1
|
Takano J, Wada M, Ludewig U, Schaaf G, von Wirén N, Fujiwara T. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. THE PLANT CELL 2006; 18:1498-509. [PMID: 16679457 PMCID: PMC1475503 DOI: 10.1105/tpc.106.041640] [Citation(s) in RCA: 446] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Boron (B) is essential in plants but often present at low concentrations in the environment. To investigate how plants survive under conditions of B limitation, we conducted a transcriptome analysis and identified NIP5;1, a member of the major intrinsic protein family, as a gene upregulated in B-deficient roots of Arabidopsis thaliana. Promoter-beta-glucuronidase fusions indicated that NIP5;1 is strongly upregulated in the root elongation zone and the root hair zone under B limitation, and green fluorescent protein-tagged NIP5;1 proteins localized to the plasma membrane. Expression in Xenopus laevis oocytes demonstrated that NIP5;1 facilitated the transport of boric acid in addition to water. Importantly, two T-DNA insertion lines of NIP5;1 displayed lower boric acid uptake into roots, lower biomass production, and increased sensitivity of root and shoot development to B deficiency. These results identify NIP5;1 as a major plasma membrane boric acid channel crucial for the B uptake required for plant growth and development under B limitation.
Collapse
|
research-article |
19 |
446 |
2
|
Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 2010; 123:1468-79. [PMID: 20375061 DOI: 10.1242/jcs.064352] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Reactive oxygen species (ROS) are central to plant stress response, signalling, development and a multitude of other processes. In this study, the plasma-membrane hydroxyl radical (HR)-activated K(+) channel responsible for K(+) efflux from root cells during stress accompanied by ROS generation is characterised. The channel showed 16-pS unitary conductance and was sensitive to Ca(2+), tetraethylammonium, Ba(2+), Cs(+) and free-radical scavengers. The channel was not found in the gork1-1 mutant, which lacks a major plasma-membrane outwardly rectifying K(+) channel. In intact Arabidopsis roots, both HRs and stress induced a dramatic K(+) efflux that was much smaller in gork1-1 plants. Tests with electron paramagnetic resonance spectroscopy showed that NaCl can stimulate HR generation in roots and this might lead to K(+)-channel activation. In animals, activation of K(+)-efflux channels by HRs can trigger programmed cell death (PCD). PCD symptoms in Arabidopsis roots developed much more slowly in gork1-1 and wild-type plants treated with K(+)-channel blockers or HR scavengers. Therefore, similar to animal counterparts, plant HR-activated K(+) channels are also involved in PCD. Overall, this study provides new insight into the regulation of plant cation transport by ROS and demonstrates possible physiological properties of plant HR-activated K(+) channels.
Collapse
|
|
15 |
291 |
3
|
Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF. Transcription activator-like effector nucleases enable efficient plant genome engineering. PLANT PHYSIOLOGY 2013; 161:20-7. [PMID: 23124327 PMCID: PMC3532252 DOI: 10.1104/pp.112.205179] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/21/2012] [Indexed: 05/17/2023]
Abstract
The ability to precisely engineer plant genomes offers much potential for advancing basic and applied plant biology. Here, we describe methods for the targeted modification of plant genomes using transcription activator-like effector nucleases (TALENs). Methods were optimized using tobacco (Nicotiana tabacum) protoplasts and TALENs targeting the acetolactate synthase (ALS) gene. Optimal TALEN scaffolds were identified using a protoplast-based single-strand annealing assay in which TALEN cleavage creates a functional yellow fluorescent protein gene, enabling quantification of TALEN activity by flow cytometry. Single-strand annealing activity data for TALENs with different scaffolds correlated highly with their activity at endogenous targets, as measured by high-throughput DNA sequencing of polymerase chain reaction products encompassing the TALEN recognition sites. TALENs introduced targeted mutations in ALS in 30% of transformed cells, and the frequencies of targeted gene insertion approximated 14%. These efficiencies made it possible to recover genome modifications without selection or enrichment regimes: 32% of tobacco calli generated from protoplasts transformed with TALEN-encoding constructs had TALEN-induced mutations in ALS, and of 16 calli characterized in detail, all had mutations in one allele each of the duplicate ALS genes (SurA and SurB). In calli derived from cells treated with a TALEN and a 322-bp donor molecule differing by 6 bp from the ALS coding sequence, 4% showed evidence of targeted gene replacement. The optimized reagents implemented in plant protoplasts should be useful for targeted modification of cells from diverse plant species and using a variety of means for reagent delivery.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
288 |
4
|
Abstract
Passive permeabilities of the cell wall and protoplast of Bacillus megaterium strain KM were characterized by use of 50 hydrophilic probing molecules (tritiated water, sugars, dextrans, glycols, and polyglycols) which varied widely in size. Weight per cent uptake values (R(w)) were measured at diffusional equilibrium under conditions that negated the influences of adsorption or active transport. Plots of R(w) for intact cells as a function of number-average molecular weight ( M(n)) or Einstein-Stokes hydrodynamic radius ( r(ES)) of the solutes showed three phases: a protoplast uptake phase with a polydisperse exclusion threshold of M(n) = 0.6 x 10(3) to 1.1 x 10(3), r(ES) = 0.6 to 1.1 nm; a cell wall uptake phase with a polydisperse exclusion threshold of M(n) = 0.7 x 10(5) to 1.2 x 10(5), r(ES) congruent with 8.3 nm; and a total exclusion phase. Isolated cell walls showed only the latter two phases. However, it became evident that the cell wall selectively passed only the smallest molecules in a heterodisperse polymer sample. When the molecular-weight distributions of polyglycol samples ( M(n) = 1,000, 1,450, and 3,350) were determined by analytical gel chromatography before and after uptake by intact cells or isolated cell walls, a quasi-monodisperse exclusion threshold was obtained corresponding to M(n) = 1,200, r(ES) = 1.1 nm. The permeability of isolated protoplasts was assessed by the relative ability of solutes to effect osmotic stabilization. An indefinite exclusion threshold, evident even with monodisperse sugars, was attributed to lengthwise orientation of the penetrating rod-shaped molecules. Altogether, the best estimate of the limiting equivalent porosity of the protoplast was 0.4 to 0.6 nm in radius and of the cell wall, 1.1 nm.
Collapse
|
research-article |
54 |
276 |
5
|
Iki T, Yoshikawa M, Nishikiori M, Jaudal MC, Matsumoto-Yokoyama E, Mitsuhara I, Meshi T, Ishikawa M. In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell 2010; 39:282-91. [PMID: 20605502 DOI: 10.1016/j.molcel.2010.05.014] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/22/2010] [Accepted: 05/13/2010] [Indexed: 01/24/2023]
Abstract
RNA-induced silencing complexes (RISCs) play central roles in posttranscriptional gene silencing. In plants, the mechanism of RISC assembly has remained elusive due to the lack of cell-free systems that recapitulate the process. In this report, we demonstrate that plant AGO1 protein synthesized by in vitro translation using an extract of evacuolated tobacco protoplasts incorporates synthetic small interfering RNA (siRNA) and microRNA (miRNA) duplexes to form RISCs that sequester the single-stranded siRNA guide strand and miRNA strand, respectively. The formed RISCs were able to recognize and cleave the complementary target RNAs. In this system, the siRNA duplex was incorporated into HSP90-bound AGO1, and subsequent removal of the passenger strand was triggered by ATP hydrolysis by HSP90. Removal of the siRNA passenger strand required the ribonuclease activity of AGO1, while that of the miRNA star strand did not. Based on these results, the mechanism of plant RISC formation is discussed.
Collapse
|
|
15 |
229 |
6
|
Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer S, Schmidt U, Martinoia E, Neuhaus HE. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. THE PLANT CELL 2006; 18:3476-90. [PMID: 17158605 PMCID: PMC1785410 DOI: 10.1105/tpc.106.047290] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 10/18/2006] [Accepted: 11/03/2006] [Indexed: 05/12/2023]
Abstract
The tonoplast monosaccharide transporter (TMT) family comprises three isoforms in Arabidopsis thaliana, and TMT-green fluorescent protein fusion proteins are targeted to the vacuolar membrane. TMT promoter-beta-glucuronidase plants revealed that the TONOPLAST MONOSACCHARIDE TRANSPORTER1 (TMT1) and TMT2 genes exhibit a tissue- and cell type-specific expression pattern, whereas TMT3 is only weakly expressed. TMT1 and TMT2 expression is induced by drought, salt, and cold treatments and by sugar. During cold adaptation, tmt knockout lines accumulated less glucose and fructose compared with wild-type plants, whereas no differences were observed for sucrose. Cold adaptation of wild-type plants substantially promoted glucose uptake into isolated leaf mesophyll vacuoles. Glucose uptake into isolated vacuoles was inhibited by NH(4)(+), fructose, and phlorizin, indicating that transport is energy-dependent and that both glucose and fructose were taken up by the same carrier. Glucose import into vacuoles from two cold-induced tmt1 knockout lines or from triple knockout plants was substantially lower than into corresponding wild-type vacuoles. Monosaccharide feeding into leaf discs revealed the strongest response to sugar in tmt1 knockout lines compared with wild-type plants, suggesting that TMT1 is required for cytosolic glucose homeostasis. Our results indicate that TMT1 is involved in vacuolar monosaccharide transport and plays a major role during stress responses.
Collapse
|
research-article |
19 |
225 |
7
|
Brzobohatý B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K. Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science 1993; 262:1051-4. [PMID: 8235622 DOI: 10.1126/science.8235622] [Citation(s) in RCA: 216] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A beta-glucoside encoded by a cloned Zea mays complementary DNA (Zm-p60.1) cleaved the biologically inactive hormone conjugates cytokinin-O-glucosides and kinetin-N3-glucoside, releasing active cytokinin. Tobacco protoplasts that transiently expressed Zm-p60.1 could use the inactive cytokinin glucosides to initiate cell division. The ability of protoplasts to sustain growth in response to cytokinin glucosides persisted indefinitely after the likely disappearance of the expression vector. In the roots of maize seedlings, Zm-p60.1 was localized to the meristematic cells and may function in vivo to supply the developing maize embryo with active cytokinin.
Collapse
|
|
32 |
216 |
8
|
Asai T, Stone JM, Heard JE, Kovtun Y, Yorgey P, Sheen J, Ausubel FM. Fumonisin B1-induced cell death in arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. THE PLANT CELL 2000; 12:1823-36. [PMID: 11041879 PMCID: PMC149122 DOI: 10.1105/tpc.12.10.1823] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2000] [Accepted: 08/03/2000] [Indexed: 05/18/2023]
Abstract
We have established an Arabidopsis protoplast model system to study plant cell death signaling. The fungal toxin fumonisin B1 (FB1) induces apoptosis-like programmed cell death (PCD) in wild-type protoplasts. FB1, however, only marginally affects the viability of protoplasts isolated from transgenic NahG plants, in which salicylic acid (SA) is metabolically degraded; from pad4-1 mutant plants, in which an SA amplification mechanism is thought to be impaired; or from jar1-1 or etr1-1 mutant plants, which are insensitive to jasmonate (JA) or ethylene (ET), respectively. FB1 susceptibility of wild-type protoplasts decreases in the dark, as does the cellular content of phenylalanine ammonia-lyase, a light-inducible enzyme involved in SA biosynthesis. Interestingly, however, FB1-induced PCD does not require the SA signal transmitter NPR1, given that npr1-1 protoplasts display wild-type FB1 susceptibility. Arabidopsis cpr1-1, cpr6-1, and acd2-2 protoplasts, in which the SA signaling pathway is constitutively activated, exhibit increased susceptibility to FB1. The cpr6-1 and acd2-2 mutants also constitutively express the JA and ET signaling pathways, but only the acd2-2 protoplasts undergo PCD in the absence of FB1. These results demonstrate that FB1 killing of Arabidopsis is light dependent and requires SA-, JA-, and ET-mediated signaling pathways as well as one or more unidentified factors activated by FB1 and the acd2-2 mutation.
Collapse
|
research-article |
25 |
198 |
9
|
Geisler M, Kolukisaoglu HU, Bouchard R, Billion K, Berger J, Saal B, Frangne N, Koncz-Kalman Z, Koncz C, Dudler R, Blakeslee JJ, Murphy AS, Martinoia E, Schulz B. TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol Biol Cell 2003; 14:4238-49. [PMID: 14517332 PMCID: PMC207015 DOI: 10.1091/mbc.e02-10-0698] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Null-mutations of the Arabidopsis FKBP-like immunophilin TWISTED DWARF1 (TWD1) gene cause a pleiotropic phenotype characterized by reduction of cell elongation and disorientated growth of all plant organs. Heterologously expressed TWD1 does not exhibit cis-trans-peptidylprolyl isomerase (PPIase) activity and does not complement yeast FKBP12 mutants, suggesting that TWD1 acts indirectly via protein-protein interaction. Yeast two-hybrid protein interaction screens with TWD1 identified cDNA sequences that encode the C-terminal domain of Arabidopsis multidrug-resistance-like ABC transporter AtPGP1. This interaction was verified in vitro. Mapping of protein interaction domains shows that AtPGP1 surprisingly binds to the N-terminus of TWD1 harboring the cis-trans peptidyl-prolyl isomerase-like domain and not to the tetratrico-peptide repeat domain, which has been shown to mediate protein-protein interaction. Unlike all other FKBPs, TWD1 is shown to be an integral membrane protein that colocalizes with its interacting partner AtPGP1 on the plasma membrane. TWD1 also interacts with AtPGP19 (AtMDR1), the closest homologue of AtPGP1. The single gene mutation twd1-1 and double atpgp1-1/atpgp19-1 (atmdr1-1) mutants exhibit similar phenotypes including epinastic growth, reduced inflorescence size, and reduced polar auxin transport, suggesting that a functional TWD1-AtPGP1/AtPGP19 complex is required for proper plant development.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
22 |
187 |
10
|
Bharti K, Von Koskull-Döring P, Bharti S, Kumar P, Tintschl-Körbitzer A, Treuter E, Nover L. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. THE PLANT CELL 2004; 16:1521-35. [PMID: 15131252 PMCID: PMC490043 DOI: 10.1105/tpc.019927] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 02/17/2004] [Indexed: 05/17/2023]
Abstract
In contrast with the class A heat stress transcription factors (HSFs) of plants, a considerable number of HSFs assigned to classes B and C have no evident function as transcription activators on their own. However, in the following article, we provide evidence that tomato (Lycopersicon peruvianum) HsfB1 represents a novel type of coactivator cooperating with class A HSFs (e.g., with tomato HsfA1). Provided the appropriate promoter architecture, the two HSFs assemble into an enhanceosome-like complex, resulting in strong synergistic activation of reporter gene expression. Moreover, HsfB1 also cooperates in a similar manner with other activators, for example, with the ASF1/2 enhancer binding proteins of the 35S promoter of Cauliflower mosaic virus or with yet unidentified activators controlling housekeeping gene expression. By these effects, HsfB1 may help to maintain and/or restore expression of certain viral or housekeeping genes during ongoing heat stress. The coactivator function of HsfB1 depends on a histone-like motif in its C-terminal domain with an indispensable Lys residue in the center (GRGKMMK). This motif is required for recruitment of the plant CREB binding protein (CBP) ortholog HAC1. HsfA1, HsfB1, and HAC1/CBP form ternary complexes in vitro and in vivo with markedly enhanced efficiency in promoter recognition and transcription activation in plant and mammalian (COS7) cells. Using small interfering RNA-mediated knock down of HAC1 expression in Arabidopsis thaliana mesophyll protoplasts, the crucial role for the coactivator function of HsfB1 was confirmed.
Collapse
|
research-article |
21 |
165 |
11
|
Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Fehér A. The Role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. PLANT PHYSIOLOGY 2002; 129:1807-19. [PMID: 12177494 PMCID: PMC166769 DOI: 10.1104/pp.000810] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2001] [Revised: 02/19/2002] [Accepted: 04/10/2002] [Indexed: 05/18/2023]
Abstract
Culturing leaf protoplast-derived cells of the embryogenic alfalfa (Medicago sativa subsp. varia A2) genotype in the presence of low (1 microM) or high (10 microM) 2, 4-dichlorophenoxyacetic acid (2,4-D) concentrations results in different cell types. Cells exposed to high 2,4-D concentration remain small with dense cytoplasm and can develop into proembryogenic cell clusters, whereas protoplasts cultured at low auxin concentration elongate and subsequently die or form undifferentiated cell colonies. Fe stress applied at nonlethal concentrations (1 mM) in the presence of 1 microM 2,4-D also resulted in the development of the embryogenic cell type. Although cytoplasmic alkalinization was detected during cell activation of both types, embryogenic cells could be characterized by earlier cell division, a more alkalic vacuolar pH, and nonfunctional chloroplasts as compared with the elongated, nonembryogenic cells. Buffering of the 10 microM 2,4-D-containing culture medium by 10 mM 2-(N-morpholino)ethanesulfonic acid delayed cell division and resulted in nonembryogenic cell-type formation. The level of endogenous indoleacetic acid (IAA) increased transiently in all protoplast cultures during the first 4 to 5 d, but an earlier peak of IAA accumulation correlated with the earlier activation of the division cycle in embryogenic-type cells. However, this IAA peak could also be delayed by buffering of the medium pH by 2-(N-morpholino)ethanesulfonic acid. Based on the above data, we propose the involvement of stress responses, endogenous auxin synthesis, and the establishment of cellular pH gradients in the formation of the embryogenic cell type.
Collapse
|
research-article |
23 |
141 |
12
|
Cosgrove DJ, Hedrich R. Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. PLANTA 1991; 186:143-53. [PMID: 11538499 DOI: 10.1007/bf00201510] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mechanosensitive ion channels in the plasma membrane of Vicia faba guard cell protoplasts were studied by use of the patch clamp technique. Stretch-activated (SA) channels in outside-out patches were analyzed for channel conductance, kinetics and ion selectivity. We found three distinct SA channels, permeable to Cl-, K+ and Ca2+ and distinguishable from spontaneous (non-SA) channels for these ions on the basis of conductance, kinetics, and voltage-dependence, as well as sensitivity to membrane stretch. In the attached patch configuration, light suction (2 to 10 kPa) reversibly induced channel opening with multiple amplitudes and complex kinetics. The open probability for SA channels increased nonlinearly with pipette suction. In guard cells in situ, these SA channels may mediate ion transport across the plasma membrane directly, as well as influence the activity of non-SA channels via effects on membrane voltage and cytoplasmic calcium. Through such effects, SA channels likely influence volume and turgor regulation of guard cells, and thereby control of leaf gas exchange.
Collapse
|
|
34 |
141 |
13
|
Vermeer JEM, Thole JM, Goedhart J, Nielsen E, Munnik T, Gadella TWJ. Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:356-72. [PMID: 18785997 DOI: 10.1111/j.1365-313x.2008.03679.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyphosphoinositides represent a minor group of phospholipids, accounting for less than 1% of the total. Despite their low abundance, these molecules have been implicated in various signalling and membrane trafficking events. Phosphatidylinositol 4-phosphate (PtdIns4P) is the most abundant polyphosphoinositide. (32)Pi-labelling studies have shown that the turnover of PtdIns4P is rapid, but little is known about where in the cell or plant this occurs. Here, we describe the use of a lipid biosensor that monitors PtdIns4P dynamics in living plant cells. The biosensor consists of a fusion between a fluorescent protein and a lipid-binding domain that specifically binds PtdIns4P, i.e. the pleckstrin homology domain of the human protein phosphatidylinositol-4-phosphate adaptor protein-1 (FAPP1). YFP-PH(FAPP1) was expressed in four plant systems: transiently in cowpea protoplasts, and stably in tobacco BY-2 cells, Medicago truncatula roots and Arabidopsis thaliana seedlings. All systems allowed YFP-PH(FAPP1) expression without detrimental effects. Two distinct fluorescence patterns were observed: labelling of motile punctate structures and the plasma membrane. Co-expression studies with organelle markers revealed strong co-labelling with the Golgi marker STtmd-CFP, but not with the endocytic/pre-vacuolar marker GFP-AtRABF2b. Co-expression with the Ptdins3P biosensor YFP-2 x FYVE revealed totally different localization patterns. During cell division, YFP-PH(FAPP1) showed strong labelling of the cell plate, but PtdIns3P was completely absent from the newly formed cell membrane. In root hairs of M. truncatula and A. thaliana, a clear PtdIns4P gradient was apparent in the plasma membrane, with the highest concentration in the tip. This only occurred in growing root hairs, indicating a role for PtdIns4P in tip growth.
Collapse
|
|
16 |
137 |
14
|
Demidchik V, Bowen HC, Maathuis FJM, Shabala SN, Tester MA, White PJ, Davies JM. Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:799-808. [PMID: 12472694 DOI: 10.1046/j.1365-313x.2002.01467.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Calcium is a critical structural and regulatory nutrient in plants. However, mechanisms of its uptake by root cells are poorly understood. We have found that Ca2+ influx in Arabidopsis root epidermal protoplasts is mediated by voltage-independent rapidly activating Ca2+-permeable non-selective cation channels (NSCCs). NSCCs showed the following permeability (P) sequence: PCa (1.00) = PBa (0.93) > PZn (0.51), PCa/PNa = 0.19, PCa/PK = 0.14. They were inhibited by quinine, Gd3+, La3+ and the His modifier diethylpyrocarbonate, but not by the Ca2+ or K+ channel antagonists, verapamil and tetraethylammonium (TEA+). Single channel conductance measured in 20 mm external Ca2+ was 5.9 pS. Calcium-permeable NSCCs co-existed with hyperpolarisation-activated Ca2+ channels (HACCs), which activated 40-60 min after forming the whole-cell configuration. HACCs activated at voltages <-130 to -150 mV, showed slow activation kinetics and were regulated by cytosolic Ca2+ ([Ca2+]cyt). Using aequorin-expressing plants, a linear relationship between membrane potential (Vm) and resting [Ca2+]cyt was observed, indicating the involvement of NSCCs. Intact root 45Ca2+ influx was reduced by Gd3+ (NSCC blocker) but was verapamil and TEA+ insensitive. In the root elongation zone, both root net Ca2+ influx (measured by Ca2+-selective vibrating microelectrode) and NSCC activity were increased compared to the mature epidermis, suggesting the involvement of NSCC in growth. A Ca2+ acquisition system based on NSCC and HACC co-existence is proposed. In mature epidermal cells, NSCC-mediated Ca2+ influx dominates whereas in specialised root cells (root hairs and elongation zone cells) where elevated [Ca2+]cyt activates HACCs, HACC-mediated Ca2+ influx predominates.
Collapse
|
|
23 |
126 |
15
|
Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Mizukami H, Bianco A, Baba Y. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS NANO 2011; 5:493-499. [PMID: 21141871 DOI: 10.1021/nn102344t] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Major barriers to delivery of biomolecules are crossing the cellular membranes and achieving a high cytoplasmic concentration by circumventing entrapment into endosomes and other lytic organelles. Motivated by such aim, we have investigated the capability of multiwalled carbon nanotubes (MWCNTs) to penetrate the cell membrane of plant protoplasts (plant cells made devoid of their cell walls via enzymatic treatment) and studied their internalization mechanism via confocal imaging and TEM techniques. Our results indentified an endosome-escaping uptake mode of MWCNTs by plant protoplasts. Moreover, short MWCNTs (<100 nm) were observed to target specific cellular substructures including the nucleus, plastids, and vacuoles. These findings are expected to have a significant impact on plant cell biology and transformation technologies.
Collapse
|
|
14 |
126 |
16
|
Kuhn BM, Geisler M, Bigler L, Ringli C. Flavonols accumulate asymmetrically and affect auxin transport in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:585-95. [PMID: 21502189 PMCID: PMC3177260 DOI: 10.1104/pp.111.175976] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 04/15/2011] [Indexed: 05/18/2023]
Abstract
Flavonoids represent a class of secondary metabolites with diverse functions in plants including ultraviolet protection, pathogen defense, and interspecies communication. They are also known as modulators of signaling processes in plant and animal systems and therefore are considered to have beneficial effects as nutraceuticals. The rol1-2 (for repressor of lrx1) mutation of Arabidopsis (Arabidopsis thaliana) induces aberrant accumulation of flavonols and a cell-growth phenotype in the shoot. The hyponastic cotyledons, aberrant shape of pavement cells, and deformed trichomes in rol1-2 mutants are suppressed by blocking flavonoid biosynthesis, suggesting that the altered flavonol accumulation in these plants induces the shoot phenotype. Indeed, the identification of several transparent testa, myb, and fls1 (for flavonol synthase1) alleles in a rol1-2 suppressor screen provides genetic evidence that flavonols interfere with shoot development in rol1-2 seedlings. The increased accumulation of auxin in rol1-2 seedlings appears to be caused by a flavonol-induced modification of auxin transport. Quantification of auxin export from mesophyll protoplasts revealed that naphthalene-1-acetic acid but not indole-3-acetic acid transport is affected by the rol1-2 mutation. Inhibition of flavonol biosynthesis in rol1-2 fls1-3 restores naphthalene-1-acetic acid transport to wild-type levels, indicating a very specific mode of action of flavonols on the auxin transport machinery.
Collapse
|
research-article |
14 |
123 |
17
|
Chang YM, Liu WY, Shih ACC, Shen MN, Lu CH, Lu MYJ, Yang HW, Wang TY, Chen SCC, Chen SM, Li WH, Ku MS. Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. PLANT PHYSIOLOGY 2012; 160:165-77. [PMID: 22829318 PMCID: PMC3440195 DOI: 10.1104/pp.112.203810] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/23/2012] [Indexed: 05/18/2023]
Abstract
To study the regulatory and functional differentiation between the mesophyll (M) and bundle sheath (BS) cells of maize (Zea mays), we isolated large quantities of highly homogeneous M and BS cells from newly matured second leaves for transcriptome profiling by RNA sequencing. A total of 52,421 annotated genes with at least one read were found in the two transcriptomes. Defining a gene with more than one read per kilobase per million mapped reads as expressed, we identified 18,482 expressed genes; 14,972 were expressed in M cells, including 53 M-enriched transcription factor (TF) genes, whereas 17,269 were expressed in BS cells, including 214 BS-enriched TF genes. Interestingly, many TF gene families show a conspicuous BS preference in expression. Pathway analyses reveal differentiation between the two cell types in various functional categories, with the M cells playing more important roles in light reaction, protein synthesis and folding, tetrapyrrole synthesis, and RNA binding, while the BS cells specialize in transport, signaling, protein degradation and posttranslational modification, major carbon, hydrogen, and oxygen metabolism, cell division and organization, and development. Genes coding for several transporters involved in the shuttle of C(4) metabolites and BS cell wall development have been identified, to our knowledge, for the first time. This comprehensive data set will be useful for studying M/BS differentiation in regulation and function.
Collapse
|
research-article |
13 |
121 |
18
|
Tessadori F, Chupeau MC, Chupeau Y, Knip M, Germann S, van Driel R, Fransz P, Gaudin V. Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J Cell Sci 2007; 120:1200-8. [PMID: 17376962 DOI: 10.1242/jcs.000026] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chromocenters in Arabidopsis thaliana are discrete nuclear domains of mainly pericentric heterochromatin. They are characterized by the presence of repetitive sequences, methylated DNA and dimethylated histone H3K9. Here we show that dedifferentiation of specialized mesophyll cells into undifferentiated protoplasts is accompanied by the disruption of chromocenter structures. The dramatic reduction of heterochromatin involves the decondensation of all major repeat regions, also including the centromeric 180 bp tandem repeats. Only the 45S rDNA repeat remained in a partly compact state in most cells. Remarkably, the epigenetic indicators for heterochromatin, DNA methylation and H3K9 dimethylation, did not change upon decondensation. Furthermore, the decondensation of pericentric heterochromatin did not result in transcriptional reactivation of silent genomic elements. The decondensation process was reversible upon prolonged culturing. Strikingly, recondensation of heterochromatin into chromocenters is a stepwise process. Compaction of the tandemly arranged 45S rDNA regions occurs first, followed by the centromeric 180 bp and the 5S rDNA repeats and finally the dispersed repeats, including transposons. The sequence of reassembly seems to be correlated to the size of the repeat domains. Our results indicate that different types of pericentromeric repeats form different types of heterochromatin, which subsequently merge to form a chromocenter.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
119 |
19
|
Zhang L, Xing D. Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. PLANT & CELL PHYSIOLOGY 2008; 49:1092-111. [PMID: 18535010 DOI: 10.1093/pcp/pcn086] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Methyl jasmonate (MeJa) is a well-known plant stress hormone. Upon exposure to stress, MeJa is produced and causes activation of programmed cell death (PCD) and defense mechanisms in plants. However, the early events and the signaling mechanisms of MeJa-induced cell death have yet to be fully elucidated. To obtain some insights into the early events of this cell death process, we investigated mitochondrial dynamics, chloroplast morphology and function, production and localization of reactive oxygen species (ROS) at the single-cell level as well as photosynthetic capacity at the whole-seedling level under MeJa stimulation. Our results demonstrated that MeJa induction of ROS production, which first occurred in mitochondria after 1 h of MeJa treatment and subsequently in chloroplasts by 3 h of treatment, caused a series of alterations in mitochondrial dynamics including the cessation of mitochondrial movement, the loss of mitochondrial transmembrane potential (MPT), and the morphological transition and aberrant distribution of mitochondria. Thereafter, photochemical efficiency dramatically declined before obvious distortion in chloroplast morphology, which is prior to MeJa-induced cell death in protoplasts or intact seedlings. Moreover, treatment of protoplasts with ascorbic acid or catalase prevented ROS production, organelle change, photosynthetic dysfunction and subsequent cell death. The permeability transition pore inhibitor cyclosporin A gave significant protection against MPT loss, mitochondrial swelling and subsequent cell death. These results suggested that MeJa induces ROS production and alterations of mitochondrial dynamics as well as subsequent photosynthetic collapse, which occur upstream of cell death and are necessary components of the cell death process.
Collapse
|
|
17 |
118 |
20
|
Anné J, Peberdy JF. Induced fusion of fungal protoplasts following treatment with polyethylene glycol. JOURNAL OF GENERAL MICROBIOLOGY 1976; 92:413-7. [PMID: 943467 DOI: 10.1099/00221287-92-2-413] [Citation(s) in RCA: 117] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
|
49 |
117 |
21
|
Gao C, Xing D, Li L, Zhang L. Implication of reactive oxygen species and mitochondrial dysfunction in the early stages of plant programmed cell death induced by ultraviolet-C overexposure. PLANTA 2008; 227:755-767. [PMID: 17972096 DOI: 10.1007/s00425-007-0654-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 10/12/2007] [Indexed: 05/25/2023]
Abstract
Recent studies have suggested that ultraviolet-C (UV-C) overexposure induces programmed cell death (PCD) in Arabidopsis thaliana (L.) Heynh, and this process includes participation of caspase-like proteases, DNA laddering as well as fragmentation of the nucleus. To investigate possible early signal events, we used microscopic observations to monitor in vivo the behaviour of mitochondria, as well as the production and localization of reactive oxygen species (ROS) during protoplast PCD induced by UV-C. A quick burst of ROS was detected when the protoplasts were kept in continuous light after UV-C exposure, which was restricted in chloroplasts and the adjacent mitochondria. Pre-incubation with ascorbic acid (AsA, antioxidant molecule) or 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea (DCMU, an inhibitor of photosynthetic electron transport) decreased the ROS production and partially protected protoplasts from PCD. A mitochondrial transmembrane potential (MTP) loss occurred prior to cell death; thereafter, the mitochondria irregularly clumped around chloroplasts or aggregated in other places within the cytoplasm, and the movement of mitochondria was concomitantly blocked. Pre-treatment with an inhibitor of mitochondrial permeability transition pores (MPTP), cyclosporine (CsA), effectively retarded the decrease of MTP and reduced the percentage of protoplasts undergoing PCD after UV-C overexposure. Our results suggest that the MTP loss and the changes in distribution and mobility of mitochondria, as well as the production of ROS play important roles during UV-induced plant PCD, which is in good accordance with what has been reported in many types of apoptotic cell death, both in animals and plants.
Collapse
|
|
17 |
112 |
22
|
Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S. Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:2259-66. [PMID: 16798847 DOI: 10.1093/jxb/erj193] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cytokinins and auxins are major phytohormones involved in various aspects of plant growth and development. These phytohormones are also known to antagonize the effects of abscisic acid (ABA) on stomatal movement, and to affect ethylene biosynthesis. As ethylene has an antagonistic effect on ABA-induced stomatal closure, the possibility that the antagonistic effects of these phytohormones on ABA were mediated through ethylene biosynthesis was investigated. Both the cytokinin, 6-benzyladenine (BA), and the auxin, 1-naphthaleneacetic acid (NAA), antagonized ABA-induced stomatal closure in a manner similar to that following application of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC). However, these effects were negated when ethylene signalling, perception, or biosynthesis were blocked. As stomatal aperture is regulated by changes in guard cell volume, ABA application was found to reduce the volume of the guard cell protoplasts (GCP). It was found that BA, NAA, or ACC application compensated perfectly for the reduction in GCP volume by ABA application in WT plants. The above observations suggest that cytokinins and auxins inhibit ABA-induced stomatal closure through the modulation of ethylene biosynthesis, and that ethylene inhibits the ABA-induced reduction of osmotic pressure in the guard cells.
Collapse
|
|
19 |
110 |
23
|
Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ, Lu CF, Zhou XY, Shen X, Zheng XJ, Zhang ZK, Song J, Hu ZM, Xu Y, Chen SL. H2O2 and cytosolic Ca2+ signals triggered by the PM H-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. PLANT, CELL & ENVIRONMENT 2010; 33:943-58. [PMID: 20082667 DOI: 10.1111/j.1365-3040.2010.02118.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Using confocal microscopy, X-ray microanalysis and the scanning ion-selective electrode technique, we investigated the signalling of H(2)O(2), cytosolic Ca(2+) ([Ca(2+)](cyt)) and the PM H(+)-coupled transport system in K(+)/Na(+) homeostasis control in NaCl-stressed calluses of Populus euphratica. An obvious Na(+)/H(+) antiport was seen in salinized cells; however, NaCl stress caused a net K(+) efflux, because of the salt-induced membrane depolarization. H(2)O(2) levels, regulated upwards by salinity, contributed to ionic homeostasis, because H(2)O(2) restrictions by DPI or DMTU caused enhanced K(+) efflux and decreased Na(+)/H(+) antiport activity. NaCl induced a net Ca(2+) influx and a subsequent rise of [Ca(2+)](cyt), which is involved in H(2)O(2)-mediated K(+)/Na(+) homeostasis in salinized P. euphratica cells. When callus cells were pretreated with inhibitors of the Na(+)/H(+) antiport system, the NaCl-induced elevation of H(2)O(2) and [Ca(2+)](cyt) was correspondingly restricted, leading to a greater K(+) efflux and a more pronounced reduction in Na(+)/H(+) antiport activity. Results suggest that the PM H(+)-coupled transport system mediates H(+) translocation and triggers the stress signalling of H(2)O(2) and Ca(2+), which results in a K(+)/Na(+) homeostasis via mediations of K(+) channels and the Na(+)/H(+) antiport system in the PM of NaCl-stressed cells. Accordingly, a salt stress signalling pathway of P. euphratica cells is proposed.
Collapse
|
|
15 |
107 |
24
|
Takahashi Y, Kuroda H, Tanaka T, Machida Y, Takebe I, Nagata T. Isolation of an auxin-regulated gene cDNA expressed during the transition from G0 to S phase in tobacco mesophyll protoplasts. Proc Natl Acad Sci U S A 1989; 86:9279-83. [PMID: 2594768 PMCID: PMC298478 DOI: 10.1073/pnas.86.23.9279] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A cDNA clone for an auxin-regulated gene was isolated from a tobacco mesophyll protoplast cDNA library by differential screening. Nucleotide, sequence analysis showed that the deduced product of the gene, which we have designated par, is hydrophilic and is composed of 220 amino acids. No significant homology to other known proteins was detected. The mRNA of the par gene is approximately 900 bases long and its accumulation was detected in cultured mesophyll protoplasts as early as 30 min after the addition of 2,4-dichlorophenoxyacetic acid to the culture medium. The par mRNA was not detected in leaves or freshly prepared protoplasts or in protoplasts in the absence of 2,4-dichlorophenoxyacetic acid. Expression of the par gene was detected at a low level in actively dividing BY-2 tobacco suspension culture cells. The conspicuous accumulation of par mRNA before the initiation of DNA synthesis in tobacco mesophyll protoplasts suggests that the par gene product could play a role in the initiation of meristematic activity in differentiated mesophyll cells.
Collapse
|
research-article |
36 |
106 |
25
|
Kim HB, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S, An CS, Lee I, Hwang I, Choe S. The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. PLANT PHYSIOLOGY 2006; 140:548-57. [PMID: 16407451 PMCID: PMC1361323 DOI: 10.1104/pp.105.067918] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mutants that are defective in brassinosteroid (BR) biosynthesis or signaling display severely retarded growth patterns due to absence of growth-promoting effects by BRs. Arabidopsis (Arabidopsis thaliana) DWARF4 (DWF4) catalyzes a flux-determining step in the BR biosynthetic pathways. Thus, it is hypothesized that the tissues of DWF4 expression may represent the sites of BR biosynthesis in Arabidopsis. Here we show that DWF4 transcripts accumulate in the actively growing tissues, such as root, shoot apices with floral clusters, joint tissues of root and shoot, and dark-grown seedlings. Conforming to the RNA gel-blot analysis, DWF4:beta-glucuronidase (GUS) histochemical analyses more precisely define the tissues that express the DWF4 gene. Examination of the endogenous levels of BRs in six and seven different tissues of wild type and brassinosteroid insensitive1-5 mutant, respectively, revealed that BRs are significantly enriched in roots, shoot tips, and joint tissues of roots and shoots. In addition, DWF4:GUS expression was negatively regulated by BRs. DWF4:GUS activity was increased by treatment with brassinazole, a BR biosynthetic inhibitor, and decreased by exogenous application of bioactive BRs. When DWF4:GUS was expressed in a different genetic background, its level was down-regulated in brassinazole resistant1-D, confirming that BRASSINAZOLE RESISTANT1 acts as a negative regulator of DWF4. Interestingly, in the brassinosteroid insensitive2/dwf12-1D background, DWF4:GUS expression was intensified and delocalized to elongating zones of root, suggesting that BRASSINOSTEROID INSENSITIVE2 is an important factor that limits DWF4 expression. Thus, it is likely that the DWF4 promoter serves as a focal point in maintaining homeostasis of endogenous bioactive BR pools in specific tissues of Arabidopsis.
Collapse
|
research-article |
19 |
105 |