate Glut1 trafficking, and activated Akt was sufficient to maintain glucose uptake and surface Glut1 in the absence of IL3. To determine how Akt may regulate Glut1, we analyzed the role of Akt activation of mammalian target of rapamycin (mTOR)/regulatory associated protein of mTOR (RAPTOR) and inhibition of glycogen synthase kinase (GSK)3. Although Akt did not require mTOR/RAPTOR to maintain surface Glut1 levels, inhibition of mTOR/RAPTOR by rapamycin greatly diminished glucose uptake, suggesting Akt-stimulated mTOR/RAPTOR may promote Glut1 transporter activity. In contrast, inhibition of GSK3 did not affect Glut1 internalization but nevertheless maintained surface Glut1 levels in IL3-deprived cells, possibly via enhanced recycling of internalized Glut1. In addition, Akt attenuated Glut1 internalization through a GSK3-independent mechanism. These data demonstrate that intracellular trafficking of Glut1 is a regulated component of growth factor-stimulated glucose uptake and that Akt can promote Glut1 activity and recycling as well as prevent Glut1 internalization.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
453 |
15
|
Parola M, Robino G, Marra F, Pinzani M, Bellomo G, Leonarduzzi G, Chiarugi P, Camandola S, Poli G, Waeg G, Gentilini P, Dianzani MU. HNE interacts directly with JNK isoforms in human hepatic stellate cells. J Clin Invest 1998; 102:1942-50. [PMID: 9835619 PMCID: PMC509146 DOI: 10.1172/jci1413] [Citation(s) in RCA: 426] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
4-Hydroxy-2,3-nonenal (HNE) is an aldehydic end product of lipid peroxidation which has been detected in vivo in clinical and experimental conditions of chronic liver damage. HNE has been shown to stimulate procollagen type I gene expression and synthesis in human hepatic stellate cells (hHSC) which are known to play a key role in liver fibrosis. In this study we investigated the molecular mechanisms underlying HNE actions in cultured hHSC. HNE, at doses compatible with those detected in vivo, lead to an early generation of nuclear HNE-protein adducts of 46, 54, and 66 kD, respectively, as revealed by using a monoclonal antibody specific for HNE-histidine adducts. This observation is related to the lack of crucial HNE-metabolizing enzymatic activities in hHSC. Kinetics of appearance of these nuclear adducts suggested translocation of cytosolic proteins. The p46 and p54 isoforms of c-Jun amino-terminal kinase (JNKs) were identified as HNE targets and were activated by this aldehyde. A biphasic increase in AP-1 DNA binding activity, associated with increased mRNA levels of c-jun, was also observed in response to HNE. HNE did not affect the Ras/ERK pathway, c-fos expression, DNA synthesis, or NF-kappaB binding. This study identifies a novel mechanism linking oxidative stress to nuclear signaling in hHSC. This mechanism is not based on redox sensors and is stimulated by concentrations of HNE compatible with those detected in vivo, and thus may be relevant during chronic liver diseases.
Collapse
|
research-article |
27 |
426 |
16
|
Hou L, Klann E. Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J Neurosci 2004; 24:6352-61. [PMID: 15254091 PMCID: PMC6729543 DOI: 10.1523/jneurosci.0995-04.2004] [Citation(s) in RCA: 425] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hippocampal long-term depression (LTD) is a long-lasting decrease in synaptic strength that is most commonly studied at glutamatergic inputs to pyramidal cells in hippocampal area CA1. Activation of G-protein-coupled group I (including types 1 and 5) metabotropic glutamate receptors (mGluRs) by the pharmacological agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) elicits LTD in area CA1 of the hippocampus. Recent reports have shown that de novo protein synthesis is necessary for DHPG-induced LTD. However, relatively little is known about the signaling pathways that couple mGluRs to translation initiation. In this study, we investigated whether the activation of the phosphoinositide 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, which has been shown to regulate translation initiation, is necessary for mGluR-LTD induced by DHPG. We found that brief incubations of mouse hippocampal slices with DHPG resulted in increased phosphorylation of Akt and mTOR in hippocampal area CA1. Two structurally unrelated PI3K inhibitors, LY294002 and wortmannin, blocked the DHPG-induced increases in phosphorylation of Akt and mTOR. Biochemical fractionation studies showed that the DHPG-induced increase in the phosphorylation of Akt and mTOR could be detected in synaptoneurosome preparations, and immunohistochemical analysis revealed that similar increases could be detected in both stratum pyramidale and stratum radiatum in area CA1. Finally, we observed that both PI3K inhibitors and rapamycin, an mTOR inhibitor, prevented mGluR-LTD induced by DHPG. Together, our findings indicate that activation of the PI3K-Akt-mTOR signaling cascade is required for mGluR-LTD and suggest that this pathway may couple group I mGluRs to translation initiation in hippocampal area CA1.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
425 |
17
|
Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, Xu W, Klevit RE, Le Moual H, Miller SI. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 2005; 122:461-72. [PMID: 16096064 DOI: 10.1016/j.cell.2005.05.030] [Citation(s) in RCA: 419] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 04/08/2005] [Accepted: 05/27/2005] [Indexed: 11/21/2022]
Abstract
PhoQ is a membrane bound sensor kinase important for the pathogenesis of a number of Gram-negative bacterial species. PhoQ and its cognate response regulator PhoP constitute a signal-transduction cascade that controls inducible resistance to host antimicrobial peptides. We show that enzymatic activity of Salmonella typhimurium PhoQ is directly activated by antimicrobial peptides. A highly acidic surface of the PhoQ sensor domain participates in both divalent-cation and antimicrobial-peptide binding as a first step in signal transduction across the bacterial membrane. Identification of PhoQ signaling mutants, binding studies with the PhoQ sensor domain, and structural analysis of this domain can be incorporated into a model in which antimicrobial peptides displace divalent cations from PhoQ metal binding sites to initiate signal transduction. Our findings reveal a molecular mechanism by which bacteria sense small innate immune molecules to initiate a transcriptional program that promotes bacterial virulence.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
419 |
18
|
Ferrell JE. Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci 1996; 21:460-6. [PMID: 9009826 DOI: 10.1016/s0968-0004(96)20026-x] [Citation(s) in RCA: 415] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent experimental work has shown that the mitogen-activated protein (MAP) kinase cascade can convert graded inputs into switch-like outputs. The cascade could therefore filter out noise (signals of insufficient magnitude or duration) and still respond decisively to supra-threshold stimuli. Here, we explore the biochemical mechanisms likely to be at the root of this behavior.
Collapse
|
Review |
29 |
415 |
19
|
Davies SP, Helps NR, Cohen PT, Hardie DG. 5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett 1995; 377:421-5. [PMID: 8549768 DOI: 10.1016/0014-5793(95)01368-7] [Citation(s) in RCA: 410] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human protein phosphatase-2C alpha (PP2C alpha) was purified to homogeneity after expression in Escherichia coli. AMP inhibited the dephosphorylation of AMP-activated protein kinase (AMPK), but not phosphocasein, by PP2C alpha. The concentration dependence and the effects of other nucleotides (ATP and formycin A-5'-monophosphate) suggest that AMP acts by binding to the same site which causes direct allosteric activation of AMPK. A similar, although less pronounced, effect was observed with another protein phosphatase (PP2AC). We have now shown that AMPK activates the AMPK cascade by four mechanisms, which should make the system exquisitely sensitive to changes in AMP concentration.
Collapse
|
Comparative Study |
30 |
410 |
20
|
Abstract
Ovarian cancer is the leading cause of death from gynaecological malignancies in the Western world. Despite the evolution of surgical techniques and meticulously designed chemotherapy regimens, relapse remains almost inevitable in patients with advanced disease. In an age when great advances have been made in understanding the genetics and molecular biology of this heterogeneous disease, it is likely that the introduction of novel targeted therapies will have a major impact on the management of ovarian cancer. Importantly, such strategies might allow selection of treatments based on the molecular characteristics of tumours and bring us closer to an era of personalized medicine.
Collapse
|
Review |
16 |
398 |
21
|
McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T, Izumo S. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 2004; 109:3050-5. [PMID: 15184287 DOI: 10.1161/01.cir.0000130641.08705.45] [Citation(s) in RCA: 395] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Rapamycin is a specific inhibitor of the mammalian target of rapamycin (mTOR). We recently reported that administration of rapamycin before exposure to ascending aortic constriction significantly attenuated the load-induced increase in heart weight by approximately 70%. METHODS AND RESULTS To examine whether rapamycin can regress established cardiac hypertrophy, mice were subjected to pressure overload (ascending aortic constriction) for 1 week, echocardiography was performed to verify an increase in ventricular wall thickness, and mice were given rapamycin (2 mg x kg(-1) x d(-1)) for 1 week. After 1 week of pressure overload (before treatment), 2 distinct groups of animals became apparent: (1) mice with compensated cardiac hypertrophy (normal function) and (2) mice with decompensated hypertrophy (dilated with depressed function). Rapamycin regressed the pressure overload-induced increase in heart weight/body weight (HW/BW) ratio by 68% in mice with compensated hypertrophy and 41% in mice with decompensated hypertrophy. Rapamycin improved left ventricular end-systolic dimensions, fractional shortening, and ejection fraction in mice with decompensated cardiac hypertrophy. Rapamycin also altered the expression of some fetal genes, reversing, in part, changes in alpha-myosin heavy chain and sarcoplasmic reticulum Ca2+ ATPase. CONCLUSIONS Rapamycin may be a therapeutic tool to regress established cardiac hypertrophy and improve cardiac function.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
395 |
22
|
Guertin DA, Sabatini DM. An expanding role for mTOR in cancer. Trends Mol Med 2005; 11:353-61. [PMID: 16002336 DOI: 10.1016/j.molmed.2005.06.007] [Citation(s) in RCA: 389] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/18/2005] [Accepted: 06/21/2005] [Indexed: 12/31/2022]
Abstract
Rapamycin, a valuable drug with diverse clinical applications, inhibits mTOR (mammalian target of rapamycin), which is a protein kinase that controls cell growth by regulating many cellular processes, including protein synthesis and autophagy. The sensitivity of select tumor cells to rapamycin has ignited considerable excitement over its potential as an anti-cancer therapeutic. Recent findings identified a rapamycin-insensitive function of mTOR in regulating a cell-survival pathway that is hyperactive in many cancers, particularly those with elevated PtdIns3K signaling or harboring mutations in the tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10). These new findings suggest that targeting this function of mTOR might have broader applications in cancer therapy. In this article, we re-evaluate mTOR signaling, suggesting a more central role for mTOR in cancers with defective PtdIns3K-PTEN signaling and conceptually discuss these implications in the context of drug discovery.
Collapse
|
Review |
20 |
389 |
23
|
Chan S, Scheulen ME, Johnston S, Mross K, Cardoso F, Dittrich C, Eiermann W, Hess D, Morant R, Semiglazov V, Borner M, Salzberg M, Ostapenko V, Illiger HJ, Behringer D, Bardy-Bouxin N, Boni J, Kong S, Cincotta M, Moore L. Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol 2005; 23:5314-22. [PMID: 15955899 DOI: 10.1200/jco.2005.66.130] [Citation(s) in RCA: 369] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE In this study, two doses of temsirolimus (CCI-779), a novel inhibitor of the mammalian target of rapamycin, were evaluated for efficacy, safety, and pharmacokinetics in patients with locally advanced or metastatic breast cancer who had been heavily pretreated. PATIENTS AND METHODS Patients (n = 109) were randomly assigned to receive 75 or 250 mg of temsirolimus weekly as a 30-minute intravenous infusion. Patients were evaluated for tumor response, time to tumor progression, adverse events, and pharmacokinetics of temsirolimus. RESULTS Temsirolimus produced an objective response rate of 9.2% (10 partial responses) in the intent-to-treat population. Median time to tumor progression was 12.0 weeks. Efficacy was similar for both dose levels but toxicity was more common with the higher dose level, especially grade 3 or 4 depression (10% of patients at the 250-mg dose level, 0% at the 75-mg dose level). The most common temsirolimus-related adverse events of all grades were mucositis (70%), maculopapular rash (51%), and nausea (43%). The most common, clinically important grade 3 or 4 adverse events were mucositis (9%), leukopenia (7%), hyperglycemia (7%), somnolence (6%), thrombocytopenia (5%), and depression (5%). CONCLUSION In heavily pretreated patients with locally advanced or metastatic breast cancer, 75 and 250 mg temsirolimus showed antitumor activity and 75 mg temsirolimus showed a generally tolerable safety profile.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
369 |
24
|
Apsel B, Blair JA, Gonzalez B, Nazif TM, Feldman ME, Aizenstein B, Hoffman R, Williams RL, Shokat KM, Knight ZA. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol 2008; 4:691-9. [PMID: 18849971 PMCID: PMC2880455 DOI: 10.1038/nchembio.117] [Citation(s) in RCA: 336] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 09/12/2008] [Indexed: 12/12/2022]
Abstract
The clinical success of multitargeted kinase inhibitors has stimulated efforts to identify promiscuous drugs with optimal selectivity profiles. It remains unclear to what extent such drugs can be rationally designed, particularly for combinations of targets that are structurally divergent. Here we report the systematic discovery of molecules that potently inhibit both tyrosine kinases and phosphatidylinositol-3-OH kinases, two protein families that are among the most intensely pursued cancer drug targets. Through iterative chemical synthesis, X-ray crystallography and kinome-level biochemical profiling, we identified compounds that inhibit a spectrum of new target combinations in these two families. Crystal structures revealed that the dual selectivity of these molecules is controlled by a hydrophobic pocket conserved in both enzyme classes and accessible through a rotatable bond in the drug skeleton. We show that one compound, PP121, blocks the proliferation of tumor cells by direct inhibition of oncogenic tyrosine kinases and phosphatidylinositol-3-OH kinases. These molecules demonstrate the feasibility of accessing a chemical space that intersects two families of oncogenes.
Collapse
|
Comparative Study |
17 |
336 |
25
|
Zhang Y, Yao B, Delikat S, Bayoumy S, Lin XH, Basu S, McGinley M, Chan-Hui PY, Lichenstein H, Kolesnick R. Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 1997; 89:63-72. [PMID: 9094715 DOI: 10.1016/s0092-8674(00)80183-x] [Citation(s) in RCA: 332] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A proline-directed serine/threonine ceramide-activated protein (CAP) kinase mediates transmembrane signaling through the sphingomyelin pathway. CAP kinase reportedly initiates proinflammatory TNF alpha action by phosphorylating and activating Raf-1. The present studies delineate kinase suppressor of Ras (KSR), identified genetically in Caenorhabditis elegans and Drosophila, as CAP kinase. Mouse KSR, like CAP kinase, renatures and autophosphorylates as a 100-kDa membrane-bound polypeptide. KSR overexpression constitutively activates Raf-1. TNF alpha or ceramide analogs markedly enhance KSR autophosphorylation and its ability to complex with, phosphorylate, and activate Raf-1. In vitro, low nanomolar concentrations of natural ceramide stimulate KSR to autophosphorylate, and transactivate Raf-1. Other lipid second messengers were ineffective. Moreover, Thr269 the Raf-1 site phosphorylated by CAP kinase, is also recognized by KSR. Thus, by previously established criteria, KSR appears to be CAP kinase.
Collapse
|
|
28 |
332 |