1
|
Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, Smit AB, Sixma TK. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 2001; 411:269-76. [PMID: 11357122 DOI: 10.1038/35077011] [Citation(s) in RCA: 1384] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pentameric ligand gated ion-channels, or Cys-loop receptors, mediate rapid chemical transmission of signals. This superfamily of allosteric transmembrane proteins includes the nicotinic acetylcholine (nAChR), serotonin 5-HT3, gamma-aminobutyric-acid (GABAA and GABAC) and glycine receptors. Biochemical and electrophysiological information on the prototypic nAChRs is abundant but structural data at atomic resolution have been missing. Here we present the crystal structure of molluscan acetylcholine-binding protein (AChBP), a structural and functional homologue of the amino-terminal ligand-binding domain of an nAChR alpha-subunit. In the AChBP homopentamer, the protomers have an immunoglobulin-like topology. Ligand-binding sites are located at each of five subunit interfaces and contain residues contributed by biochemically determined 'loops' A to F. The subunit interfaces are highly variable within the ion-channel family, whereas the conserved residues stabilize the protomer fold. This AChBP structure is relevant for the development of drugs against, for example, Alzheimer's disease and nicotine addiction.
Collapse
|
|
24 |
1384 |
2
|
Abstract
N-methyl-D-aspartate receptors (NMDARs) are present at many excitatory glutamate synapses in the central nervous system and display unique properties that depend on their subunit composition. Biophysical, pharmacological and molecular methods have been used to determine the key features conferred by the various NMDAR subunits, and have helped to establish which NMDAR subtypes are present at particular synapses. Recent studies are beginning to address the functional significance of NMDAR diversity under normal and pathological conditions.
Collapse
|
Review |
24 |
1305 |
3
|
Ravelli RBG, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004; 428:198-202. [PMID: 15014504 DOI: 10.1038/nature02393] [Citation(s) in RCA: 1280] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 02/04/2004] [Indexed: 02/08/2023]
Abstract
Microtubules are cytoskeletal polymers of tubulin involved in many cellular functions. Their dynamic instability is controlled by numerous compounds and proteins, including colchicine and stathmin family proteins. The way in which microtubule instability is regulated at the molecular level has remained elusive, mainly because of the lack of appropriate structural data. Here, we present the structure, at 3.5 A resolution, of tubulin in complex with colchicine and with the stathmin-like domain (SLD) of RB3. It shows the interaction of RB3-SLD with two tubulin heterodimers in a curved complex capped by the SLD amino-terminal domain, which prevents the incorporation of the complexed tubulin into microtubules. A comparison with the structure of tubulin in protofilaments shows changes in the subunits of tubulin as it switches from its straight conformation to a curved one. These changes correlate with the loss of lateral contacts and provide a rationale for the rapid microtubule depolymerization characteristic of dynamic instability. Moreover, the tubulin-colchicine complex sheds light on the mechanism of colchicine's activity: we show that colchicine binds at a location where it prevents curved tubulin from adopting a straight structure, which inhibits assembly.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
1280 |
4
|
Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A 2000; 97:13003-8. [PMID: 11087855 PMCID: PMC27168 DOI: 10.1073/pnas.97.24.13003] [Citation(s) in RCA: 1275] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2000] [Accepted: 09/22/2000] [Indexed: 11/18/2022] Open
Abstract
Certain proteins contain subunits that enable their active translocation across the plasma membrane into cells. In the specific case of HIV-1, this subunit is the basic domain Tat(49-57) (RKKRRQRRR). To establish the optimal structural requirements for this translocation process, and thereby to develop improved molecular transporters that could deliver agents into cells, a series of analogues of Tat(49-57) were prepared and their cellular uptake into Jurkat cells was determined by flow cytometry. All truncated and alanine-substituted analogues exhibited diminished cellular uptake, suggesting that the cationic residues of Tat(49-57) play a principal role in its uptake. Charge alone, however, is insufficient for transport as oligomers of several cationic amino acids (histidine, lysine, and ornithine) are less effective than Tat(49-57) in cellular uptake. In contrast, a 9-mer of l-arginine (R9) was 20-fold more efficient than Tat(49-57) at cellular uptake as determined by Michaelis-Menton kinetic analysis. The d-arginine oligomer (r9) exhibited an even greater uptake rate enhancement (>100-fold). Collectively, these studies suggest that the guanidinium groups of Tat(49-57) play a greater role in facilitating cellular uptake than either charge or backbone structure. Based on this analysis, we designed and synthesized a class of polyguanidine peptoid derivatives. Remarkably, the subset of peptoid analogues containing a six-methylene spacer between the guanidine head group and backbone (N-hxg), exhibited significantly enhanced cellular uptake compared to Tat(49-57) and even to r9. Overall, a transporter has been developed that is superior to Tat(49-57), protease resistant, and more readily and economically prepared.
Collapse
|
research-article |
25 |
1275 |
5
|
Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, Kuestner R, Garrigues U, Birks C, Roraback J, Ostrander C, Dong D, Shin J, Presnell S, Fox B, Haldeman B, Cooper E, Taft D, Gilbert T, Grant FJ, Tackett M, Krivan W, McKnight G, Clegg C, Foster D, Klucher KM. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 2003; 4:63-8. [PMID: 12469119 DOI: 10.1038/ni873] [Citation(s) in RCA: 1214] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Accepted: 10/28/2002] [Indexed: 12/17/2022]
Abstract
Cytokines play a critical role in modulating the innate and adaptive immune systems. Here, we have identified from the human genomic sequence a family of three cytokines, designated interleukin 28A (IL-28A), IL-28B and IL-29, that are distantly related to type I interferons (IFNs) and the IL-10 family. We found that like type I IFNs, IL-28 and IL-29 were induced by viral infection and showed antiviral activity. However, IL-28 and IL-29 interacted with a heterodimeric class II cytokine receptor that consisted of IL-10 receptor beta (IL-10Rbeta) and an orphan class II receptor chain, designated IL-28Ralpha. This newly described cytokine family may serve as an alternative to type I IFNs in providing immunity to viral infection.
Collapse
|
|
22 |
1214 |
6
|
Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 2003; 22:2623-33. [PMID: 12773379 PMCID: PMC156772 DOI: 10.1093/emboj/cdg277] [Citation(s) in RCA: 1177] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell-expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA-induced stomatal closing, ABA promotion of ROS production, ABA-induced cytosolic Ca(2+) increases and ABA- activation of plasma membrane Ca(2+)-permeable channels in guard cells. Exogenous H(2)O(2) rescues both Ca(2+) channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate-limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction.
Collapse
|
research-article |
22 |
1177 |
7
|
Abstract
Eleven distinct isoforms of phosphoinositide-specific phospholipase C (PLC), which are grouped into four subfamilies (beta, gamma, delta, and epsilon), have been identified in mammals. These isozymes catalyze the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] to inositol 1,4,5-trisphosphate and diacylglycerol in response to the activation of more than 100 different cell surface receptors. All PLC isoforms contain X and Y domains, which form the catalytic core, as well as various combinations of regulatory domains that are common to many other signaling proteins. These regulatory domains serve to target PLC isozymes to the vicinity of their substrate or activators through protein-protein or protein-lipid interactions. These domains (with their binding partners in parentheses or brackets) include the pleckstrin homology (PH) domain [PtdIns(3)P, beta gamma subunits of G proteins] and the COOH-terminal region including the C2 domain (GTP-bound alpha subunit of Gq) of PLC-beta; the PH domain [PtdIns(3,4,5)P3] and Src homology 2 domain [tyrosine-phosphorylated proteins, PtdIns(3,4,5)P3] of PLC-gamma; the PH domain [PtdIns(4,5)P2] and C2 domain (Ca2+) of PLC-delta; and the Ras binding domain (GTP-bound Ras) of PLC-epsilon. The presence of distinct regulatory domains in PLC isoforms renders them susceptible to different modes of activation. Given that the partners that interact with these regulatory domains of PLC isozymes are generated or eliminated in specific regions of the cell in response to changes in receptor status, the activation and deactivation of each PLC isoform are likely highly regulated processes.
Collapse
|
review-article |
24 |
1107 |
8
|
Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell 2001; 104:901-12. [PMID: 11290327 DOI: 10.1016/s0092-8674(01)00286-0] [Citation(s) in RCA: 1025] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rifampicin (Rif) is one of the most potent and broad spectrum antibiotics against bacterial pathogens and is a key component of anti-tuberculosis therapy, stemming from its inhibition of the bacterial RNA polymerase (RNAP). We determined the crystal structure of Thermus aquaticus core RNAP complexed with Rif. The inhibitor binds in a pocket of the RNAP beta subunit deep within the DNA/RNA channel, but more than 12 A away from the active site. The structure, combined with biochemical results, explains the effects of Rif on RNAP function and indicates that the inhibitor acts by directly blocking the path of the elongating RNA when the transcript becomes 2 to 3 nt in length.
Collapse
|
Comparative Study |
24 |
1025 |
9
|
Abstract
The AMP-activated protein kinase (AMPK) system acts as a sensor of cellular energy status that is conserved in all eukaryotic cells. It is activated by increases in the cellular AMP:ATP ratio caused by metabolic stresses that either interfere with ATP production (eg, deprivation for glucose or oxygen) or that accelerate ATP consumption (eg, muscle contraction). Activation in response to increases in AMP involves phosphorylation by an upstream kinase, the tumor suppressor LKB1. In certain cells (eg, neurones, endothelial cells, and lymphocytes), AMPK can also be activated by a Ca(2+)-dependent and AMP-independent process involving phosphorylation by an alternate upstream kinase, CaMKKbeta. Once activated, AMPK switches on catabolic pathways that generate ATP, while switching off ATP-consuming processes such as biosynthesis and cell growth and proliferation. The AMPK complex contains 3 subunits, with the alpha subunit being catalytic, the beta subunit containing a glycogen-sensing domain, and the gamma subunits containing 2 regulatory sites that bind the activating and inhibitory nucleotides AMP and ATP. Although it may have evolved to respond to metabolic stress at the cellular level, hormones and cytokines such as insulin, leptin, and adiponectin can interact with the system, and it now appears to play a key role in maintaining energy balance at the whole body level. The AMPK system may be partly responsible for the health benefits of exercise and is the target for the antidiabetic drug metformin. It is a key player in the development of new treatments for obesity, type 2 diabetes, and the metabolic syndrome.
Collapse
|
Review |
18 |
983 |
10
|
Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJP, Zuker CS. An amino-acid taste receptor. Nature 2002; 416:199-202. [PMID: 11894099 DOI: 10.1038/nature726] [Citation(s) in RCA: 977] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The sense of taste provides animals with valuable information about the nature and quality of food. Mammals can recognize and respond to a diverse repertoire of chemical entities, including sugars, salts, acids and a wide range of toxic substances. Several amino acids taste sweet or delicious (umami) to humans, and are attractive to rodents and other animals. This is noteworthy because L-amino acids function as the building blocks of proteins, as biosynthetic precursors of many biologically relevant small molecules, and as metabolic fuel. Thus, having a taste pathway dedicated to their detection probably had significant evolutionary implications. Here we identify and characterize a mammalian amino-acid taste receptor. This receptor, T1R1+3, is a heteromer of the taste-specific T1R1 and T1R3 G-protein-coupled receptors. We demonstrate that T1R1 and T1R3 combine to function as a broadly tuned L-amino-acid sensor responding to most of the 20 standard amino acids, but not to their D-enantiomers or other compounds. We also show that sequence differences in T1R receptors within and between species (human and mouse) can significantly influence the selectivity and specificity of taste responses.
Collapse
|
|
23 |
977 |
11
|
Abstract
The integrins are a superfamily of cell adhesion receptors that bind to extracellular matrix ligands, cell-surface ligands, and soluble ligands. They are transmembrane alphabeta heterodimers and at least 18 alpha and eight beta subunits are known in humans, generating 24 heterodimers. Members of this family have been found in mammals, chicken and zebrafish, as well as lower eukaryotes, including sponges, the nematode Caenorhabditis elegans (two alpha and one beta subunits, generating two integrins) and the fruitfly Drosophila melanogaster (five alpha and one beta, generating five integrins). The alpha and beta subunits have distinct domain structures, with extracellular domains from each subunit contributing to the ligand-binding site of the heterodimer. The sequence arginine-glycine-aspartic acid (RGD) was identified as a general integrin-binding motif, but individual integrins are also specific for particular protein ligands. Immunologically important integrin ligands are the intercellular adhesion molecules (ICAMs), immunoglobulin superfamily members present on inflamed endothelium and antigen-presenting cells. On ligand binding, integrins transduce signals into the cell interior; they can also receive intracellular signals that regulate their ligand-binding affinity. Here we provide a brief overview that concentrates mostly on the organization, structure and function of mammalian integrins, which have been more extensively studied than integrins in other organisms.
Collapse
|
Review |
18 |
968 |
12
|
Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 2001; 294:339-45. [PMID: 11546839 PMCID: PMC2885948 DOI: 10.1126/science.1064535] [Citation(s) in RCA: 964] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Integrins are alphabeta heterodimeric receptors that mediate divalent cation-dependent cell-cell and cell-matrix adhesion through tightly regulated interactions with ligands. We have solved the crystal structure of the extracellular portion of integrin alphaVbeta3 at 3.1 A resolution. Its 12 domains assemble into an ovoid "head" and two "tails." In the crystal, alphaVbeta3 is severely bent at a defined region in its tails, reflecting an unusual flexibility that may be linked to integrin regulation. The main inter-subunit interface lies within the head, between a seven-bladed beta-propeller from alphaV and an A domain from beta3, and bears a striking resemblance to the Galpha/Gbeta interface in G proteins. A metal ion-dependent adhesion site (MIDAS) in the betaA domain is positioned to participate in a ligand-binding interface formed of loops from the propeller and betaA domains. MIDAS lies adjacent to a calcium-binding site with a potential regulatory function.
Collapse
|
research-article |
24 |
964 |
13
|
Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LLM, Guan Y, Rozanov M, Spaan WJM, Gorbalenya AE. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 2003; 331:991-1004. [PMID: 12927536 PMCID: PMC7159028 DOI: 10.1016/s0022-2836(03)00865-9] [Citation(s) in RCA: 963] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The genome organization and expression strategy of the newly identified severe acute respiratory syndrome coronavirus (SARS-CoV) were predicted using recently published genome sequences. Fourteen putative open reading frames were identified, 12 of which were predicted to be expressed from a nested set of eight subgenomic mRNAs. The synthesis of these mRNAs in SARS-CoV-infected cells was confirmed experimentally. The 4382- and 7073 amino acid residue SARS-CoV replicase polyproteins are predicted to be cleaved into 16 subunits by two viral proteinases (bringing the total number of SARS-CoV proteins to 28). A phylogenetic analysis of the replicase gene, using a distantly related torovirus as an outgroup, demonstrated that, despite a number of unique features, SARS-CoV is most closely related to group 2 coronaviruses. Distant homologs of cellular RNA processing enzymes were identified in group 2 coronaviruses, with four of them being conserved in SARS-CoV. These newly recognized viral enzymes place the mechanism of coronavirus RNA synthesis in a completely new perspective. Furthermore, together with previously described viral enzymes, they will be important targets for the design of antiviral strategies aimed at controlling the further spread of SARS-CoV.
Collapse
Key Words
- nidovirus
- genome organization
- subgenomic mrna synthesis
- replicase
- rna processing
- sars-cov, severe acute respiratory syndrome coronavirus
- orf, open reading frame
- sg, subgenomic
- bcov, bovine coronavirus
- etov, equine torovirus
- hcov, human coronavirus
- mhv, mouse hepatitis coronavirus
- pl1pro, papain-like proteinase 1
- ibv, avian infectious bronchitis coronavirus
- sud, sars-cov unique domain
- trs, transcription-regulating sequence
- xendou, poly(u)-specific endoribonuclease
- exon, 3′-to-5′ exonuclease
- 2′-o-mt, s-adenosylmethionine-dependent ribose 2′-o-methyltransferase
- adrp, adenosine diphosphate-ribose 1″-phosphatase
- cpd, cyclic phosphodiesterase
- snorna, small nucleolar rna
Collapse
|
research-article |
22 |
963 |
14
|
Cramer P, Bushnell DA, Kornberg RD. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 2001; 292:1863-76. [PMID: 11313498 DOI: 10.1126/science.1059493] [Citation(s) in RCA: 954] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Structures of a 10-subunit yeast RNA polymerase II have been derived from two crystal forms at 2.8 and 3.1 angstrom resolution. Comparison of the structures reveals a division of the polymerase into four mobile modules, including a clamp, shown previously to swing over the active center. In the 2.8 angstrom structure, the clamp is in an open state, allowing entry of straight promoter DNA for the initiation of transcription. Three loops extending from the clamp may play roles in RNA unwinding and DNA rewinding during transcription. A 2.8 angstrom difference Fourier map reveals two metal ions at the active site, one persistently bound and the other possibly exchangeable during RNA synthesis. The results also provide evidence for RNA exit in the vicinity of the carboxyl-terminal repeat domain, coupling synthesis to RNA processing by enzymes bound to this domain.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Conserved Sequence
- Crystallography, X-Ray
- DNA, Fungal/chemistry
- DNA, Fungal/metabolism
- Fourier Analysis
- Hydrogen Bonding
- Magnesium/metabolism
- Metals/metabolism
- Models, Molecular
- Molecular Sequence Data
- Promoter Regions, Genetic
- Protein Conformation
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Subunits
- RNA Polymerase II/chemistry
- RNA Polymerase II/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/biosynthesis
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
|
|
24 |
954 |
15
|
Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 2002; 295:851-5. [PMID: 11823641 PMCID: PMC2838482 DOI: 10.1126/science.1067484] [Citation(s) in RCA: 948] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Amyloid is associated with debilitating human ailments including Alzheimer's and prion diseases. Biochemical, biophysical, and imaging analyses revealed that fibers produced by Escherichia coli called curli were amyloid. The CsgA curlin subunit, purified in the absence of the CsgB nucleator, adopted a soluble, unstructured form that upon prolonged incubation assembled into fibers that were indistinguishable from curli. In vivo, curli biogenesis was dependent on the nucleation-precipitation machinery requiring the CsgE and CsgF chaperone-like and nucleator proteins, respectively. Unlike eukaryotic amyloid formation, curli biogenesis is a productive pathway requiring a specific assembly machinery.
Collapse
|
research-article |
23 |
948 |
16
|
Abstract
We present a refined model of the alpha beta-tubulin dimer to 3.5 A resolution. An improved experimental density for the zinc-induced tubulin sheets was obtained by adding 114 electron diffraction patterns at 40-60 degrees tilt and increasing the completeness of structure factor amplitudes to 84.7 %. The refined structure was obtained using maximum-likelihood including phase information from experimental images, and simulated annealing Cartesian refinement to an R-factor of 23.2 and free R-factor of 29.7. The current model includes residues alpha:2-34, alpha:61-439, beta:2-437, one molecule of GTP, one of GDP, and one of taxol, as well as one magnesium ion at the non-exchangeable nucleotide site, and one putative zinc ion near the M-loop in the alpha-tubulin subunit. The acidic C-terminal tails could not be traced accurately, neither could the N-terminal loop including residues 35-60 in the alpha-subunit. There are no major changes in the overall fold of tubulin with respect to the previous structure, testifying to the quality of the initial experimental phases. The overall geometry of the model is, however, greatly improved, and the position of side-chains, especially those of exposed polar/charged groups, is much better defined. Three short protein sequence frame shifts were detected with respect to the non-refined structure. In light of the new model we discuss details of the tubulin structure such as nucleotide and taxol binding sites, lateral contacts in zinc-sheets, and the significance of the location of highly conserved residues.
Collapse
|
|
24 |
927 |
17
|
Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R. The open pore conformation of potassium channels. Nature 2002; 417:523-6. [PMID: 12037560 DOI: 10.1038/417523a] [Citation(s) in RCA: 922] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Living cells regulate the activity of their ion channels through a process known as gating. To open the pore, protein conformational changes must occur within a channel's membrane-spanning ion pathway. KcsA and MthK, closed and opened K(+) channels, respectively, reveal how such gating transitions occur. Pore-lining 'inner' helices contain a 'gating hinge' that bends by approximately 30 degrees. In a straight conformation four inner helices form a bundle, closing the pore near its intracellular surface. In a bent configuration the inner helices splay open creating a wide (12 A) entryway. Amino-acid sequence conservation suggests a common structural basis for gating in a wide range of K(+) channels, both ligand- and voltage-gated. The open conformation favours high conduction by compressing the membrane field to the selectivity filter, and also permits large organic cations and inactivation peptides to enter the pore from the intracellular solution.
Collapse
|
|
23 |
922 |
18
|
Abstract
The pH of intracellular compartments in eukaryotic cells is a carefully controlled parameter that affects many cellular processes, including intracellular membrane transport, prohormone processing and transport of neurotransmitters, as well as the entry of many viruses into cells. The transporters responsible for controlling this crucial parameter in many intracellular compartments are the vacuolar (H+)-ATPases (V-ATPases). Recent advances in our understanding of the structure and regulation of the V-ATPases, together with the mapping of human genetic defects to genes that encode V-ATPase subunits, have led to tremendous excitement in this field.
Collapse
|
Comparative Study |
23 |
919 |
19
|
Abstract
Members of the nuclear factor kappa B (NF-kappaB) family of dimeric transcription factors (TFs) regulate expression of a large number of genes involved in immune responses, inflammation, cell survival, and cancer. NF-kappaB TFs are rapidly activated in response to various stimuli, including cytokines, infectious agents, and radiation-induced DNA double-strand breaks. In nonstimulated cells, some NF-kappaB TFs are bound to inhibitory IkappaB proteins and are thereby sequestered in the cytoplasm. Activation leads to phosphorylation of IkappaB proteins and their subsequent recognition by ubiquitinating enzymes. The resulting proteasomal degradation of IkappaB proteins liberates IkappaB-bound NF-kappaB TFs, which translocate to the nucleus to drive expression of target genes. Two protein kinases with a high degree of sequence similarity, IKKalpha and IKKbeta, mediate phosphorylation of IkappaB proteins and represent a convergence point for most signal transduction pathways leading to NF-kappaB activation. Most of the IKKalpha and IKKbeta molecules in the cell are part of IKK complexes that also contain a regulatory subunit called IKKgamma or NEMO. Despite extensive sequence similarity, IKKalpha and IKKbeta have largely distinct functions, due to their different substrate specificities and modes of regulation. IKKbeta (and IKKgamma) are essential for rapid NF-kappaB activation by proinflammatory signaling cascades, such as those triggered by tumor necrosis factor alpha (TNFalpha) or lipopolysaccharide (LPS). In contrast, IKKalpha functions in the activation of a specific form of NF-kappaB in response to a subset of TNF family members and may also serve to attenuate IKKbeta-driven NF-kappaB activation. Moreover, IKKalpha is involved in keratinocyte differentiation, but this function is independent of its kinase activity. Several years ago, two protein kinases, one called IKKepsilon or IKK-i and one variously named TBK1 (TANK-binding kinase), NAK (NF-kappaB-activated kinase), or T2K (TRAF2-associated kinase), were identified that exhibit structural similarity to IKKalpha and IKKbeta. These protein kinases are important for the activation of interferon response factor 3 (IRF3) and IRF7, TFs that play key roles in the induction of type I interferon (IFN-I). Together, the IKKs and IKK-related kinases are instrumental for activation of the host defense system. This Review focuses on the functions of IKK and IKK-related kinases and the molecular mechanisms that regulate their activities.
Collapse
|
Review |
19 |
914 |
20
|
Neumann HPH, Bausch B, McWhinney SR, Bender BU, Gimm O, Franke G, Schipper J, Klisch J, Altehoefer C, Zerres K, Januszewicz A, Eng C, Smith WM, Munk R, Manz T, Glaesker S, Apel TW, Treier M, Reineke M, Walz MK, Hoang-Vu C, Brauckhoff M, Klein-Franke A, Klose P, Schmidt H, Maier-Woelfle M, Peçzkowska M, Szmigielski C, Eng C. Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 2002; 346:1459-66. [PMID: 12000816 DOI: 10.1056/nejmoa020152] [Citation(s) in RCA: 905] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The group of susceptibility genes for pheochromocytoma that included the proto-oncogene RET (associated with multiple endocrine neoplasia type 2 [MEN-2]) and the tumor-suppressor gene VHL (associated with von Hippel-Lindau disease) now also encompasses the newly identified genes for succinate dehydrogenase subunit D (SDHD) and succinate dehydrogenase subunit B (SDHB), which predispose carriers to pheochromocytomas and glomus tumors. We used molecular tools to classify a large cohort of patients with pheochromocytoma with respect to the presence or absence of mutations of one of these four genes and to investigate the relevance of genetic analyses to clinical practice. METHODS Peripheral blood from unrelated, consenting registry patients with pheochromocytoma was tested for mutations of RET, VHL, SDHD, and SDHB. Clinical data at first presentation and follow-up were evaluated. RESULTS Among 271 patients who presented with nonsyndromic pheochromocytoma and without a family history of the disease, 66 (24 percent) were found to have mutations (mean age, 25 years; 32 men and 34 women). Of these 66, 30 had mutations of VHL, 13 of RET, 11 of SDHD, and 12 of SDHB. Younger age, multifocal tumors, and extraadrenal tumors were significantly associated with the presence of a mutation. However, among the 66 patients who were positive for mutations, only 21 had multifocal pheochromocytoma. Twenty-three (35 percent) presented after the age of 30 years, and 17 (8 percent) after the age of 40. Sixty-one (92 percent) of the patients with mutations were identified solely by molecular testing of VHL, RET, SDHD, and SDHB; these patients had no associated signs and symptoms at presentation. CONCLUSIONS Almost one fourth of patients with apparently sporadic pheochromocytoma may be carriers of mutations; routine analysis for mutations of RET, VHL, SDHD, and SDHB is indicated to identify pheochromocytoma-associated syndromes that would otherwise be missed.
Collapse
|
|
23 |
905 |
21
|
Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 2002; 110:599-11. [PMID: 12230977 DOI: 10.1016/s0092-8674(02)00935-2] [Citation(s) in RCA: 904] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
How ligand binding alters integrin conformation in outside-in signaling, and how inside-out signals alter integrin affinity for ligand, have been mysterious. We address this with electron microscopy, physicochemical measurements, mutational introduction of disulfides, and ligand binding to alphaVbeta3 and alphaIIbbeta3 integrins. We show that a highly bent integrin conformation is physiological and has low affinity for biological ligands. Addition of a high affinity ligand mimetic peptide or Mn(2+) results in a switchblade-like opening to an extended structure. An outward swing of the hybrid domain at its junction with the I-like domain shows conformational change within the headpiece that is linked to ligand binding. Breakage of a C-terminal clasp between the alpha and beta subunits enhances Mn(2+)-induced unbending and ligand binding.
Collapse
|
|
23 |
904 |
22
|
Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. CHEMISTRY & BIOLOGY 2001; 8:739-58. [PMID: 11514224 DOI: 10.1016/s1074-5521(01)00056-4] [Citation(s) in RCA: 886] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The 26S proteasome is a 2.4 MDa multifunctional ATP-dependent proteolytic complex, which degrades the majority of cellular polypeptides by an unusual enzyme mechanism. Several groups of proteasome inhibitors have been developed and are now widely used as research tools to study the role of the ubiquitin-proteasome pathway in various cellular processes, and two inhibitors are now in clinical trials for treatment of multiple cancers and stroke.
Collapse
|
Review |
24 |
886 |
23
|
Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 2000; 151:709-18. [PMID: 11062270 PMCID: PMC2185580 DOI: 10.1083/jcb.151.3.709] [Citation(s) in RCA: 876] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2000] [Accepted: 09/07/2000] [Indexed: 11/22/2022] Open
Abstract
Intraflagellar transport (IFT) is a rapid movement of multi-subunit protein particles along flagellar microtubules and is required for assembly and maintenance of eukaryotic flagella. We cloned and sequenced a Chlamydomonas cDNA encoding the IFT88 subunit of the IFT particle and identified a Chlamydomonas insertional mutant that is missing this gene. The phenotype of this mutant is normal except for the complete absence of flagella. IFT88 is homologous to mouse and human genes called Tg737. Mice with defects in Tg737 die shortly after birth from polycystic kidney disease. We show that the primary cilia in the kidney of Tg737 mutant mice are shorter than normal. This indicates that IFT is important for primary cilia assembly in mammals. It is likely that primary cilia have an important function in the kidney and that defects in their assembly can lead to polycystic kidney disease.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Chlamydomonas/cytology
- Chlamydomonas/genetics
- Cilia/genetics
- Cilia/metabolism
- Cilia/pathology
- Cilia/ultrastructure
- Cloning, Molecular
- Conserved Sequence
- Flagella/genetics
- Flagella/metabolism
- Flagella/pathology
- Flagella/ultrastructure
- Humans
- Kidney/metabolism
- Kidney/pathology
- Meiosis
- Mice
- Mice, Knockout
- Microscopy, Electron, Scanning
- Molecular Motor Proteins/genetics
- Molecular Motor Proteins/metabolism
- Molecular Motor Proteins/pathology
- Molecular Motor Proteins/ultrastructure
- Molecular Sequence Data
- Mutation/genetics
- Phenotype
- Plant Proteins
- Polycystic Kidney, Autosomal Recessive/genetics
- Polycystic Kidney, Autosomal Recessive/pathology
- Polycystic Kidney, Autosomal Recessive/physiopathology
- Protein Binding
- Protein Subunits
- Proteins/chemistry
- Proteins/genetics
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- Repetitive Sequences, Amino Acid/genetics
- Repetitive Sequences, Amino Acid/physiology
- Sequence Alignment
- Sequence Homology, Amino Acid
- Tumor Suppressor Proteins
Collapse
|
research-article |
25 |
876 |
24
|
Abstract
AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that acts as an intracellular energy sensor maintaining the energy balance within the cell. This pivotal role of AMPK places it in an ideal position for regulating whole-body energy metabolism, and AMPK might play a part in protecting the body from metabolic diseases such as type 2 diabetes and obesity. Mutations in AMPK cause cardiac hypertrophy and arrhythmia. Recent findings have identified LKB1--a protein kinase that is mutated in a hereditary form of cancer--as a candidate for the upstream kinase in the AMPK cascade. AMPK could provide a link in human diseases of which the underlying cause is due to defects in energy metabolism.
Collapse
|
|
21 |
866 |
25
|
Shi S, Hayashi Y, Esteban JA, Malinow R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 2001; 105:331-43. [PMID: 11348590 DOI: 10.1016/s0092-8674(01)00321-x] [Citation(s) in RCA: 858] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AMPA-type glutamate receptors (AMPA-Rs) mediate a majority of excitatory synaptic transmission in the brain. In hippocampus, most AMPA-Rs are hetero-oligomers composed of GluR1/GluR2 or GluR2/GluR3 subunits. Here we show that these AMPA-R forms display different synaptic delivery mechanisms. GluR1/GluR2 receptors are added to synapses during plasticity; this requires interactions between GluR1 and group I PDZ domain proteins. In contrast, GluR2/GluR3 receptors replace existing synaptic receptors continuously; this occurs only at synapses that already have AMPA-Rs and requires interactions by GluR2 with NSF and group II PDZ domain proteins. The combination of regulated addition and continuous replacement of synaptic receptors can stabilize long-term changes in synaptic efficacy and may serve as a general model for how surface receptor number is established and maintained.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
24 |
858 |