1
|
|
|
21 |
658 |
2
|
Yang K, Zhu L, Xing B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:1855-61. [PMID: 16570608 DOI: 10.1021/es052208w] [Citation(s) in RCA: 451] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Carbon nanomaterials are novel manufactured materials, having widespread potential applications. Adsorption of hydrophobic organic compounds (HOCs) by carbon nanomaterials may enhance their toxicity and affect the fate, transformation, and transport of HOCs in the environment. In this research, adsorption of naphthalene, phenanthrene, and pyrene onto six carbon nanomaterials, including fullerenes, single-walled carbon nanotubes, and multiwalled carbon nanotubes was investigated, which is the first systematic study on polycyclic aromatic hydrocarbons (PAHs) sorption by various carbon nanomaterials. All adsorption isotherms were nonlinear and were fitted well by the Polanyi-Manes model (PMM). Through both isotherm modeling and constructing "characteristic curve", Polanyi theory was useful to describe the adsorption process of PAHs by the carbon nanomaterials. The three fitted parameters (Q0, a, and b) of PMM depended on both PAH properties and the nature of carbon nanomaterials. For different PAHs, adsorption seems to relate with their molecular size, i.e., the larger the molecular size, the lower the adsorbed volume capacity (Q0), but higher a and b values. For different carbon nanomaterials, adsorption seems to relate with their surface area, micropore volume, and the volume ratios of mesopore to micropore. Quantitative relationships between these sorbent properties and the estimated parameters of PMM were obtained. These relationships may represent a first fundamental step toward establishing empirical equations for quantitative prediction of PAH adsorption by carbon nanomaterials and possibly other forms of carbonaceous (geo-) sorbents, and for evaluating their environmental impact. In addition, high adsorption capacity of PAHs by carbon nanotubes may add to their high environmental risks once released to the environment, and result in potential alteration of PAHs fate and bioavailability in the environment.
Collapse
|
|
19 |
451 |
3
|
Abstract
A new and general design strategy is presented for amphiphilic block copolymers whose micellar aggregates can be dissociated by light. A diblock copolymer composed of hydrophilic poly(ethylene oxide) (PEO) and a hydrophobic polymethacrylate bearing pyrene pendant groups (PPy) was synthesized using ATRP. Upon UV light irradiation of polymer micellar solutions, the photosolvolysis of pyrene moieties results in their detachment from the polymer and converts the hydrophobic PPy block into hydrophilic poly(methacrylic acid). This effect leads to complete dissociation of polymer micelles.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
360 |
4
|
Abstract
We present a small molecule sensor that provides an optical response to the presence of an organophosphorus (OP)-containing nerve agent mimic. The design contains three key features: a primary alcohol, a tertiary amine in close proximity to the alcohol, and a fluorescent group used as the optical readout. In the sensor's rest state, the lone pair of electrons of the basic amine quenches the fluorescence of the nearby fluorophore through photoinduced electron transfer (PET). Exposure to an OP nerve agent mimic triggers phosphorylation of the primary alcohol followed rapidly by an intramolecular substitution reaction as the amine displaces the created phosphate. The quaternized ammonium salt produced by this cyclization reaction no longer possesses a lone pair of electrons, and a fluorescence readout is observed as the nonradiative PET quenching pathway of the fluorophore is shut down.
Collapse
|
|
19 |
309 |
5
|
Xing B, Yu CW, Chow KH, Ho PL, Fu D, Xu B. Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc 2002; 124:14846-7. [PMID: 12475316 DOI: 10.1021/ja028539f] [Citation(s) in RCA: 306] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibiotic hydrogels based on a vancomycin (Van) derivative, formed by self-assembling Van-pyrene (1) in water, using the pi-pi interaction of pyrene moieties and hydrogen bonding of Vans, promise a new way to make novel biomaterials.
Collapse
|
|
23 |
306 |
6
|
Kim SK, Bok JH, Bartsch RA, Lee JY, Kim JS. A Fluoride-Selective PCT Chemosensor Based on Formation of a Static Pyrene Excimer. Org Lett 2005; 7:4839-42. [PMID: 16235902 DOI: 10.1021/ol051609d] [Citation(s) in RCA: 303] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] Calixarene-based fluorescent chemosensor 1 with two fluorogenic pyrene units conjugated to amide groups as guest recognition sites is synthesized. Complexation of F(-) by 1 causes a red shift of its absorption band to 400 nm (Deltalambda = 54 nm) and a blue shift of the excimer emission to 470 nm (Deltalambda = 12 nm) together with enhanced fluorescence intensity. The blue-shifted excimer emission is attributed to a pyrene dimer formed in the ground state, a so-called static excimer.
Collapse
|
|
20 |
303 |
7
|
Kim SK, Lee SH, Lee JY, Lee JY, Bartsch RA, Kim JS. An Excimer-Based, Binuclear, On−Off Switchable Calix[4]crown Chemosensor. J Am Chem Soc 2004; 126:16499-506. [PMID: 15600353 DOI: 10.1021/ja045689c] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new fluorescent chemosensor with two different types of cation binding sites on the lower rims of a 1,3-alternate calix[4]arene (1) is synthesized. Two pyrene moieties linked to a cation recognition unit composed of two amide groups form a strong excimer in solution. For 1, the excimer fluorescence is quenched by Pb2+, but revived by addition of K+ to the Pb2+ ligand complex. Thus, metal ion exchange produces an on-off switchable, fluorescent chemosensor. Computational results show that the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbitals (LUMO) of the two pyrene moieties interact under UV irradiation of 1 and its K+ complex, while such HOMO-LUMO interactions are absent in the Pb2+ complex.
Collapse
|
|
21 |
286 |
8
|
Okamoto A, Kanatani K, Saito I. Pyrene-Labeled Base-Discriminating Fluorescent DNA Probes for Homogeneous SNP Typing. J Am Chem Soc 2004; 126:4820-7. [PMID: 15080686 DOI: 10.1021/ja039625y] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper describes the design of novel base-discriminating fluorescent (BDF) nucleobases and their application to single nucleotide polymorphism (SNP) typing. We devised novel BDF nucleosides, (Py)U and (Py)C, which contain a pyrenecarboxamide chromophore connected by a propargyl linker. The fluorescence spectrum of the duplex containing a (Py)U/A base pair showed a strong emission at 397 nm on 327 nm excitation. In contrast, the fluorescence of duplexes containing (Py)U/N base pairs (N = C, G, or T) was considerably weaker. The proposed structure of the duplex containing a matched (Py)U/A base pair suggests that the high polarity near the pyrenecarboxamide group is responsible for the strong A-selective fluorescence emission. Moreover, the fluorescence of the duplex containing a (Py)U/A base pair was not quenched by a flanking C/G base pair. The fluorescence properties are quite different from previous BDF nucleobases, where fluorescence is quenchable by flanking C/G base pairs. The duplex containing the C derivative, (Py)C, selectively emitted fluorescence when the base opposite (Py)C was G. The drastic change of fluorescence intensity by the nature of the complementary base is extremely useful for SNP typing. (Py)U- and (Py)C-containing oligodeoxynucleotides acted as effective reporter probes for homogeneous SNP typing of DNA samples containing c-Ha-ras and BRCA2 SNP sites.
Collapse
|
|
21 |
237 |
9
|
Hale SE, Hanley K, Lehmann J, Zimmerman A, Cornelissen G. Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:10445-10453. [PMID: 22077986 DOI: 10.1021/es202970x] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, the suitability of biochar and activated carbon (AC) for contaminated soil remediation is investigated by determining the sorption of pyrene to both materials in the presence and absence of soil and before as well as after aging. Biochar and AC were aged either alone or mixed with soil via exposure to (a) nutrients and microorganisms (biological), (b) 60 and 110 °C (chemical), and (c) freeze-thaw cycles (physical). Before and after aging, the pH, elemental composition, cation exchange capacity (CEC), microporous SA, and sorption isotherms of pyrene were quantified. Aging at 110 °C altered the physicochemical properties of all materials to the greatest extent (for example, pH increased by up to three units and CEC by up to 50% for biochar). Logarithmic K(Fr) values ranged from 7.80 to 8.21 (ng kg(-1))(ng L(-1))(-nF) for AC and 5.22 to 6.21 (ng kg(-1))(ng L(-1))(-nF) for biochar after the various aging regimes. Grinding biochar to a smaller particle size did not significantly affect the sorption of d(10) pyrene, implying that sorption processes operate on the subparticle scale. Chemical aging decreased the sorption of pyrene to the greatest extent (up to 1.8 log unit for the biochar+soil). The sorption to AC was affected more by the presence of soil than the sorption to biochar was. Our results suggest that AC and biochar have a high sorption capacity for pyrene that is maintained both in the presence of soil and during harsh aging. Both materials could therefore be considered in contaminated land remediation.
Collapse
|
|
14 |
218 |
10
|
Margittai M, Langen R. Template-assisted filament growth by parallel stacking of tau. Proc Natl Acad Sci U S A 2004; 101:10278-83. [PMID: 15240881 PMCID: PMC478563 DOI: 10.1073/pnas.0401911101] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tau filaments are found in >20 neurodegenerative diseases. Yet, because of their enormous molecular weights and poor tendency to form highly ordered 3D crystal lattices, they have evaded high-resolution structure determination. Here, we studied 25 derivatized tau mutants by using electron paramagnetic resonance and fluorescence spectroscopy to report structural details of tau filaments. Based on strong spin exchange and pyrene excimer formation of core residues, we find that individual tau proteins form single molecule layers along the fiber axis that perfectly stack on top of each other by in-register, parallel alignment of beta-strands. We suggest a model of filament growth wherein the existing filament serves as a template for the incoming, unfolded tau molecule, resulting in a new structured layer with maximized hydrogen-bonded contact surface and side-chain stacking.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
216 |
11
|
Lodge TP, Rasdal A, Li Z, Hillmyer MA. Simultaneous, Segregated Storage of Two Agents in a Multicompartment Micelle. J Am Chem Soc 2005; 127:17608-9. [PMID: 16351082 DOI: 10.1021/ja056841t] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The simultaneous, segregated storage of two different chromophores in a multicompartment micelle, which is formed from self-assembly of (polyethylethylene)(polyethylene oxide)(polyperfluoropropylene oxide) mikto-arm star terpolymers in water, was investigated by spectrophotometry. The multicompartment micelles, with segregated micellar cores composed of fluorocarbon and hydrocarbon compartments, can simultaneously absorb two chemically different molecules. These two molecules were confined into their preferred compartments with high selectivity.
Collapse
|
|
20 |
216 |
12
|
Wang W, Wang J. Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics. CHEMOSPHERE 2018; 193:567-573. [PMID: 29169132 DOI: 10.1016/j.chemosphere.2017.11.078] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/02/2017] [Accepted: 11/16/2017] [Indexed: 05/20/2023]
Abstract
Concerns regarding microplastics pollution and their potential to concentrate and transport organic contaminants in aquatic environments are growing in recent years. Sorption of organic chemicals by microplastics may affect the distribution and bioavailability of the chemicals. Here sorption process of pyrene (Pyr), a frequently encountered polycyclic aromatic hydrocarbon in aquatic environments, on three types of mass-produced plastic particles (high-density polyethylene (PE), polystyrene (PS) and polyvinylchloride (PVC)), was investigated by comparative analysis of different sorption kinetic and isotherm models. Optimum kinetic and isotherm models were predicted by the linear least-squares regression method. The pseudo-second-order kinetic model was more appropriate in describing the entire sorption process (R2 > 0.99). Sorption rates of Pyr onto microplastics were mainly controlled by intraparticle diffusion. PE exhibited the highest affinity for Pyr, followed by PS and PVC. The sorption equilibrium data were best fitted to the Langmuir isotherm (R2 > 0.99), indicating monolayer coverage of Pyr onto the microplastics.
Collapse
|
|
7 |
214 |
13
|
Østergaard ME, Hrdlicka PJ. Pyrene-functionalized oligonucleotides and locked nucleic acids (LNAs): tools for fundamental research, diagnostics, and nanotechnology. Chem Soc Rev 2011; 40:5771-88. [PMID: 21487621 PMCID: PMC3644995 DOI: 10.1039/c1cs15014f] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pyrene-functionalized oligonucleotides (PFOs) are increasingly explored as tools in fundamental research, diagnostics and nanotechnology. Their popularity is linked to the ability of pyrenes to function as polarity-sensitive and quenchable fluorophores, excimer-generating units, aromatic stacking moieties and nucleic acid duplex intercalators. These characteristics have enabled development of PFOs for detection of complementary DNA/RNA targets, discrimination of single nucleotide polymorphisms (SNPs), and generation of π-arrays on nucleic acid scaffolds. This critical review will highlight the physical properties and applications of PFOs that are likely to provide high degree of positional control of the chromophore in nucleic acid complexes. Particular emphasis will be placed on pyrene-functionalized Locked Nucleic Acids (LNAs) since these materials display interesting properties such as fluorescence quantum yields approaching unity and recognition of mixed-sequence double stranded DNA (144 references).
Collapse
|
Research Support, N.I.H., Extramural |
14 |
209 |
14
|
Ehli C, Rahman GMA, Jux N, Balbinot D, Guldi DM, Paolucci F, Marcaccio M, Paolucci D, Melle-Franco M, Zerbetto F, Campidelli S, Prato M. Interactions in Single Wall Carbon Nanotubes/Pyrene/Porphyrin Nanohybrids. J Am Chem Soc 2006; 128:11222-31. [PMID: 16925441 DOI: 10.1021/ja0624974] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work provides an in-depth look at a range of physicochemical aspects of (i) single wall carbon nanotubes (SWNT), (ii) pyrene derivatives (pyrene(+)), (iii) porphyrin derivatives (ZnP(8)()(-)() and H(2)()P(8)()(-)()), (iv) poly(sodium 4-styrenesulfonate), and (v) their combinations. Implicit in their supramolecular combinations is the hierarchical integration of SWNT (as electron acceptors), together with ZnP(8)()(-)() or H(2)()P(8)()(-)() (as electron donors), in an aqueous environment mediated through pyrene(+). This supramolecular approach yields novel electron donor-acceptor nanohybrids (SWNT/pyrene(+)/ZnP(8)()(-)() or SWNT/pyrene(+)/H(2)()P(8)()(-)()). In particular, we report on electrochemical and photophysical investigations that as a whole suggest sizeable and appreciable interactions between the individual components. The key step to form SWNT/pyrene(+)()/ZnP(8)()(-)() or SWNT/pyrene(+)()/H(2)()P(8)()(-)() hybrids is pi-pi interactions between SWNT and pyrene(+), for which we have developed for the first time a sensitive marker. The marker is the monomeric pyrene fluorescence, which although quenched is (i) only present in SWNT/pyrene(+) and (ii) completely lacking in just pyrene(+). Electrostatic interactions help to immobilize ZnP(8)()(-)() or H(2)()P(8)()(-)() onto SWNT/pyrene(+) to yield the final electron donor-acceptor nanohybrids. A series of photochemical experiments confirm that long-lived radical ion pairs are formed as a product of a rapid excited-state deactivation of ZnP(8)()(-)() or H(2)()P(8)()(-)(). This formation is fully rationalized on the basis of the properties of the individual moieties. Additional modeling shows that the data are likely to be relevant to the SWNTs present in the sample, which possess wider diameters.
Collapse
|
|
19 |
201 |
15
|
Wang F, Kovacs M, Hu A, Limouze J, Harvey EV, Sellers JR. Kinetic mechanism of non-muscle myosin IIB: functional adaptations for tension generation and maintenance. J Biol Chem 2003; 278:27439-48. [PMID: 12704189 DOI: 10.1074/jbc.m302510200] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Besides driving contraction of various types of muscle tissue, conventional (class II) myosins serve essential cellular functions and are ubiquitously expressed in eukaryotic cells. Three different isoforms in the human myosin complement have been identified as non-muscle class II myosins. Here we report the kinetic characterization of a human non-muscle myosin IIB subfragment-1 construct produced in the baculovirus expression system. Transient kinetic data show that most steps of the actomyosin ATPase cycle are slowed down compared with other class II myosins. The ADP affinity of subfragment-1 is unusually high even in the presence of actin filaments, and the rate of ADP release is close to the steady-state ATPase rate. Thus, non-muscle myosin IIB subfragment-1 spends a significantly higher proportion of its kinetic cycle strongly attached to actin than do the muscle myosins. This feature is even more pronounced at slightly elevated ADP levels, and it may be important in carrying out the cellular functions of this isoform working in small filamentous assemblies.
Collapse
|
|
22 |
197 |
16
|
Abstract
In most models of DNA replication, Watson-Crick hydrogen bonding drives the incorporation of nucleotides into the new strand of DNA and maintains the complementarity of bases with the template strand. Studies with nonpolar analogues of thymine and adenine, however, have shown that replication is still efficient in the absence of hydrogen bonds. The replication of base pairs might also be influenced by steric exclusion, whereby inserted nucleotides need to be the correct size and shape to fit the active site against a template base. A simple steric-exclusion model may not require Watson-Crick hydrogen bonding to explain the fidelity of replication, nor should canonical purine and pyrimidine shapes be necessary for enzymatic synthesis of a base pair if each can fit into the DNA double helix without steric strain. Here we test this idea by using a pyrene nucleoside triphosphate (dPTP) in which the fluorescent 'base' is nearly as large as an entire Watson-Crick base pair. We show that the non-hydrogen-bonding dPTP is efficiently and specifically inserted by DNA polymerases opposite sites that lack DNA bases. The efficiency of this process approaches that of a natural base pair and the specificity is 10(2)-10(4)-fold. We use these properties to sequence abasic lesions in DNA, which are a common form of DNA damage in vivo. In addition to their application in identifying such genetic lesions, our results show that neither hydrogen bonds nor purine and pyrimidine structures are required to form a base pair with high efficiency and selectivity. These findings confirm that steric complementarity is an important factor in the fidelity of DNA synthesis.
Collapse
|
|
26 |
191 |
17
|
Parviz D, Das S, Ahmed HST, Irin F, Bhattacharia S, Green MJ. Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS NANO 2012; 6:8857-8867. [PMID: 23002781 DOI: 10.1021/nn302784m] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We demonstrate that functionalized pyrene derivatives effectively stabilize single- and few-layer graphene flakes in aqueous dispersions. The graphene/stabilizer yield obtained by this method is exceptionally high relative to conventional nanomaterial stabilizers such as surfactants or polymers. The mechanism of stabilization by pyrene derivatives is investigated by studying the effects of various parameters on dispersed graphene concentration and stability; these parameters include stabilizer concentration, initial graphite concentration, solution pH, and type and number of functional groups and counterions. The effectiveness of the pyrene derivatives is pH-tunable, as measured by zeta potential, and is also a function of the number of functional groups, the electronegativity of the functional group, the counterion, the relative polarity between stabilizer and solvent, and the distance from the functional group to the basal plane. Even if the dispersion is destabilized by extreme pH or lyophilization, the graphene does not aggregate because the stabilizer remains adsorbed on the surface. These dispersions also show promise for applications in graphene/polymer nanocomposites (examined in this paper), organic solar cells, conductive films, and inkjet-printed electronic devices.
Collapse
|
|
13 |
191 |
18
|
Abstract
Myosin VI is the only pointed end-directed myosin identified and is likely regulated by heavy chain phosphorylation (HCP) at the actin-binding site in vivo. We undertook a detailed kinetic analysis of the actomyosin VI ATPase cycle to determine whether there are unique adaptations to support reverse directionality and to determine the molecular basis of regulation by HCP. ADP release is the rate-limiting step in the cycle. ATP binds slowly and with low affinity. At physiological nucleotide concentrations, myosin VI is strongly bound to actin and populates the nucleotide-free (rigor) and ADP-bound states. Therefore, myosin VI is a high duty ratio motor adapted for maintaining tension and has potential to be processive. A mutant mimicking HCP increases the rate of P(i) release, which lowers the K(ATPase) but does not affect ADP release. These measurements are the first to directly measure the steps regulated by HCP for any myosin. Measurements with double-headed myosin VI demonstrate that the heads are not independent, and the native dimer hydrolyzes multiple ATPs per diffusional encounter with an actin filament. We propose an alternating site model for the stepping and processivity of two-headed high duty ratio myosins.
Collapse
|
|
24 |
190 |
19
|
Bains G, Patel AB, Narayanaswami V. Pyrene: a probe to study protein conformation and conformational changes. Molecules 2011; 16:7909-35. [PMID: 22143550 PMCID: PMC6264589 DOI: 10.3390/molecules16097909] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/04/2011] [Accepted: 09/06/2011] [Indexed: 11/18/2022] Open
Abstract
The review focuses on the unique spectral features of pyrene that can be utilized to investigate protein structure and conformation. Pyrene is a fluorescent probe that can be attached covalently to protein side chains, such as sulfhydryl groups. The spectral features of pyrene are exquisitely sensitive to the microenvironment of the probe: it exhibits an ensemble of monomer fluorescence emission peaks that report on the polarity of the probe microenvironment, and an additional band at longer wavelengths, the appearance of which reflects the presence of another pyrene molecule in spatial proximity (~10 Å). Its high extinction coefficient allows us to study labeled proteins in solution at physiologically relevant concentrations. The environmentally- and spatially-sensitive features of pyrene allow monitoring protein conformation, conformational changes, protein folding and unfolding, protein-protein, protein-lipid and protein-membrane interactions.
Collapse
|
Review |
14 |
190 |
20
|
Yang K, Wang X, Zhu L, Xing B. Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:5804-10. [PMID: 17007144 DOI: 10.1021/es061081n] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Knowledge of toxic chemical sorption by carbon nanotubes (CNTs) is critical for environmental application of CNTs as superior sorbents and for environmental risk assessment of both CNTs and toxic chemicals. Single-solute sorption results were reported in the literature, however, they cannot be used for predicting pollutant sorption by CNTs in wastewater and natural water systems where multiple organic contaminants are present. In this study, competitive sorption of pyrene, phenanthrene, and naphthalene on a multiwalled CNT material was investigated. All isotherms in single-, bi-, and tri-solute systems were fitted well by the Dubinin-Ashtakhov (DA) model. The isotherm of a given primary solute changed from being significantly nonlinear to nearly linear when competitors were added. The observed competitive sorption depended on the relative equilibrium concentrations of both primary and cosolutes. Significant competition was observed at relatively low concentrations of primary solute and high concentrations of competitors, while competition was much weaker in the case of relatively high concentrations of primary solute and low competitor concentrations. When the relative concentration of primary solute (Ce/Cs) approached 1, competition by other solutes seemed to disappear. Sorption and competition of three polycyclic aromatic hydrocarbons (PAHs) on CNTs could not be explained with either pore-filling or partition-adsorption mechanisms. A Polanyi-based surface adsorption mechanism was proposed to interpret the observed sorption and competition.
Collapse
|
|
19 |
186 |
21
|
Yang K, Xing B. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 145:529-37. [PMID: 16777283 DOI: 10.1016/j.envpol.2006.04.020] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 04/14/2006] [Accepted: 04/19/2006] [Indexed: 05/10/2023]
Abstract
Desorption behavior of pyrene, phenanthrene and naphthalene from fullerene, single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) was examined. Available adsorption space of carbon nanotubes (CNTs) was found to be the cylindrical external surface, neither the inner cavities nor inter-wall spaces due to impurities in the CNTs and restricted spaces (0.335nm) of the MWCNTs, respectively. Desorption hysteresis was observed for fullerene but not for CNTs. Deformation-rearrangement was proposed to explain the hysteresis of polycyclic aromatic hydrocarbons (PAHs) for fullerene, due to the formation of closed interstitial spaces in spherical fullerene aggregates. However, long, cylindrical carbon nanotubes could not form such closed interstitial spaces in their aggregates due to their length, thus showing no significant hysteresis. High adsorption capacity and reversible adsorption of PAHs on CNTs imply the potential release of PAHs if PAH-adsorbed CNTs are inhaled by animals and humans, leading to a high environmental and public health risk.
Collapse
|
|
18 |
183 |
22
|
Maeda H, Maeda T, Mizuno K, Fujimoto K, Shimizu H, Inouye M. Alkynylpyrenes as Improved Pyrene-Based Biomolecular Probes with the Advantages of High Fluorescence Quantum Yields and Long Absorption/Emission Wavelengths. Chemistry 2006; 12:824-31. [PMID: 16267869 DOI: 10.1002/chem.200500638] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The photochemical properties of various alkynylpyrene derivatives have been investigated in detail with a view to developing a new class of pyrene-based biomolecular probes. The absorption maxima of the alkynylpyrenes were seen to be shifted to longer wavelengths compared with those of the unsubstituted parent pyrene. Fluorescence quantum yields of the alkynylpyrenes dramatically increased up to 0.99 in ethanol, and only slight quenching of the fluorescence occurred even under aerated conditions. The alkynylpyrenes have been successfully introduced into representative biomolecules such as peptides, proteins, and DNAs. The detectabilities of the labeled biomolecules were significantly improved, with the unique photochemical characteristics of the pyrene nucleus being maintained.
Collapse
|
|
19 |
182 |
23
|
Song YF, Long DL, Cronin L. Noncovalently connected frameworks with nanoscale channels assembled from a tethered polyoxometalate-pyrene hybrid. Angew Chem Int Ed Engl 2007; 46:3900-4. [PMID: 17429852 DOI: 10.1002/anie.200604734] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
Research Support, Non-U.S. Gov't |
18 |
175 |
24
|
Maurer N, Wong KF, Stark H, Louie L, McIntosh D, Wong T, Scherrer P, Semple SC, Cullis PR. Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes. Biophys J 2001; 80:2310-26. [PMID: 11325732 PMCID: PMC1301421 DOI: 10.1016/s0006-3495(01)76202-9] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study describes the effect of ethanol and the presence of poly(ethylene) glycol (PEG) lipids on the interaction of nucleotide-based polyelectrolytes with cationic liposomes. It is shown that preformed large unilamellar vesicles (LUVs) containing a cationic lipid and a PEG coating can be induced to entrap polynucleotides such as antisense oligonucleotides and plasmid DNA in the presence of ethanol. The interaction of the cationic liposomes with the polynucleotides leads to the formation of multilamellar liposomes ranging in size from 70 to 120 nm, only slightly bigger than the parent LUVs from which they originated. The degree of lamellarity as well as the size and polydispersity of the liposomes formed increases with increasing polynucleotide-to-lipid ratio. A direct correlation between the entrapment efficiency and the membrane-destabilizing effect of ethanol was observed. Although the morphology of the liposomes is still preserved at the ethanol concentrations used for entrapment (25-40%, v/v), entrapped low-molecular-weight solutes leak rapidly. In addition, lipids can flip-flop across the membrane and exchange rapidly between liposomes. Furthermore, there are indications that the interaction of the polynucleotides with the cationic liposomes in ethanol leads to formation of polynucleotide-cationic lipid domains, which act as adhesion points between liposomes. It is suggested that the spreading of this contact area leads to expulsion of PEG-ceramide and triggers processes that result in the formation of multilamellar systems with internalized polynucleotides. The high entrapment efficiencies achieved at high polyelectrolyte-to-lipid ratios and the small size and neutral character of these novel liposomal systems are of utility for liposomal delivery of macromolecular drugs.
Collapse
|
research-article |
24 |
174 |
25
|
Philippova OE, Volkov EV, Sitnikova NL, Khokhlov AR, Desbrieres J, Rinaudo M. Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative. Biomacromolecules 2003; 2:483-90. [PMID: 11749210 DOI: 10.1021/bm005649a] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aggregation phenomena in aqueous solutions of hydrophobically modified (HM) chitosan, containing 4 mol % of n-dodecyl side chains, were studied by viscometry and fluorescence spectroscopy with pyrene as a probe. The results are compared with those for unmodified chitosan. Surprisingly, fluorescence data reveal the appearance of intermolecular hydrophobic aggregates both in chitosan and in HM chitosan. Nevertheless, these polymers exhibit quite different rheological properties: upon the formation of aggregates the viscosity of HM chitosan sharply increases, while that of unmodified chitosan raises only slightly. The aggregation models for both chitosan and its hydrophobic derivative were proposed. It was shown that in solutions of HM chitosan two types of hydrophobic domains exist: hydrophobic domains typical for different associating polymers with hydrophobic side chains and hydrophobic domains inherent to chitosan itself.
Collapse
|
|
22 |
171 |