1
|
Karamitros T, Papadopoulou G, Bousali M, Mexias A, Tsiodras S, Mentis A. SARS-CoV-2 exhibits intra-host genomic plasticity and low-frequency polymorphic quasispecies. J Clin Virol 2020; 131:104585. [PMID: 32818852 PMCID: PMC7418792 DOI: 10.1016/j.jcv.2020.104585] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022]
Abstract
In December 2019, an outbreak of atypical pneumonia (Coronavirus disease 2019 -COVID-19) associated with a novel coronavirus (SARS-CoV-2) was reported in Wuhan city, Hubei province, China. The outbreak was traced to a seafood wholesale market and human to human transmission was confirmed. The rapid spread and the death toll of the new epidemic warrants immediate intervention. The intra-host genomic variability of SARS-CoV-2 plays a pivotal role in the development of effective antiviral agents and vaccines, as well as in the design of accurate diagnostics. We analyzed NGS data derived from clinical samples of three Chinese patients infected with SARS-CoV-2, in order to identify small- and large-scale intra-host variations in the viral genome. We identified tens of low- or higher- frequency single nucleotide variations (SNVs) with variable density across the viral genome, affecting 7 out of 10 protein-coding viral genes. The majority of these SNVs (72/104) corresponded to missense changes. The annotation of the identified SNVs but also of all currently circulating strain variations revealed colocalization of intra-host as well as strain specific SNVs with primers and probes currently used in molecular diagnostics assays. Moreover, we de-novo assembled the viral genome, in order to isolate and validate intra-host structural variations and recombination breakpoints. The bioinformatics analysis disclosed genomic rearrangements over poly-A / poly-U regions located in ORF1ab and spike (S) gene, including a potential recombination hot-spot within S gene. Our results highlight the intra-host genomic diversity and plasticity of SARS-CoV-2, pointing out genomic regions that are prone to alterations. The isolated SNVs and genomic rearrangements reflect the intra-patient capacity of the polymorphic quasispecies, which may arise rapidly during the outbreak, allowing immunological escape of the virus, offering resistance to anti-viral drugs and affecting the sensitivity of the molecular diagnostics assays.
Collapse
|
research-article |
5 |
77 |
2
|
Andrés C, Garcia-Cehic D, Gregori J, Piñana M, Rodriguez-Frias F, Guerrero-Murillo M, Esperalba J, Rando A, Goterris L, Codina MG, Quer S, Martín MC, Campins M, Ferrer R, Almirante B, Esteban JI, Pumarola T, Antón A, Quer J. Naturally occurring SARS-CoV-2 gene deletions close to the spike S1/S2 cleavage site in the viral quasispecies of COVID19 patients. Emerg Microbes Infect 2020; 9:1900-1911. [PMID: 32752979 PMCID: PMC8284971 DOI: 10.1080/22221751.2020.1806735] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 spike (S) protein, the viral mediator for binding and entry into the host cell, has sparked great interest as a target for vaccine development and treatments with neutralizing antibodies. Initial data suggest that the virus has low mutation rates, but its large genome could facilitate recombination, insertions, and deletions, as has been described in other coronaviruses. Here, we deep-sequenced the complete SARS-CoV-2 S gene from 18 patients (10 with mild and 8 with severe COVID-19), and found that the virus accumulates deletions upstream and very close to the S1/S2 cleavage site (PRRAR/S), generating a frameshift with appearance of a stop codon. These deletions were found in a small percentage of the viral quasispecies (2.2%) in samples from all the mild and only half the severe COVID-19 patients. Our results suggest that the virus may generate free S1 protein released to the circulation. We suggest that natural selection has favoured a "Don't burn down the house" strategy, in which free S1 protein may compete with viral particles for the ACE2 receptor, thus reducing the severity of the infection and tissue damage without losing transmission capability.
Collapse
|
research-article |
5 |
49 |
3
|
Domingo E, Perales C. Quasispecies and virus. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2018; 47:443-457. [PMID: 29397419 DOI: 10.1007/s00249-018-1282-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/11/2018] [Accepted: 01/27/2018] [Indexed: 12/13/2022]
Abstract
Quasispecies theory has been instrumental in the understanding of RNA virus population dynamics because it considered for the first time mutation as an integral part of the replication process. The key influences of quasispecies theory on experimental virology have been: (1) to disclose the mutant spectrum nature of viral populations and to evaluate its consequences; (2) to unveil collective properties of genome ensembles that can render a mutant spectrum a unit of selection; and (3) to identify new vulnerability points of pathogenic RNA viruses on three fronts: the need to apply multiple selective constraints (in the form of drug combinations) to minimize selection of treatment-escape variants, to translate the error threshold concept into antiviral designs, and to construct attenuated vaccine viruses through alterations of viral polymerase copying fidelity or through displacements of viral genomes towards unfavorable regions of sequence space. These three major influences on the understanding of viral pathogens preceded extensions of quasispecies to non-viral systems such as bacterial and tumor cell collectivities and prions. These developments are summarized here.
Collapse
|
Review |
7 |
46 |
4
|
Armero A, Berthet N, Avarre JC. Intra-Host Diversity of SARS-Cov-2 Should Not Be Neglected: Case of the State of Victoria, Australia. Viruses 2021; 13:133. [PMID: 33477885 PMCID: PMC7833370 DOI: 10.3390/v13010133] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Since the identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the etiological agent of the current COVID-19 pandemic, a rapid and massive effort has been made to obtain the genomic sequences of this virus to monitor (in near real time) the phylodynamic and diversity of this new pathogen. However, less attention has been given to the assessment of intra-host diversity. RNA viruses such as SARS-CoV-2 inhabit the host as a population of variants called quasispecies. We studied the quasispecies diversity in four of the main SARS-CoV-2 genes (ORF1a, ORF1b, S and N genes), using a dataset consisting of 210 next-generation sequencing (NGS) samples collected between January and early April of 2020 in the State of Victoria, Australia. We found evidence of quasispecies diversity in 68% of the samples, 76% of which was nonsynonymous variants with a higher density in the spike (S) glycoprotein and ORF1a genes. About one-third of the nonsynonymous intra-host variants were shared among the samples, suggesting host-to-host transmission. Quasispecies diversity changed over time. Phylogenetic analysis showed that some of the intra-host single-nucleotide variants (iSNVs) were restricted to specific lineages, highlighting their potential importance in the epidemiology of this virus. A greater effort must be made to determine the magnitude of the genetic bottleneck during transmission and the epidemiological and/or evolutionary factors that may play a role in the changes in the diversity of quasispecies over time.
Collapse
|
research-article |
4 |
44 |
5
|
Lu IN, Muller CP, He FQ. Applying next-generation sequencing to unravel the mutational landscape in viral quasispecies. Virus Res 2020; 283:197963. [PMID: 32278821 PMCID: PMC7144618 DOI: 10.1016/j.virusres.2020.197963] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has revolutionized the scale and depth of biomedical sciences. Because of its unique ability for the detection of sub-clonal variants within genetically diverse populations, NGS has been successfully applied to analyze and quantify the exceptionally-high diversity within viral quasispecies, and many low-frequency drug- or vaccine-resistant mutations of therapeutic importance have been discovered. Although many works have intensively discussed the latest NGS approaches and applications in general, none of them has focused on applying NGS in viral quasispecies studies, mostly due to the limited ability of current NGS technologies to accurately detect and quantify rare viral variants. Here, we summarize several error-correction strategies that have been developed to enhance the detection accuracy of minority variants. We also discuss critical considerations for preparing a sequencing library from viral RNAs and for analyzing NGS data to unravel the mutational landscape.
Collapse
|
Review |
5 |
34 |
6
|
Mandary MB, Masomian M, Poh CL. Impact of RNA Virus Evolution on Quasispecies Formation and Virulence. Int J Mol Sci 2019; 20:E4657. [PMID: 31546962 PMCID: PMC6770471 DOI: 10.3390/ijms20184657] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
RNA viruses are known to replicate by low fidelity polymerases and have high mutation rates whereby the resulting virus population tends to exist as a distribution of mutants. In this review, we aim to explore how genetic events such as spontaneous mutations could alter the genomic organization of RNA viruses in such a way that they impact virus replications and plaque morphology. The phenomenon of quasispecies within a viral population is also discussed to reflect virulence and its implications for RNA viruses. An understanding of how such events occur will provide further evidence about whether there are molecular determinants for plaque morphology of RNA viruses or whether different plaque phenotypes arise due to the presence of quasispecies within a population. Ultimately this review gives an insight into whether the intrinsically high error rates due to the low fidelity of RNA polymerases is responsible for the variation in plaque morphology and diversity in virulence. This can be a useful tool in characterizing mechanisms that facilitate virus adaptation and evolution.
Collapse
|
Review |
6 |
32 |
7
|
Sullivan NT, Dampier W, Chung CH, Allen AG, Atkins A, Pirrone V, Homan G, Passic S, Williams J, Zhong W, Kercher K, Desimone M, Li L, C Antell G, Mell JC, Ehrlich GD, Szep Z, Jacobson JM, Nonnemacher MR, Wigdahl B. Novel gRNA design pipeline to develop broad-spectrum CRISPR/Cas9 gRNAs for safe targeting of the HIV-1 quasispecies in patients. Sci Rep 2019; 9:17088. [PMID: 31745112 PMCID: PMC6864089 DOI: 10.1038/s41598-019-52353-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
The CRISPR/Cas9 system has been proposed as a cure strategy for HIV. However, few published guide RNAs (gRNAs) are predicted to cleave the majority of HIV-1 viral quasispecies (vQS) observed within and among patients. We report the design of a novel pipeline to identify gRNAs that target HIV across a large number of infected individuals. Next generation sequencing (NGS) of LTRs from 269 HIV-1-infected samples in the Drexel CARES Cohort was used to select gRNAs with predicted broad-spectrum activity. In silico, D-LTR-P4-227913 (package of the top 4 gRNAs) accounted for all detectable genetic variation within the vQS of the 269 samples and the Los Alamos National Laboratory HIV database. In silico secondary structure analyses from NGS indicated extensive TAR stem-loop malformations predicted to inactivate proviral transcription, which was confirmed by reduced viral gene expression in TZM-bl or P4R5 cells. Similarly, a high sensitivity in vitro CRISPR/Cas9 cleavage assay showed that the top-ranked gRNA was the most effective at cleaving patient-derived HIV-1 LTRs from five patients. Furthermore, the D-LTR-P4-227913 was predicted to cleave a median of 96.1% of patient-derived sequences from other HIV subtypes. These results demonstrate that the gRNAs possess broad-spectrum cutting activity and could contribute to an HIV cure.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
22 |
8
|
Bingham RJ, Dykeman EC, Twarock R. RNA Virus Evolution via a Quasispecies-Based Model Reveals a Drug Target with a High Barrier to Resistance. Viruses 2017; 9:E347. [PMID: 29149077 PMCID: PMC5707554 DOI: 10.3390/v9110347] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022] Open
Abstract
The rapid occurrence of therapy-resistant mutant strains provides a challenge for anti-viral therapy. An ideal drug target would be a highly conserved molecular feature in the viral life cycle, such as the packaging signals in the genomes of RNA viruses that encode an instruction manual for their efficient assembly. The ubiquity of this assembly code in RNA viruses, including major human pathogens, suggests that it confers selective advantages. However, their impact on viral evolution cannot be assessed in current models of viral infection that lack molecular details of virus assembly. We introduce here a quasispecies-based model of a viral infection that incorporates structural and mechanistic knowledge of packaging signal function in assembly to construct a phenotype-fitness map, capturing the impact of this RNA code on assembly yield and efficiency. Details of viral replication and assembly inside an infected host cell are coupled with a population model of a viral infection, allowing the occurrence of therapy resistance to be assessed in response to drugs inhibiting packaging signal recognition. Stochastic simulations of viral quasispecies evolution in chronic HCV infection under drug action and/or immune clearance reveal that drugs targeting all RNA signals in the assembly code collectively have a high barrier to drug resistance, even though each packaging signal in isolation has a lower barrier than conventional drugs. This suggests that drugs targeting the RNA signals in the assembly code could be promising routes for exploitation in anti-viral drug design.
Collapse
|
research-article |
8 |
17 |
9
|
De Silva Feelixge HS, Stone D, Roychoudhury P, Aubert M, Jerome KR. CRISPR/Cas9 and Genome Editing for Viral Disease-Is Resistance Futile? ACS Infect Dis 2018; 4:871-880. [PMID: 29522311 PMCID: PMC5993632 DOI: 10.1021/acsinfecdis.7b00273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic viral infections remain a major public health issue affecting millions of people worldwide. Highly active antiviral treatments have significantly improved prognosis and infection-related morbidity and mortality but have failed to eliminate persistent viral forms. Therefore, new strategies to either eradicate or control these viral reservoirs are paramount to allow patients to stop antiretroviral therapy and realize a cure. Viral genome disruption based on gene editing by programmable endonucleases is one promising curative gene therapy approach. Recent findings on RNA-guided human immunodeficiency virus 1 (HIV-1) genome cleavage by Cas9 and other gene-editing enzymes in latently infected cells have shown high levels of site-specific genome disruption and potent inhibition of virus replication. However, HIV-1 can readily develop resistance to genome editing at a single antiviral target site. Current data suggest that cellular repair associated with DNA double-strand breaks can accelerate the emergence of resistance. On the other hand, a combination antiviral target strategy can exploit the same repair mechanism to functionally cure HIV-1 infection in vitro while avoiding the development of resistance. This perspective summarizes recent findings on the biology of resistance to genome editing and discusses the significance of viral genetic diversity on the application of gene editing strategies toward cure.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
12 |
10
|
Yañez O, Chávez-Galarza J, Tellgren-Roth C, Pinto MA, Neumann P, de Miranda JR. The honeybee (Apis mellifera) developmental state shapes the genetic composition of the deformed wing virus-A quasispecies during serial transmission. Sci Rep 2020; 10:5956. [PMID: 32249797 PMCID: PMC7136270 DOI: 10.1038/s41598-020-62673-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/17/2020] [Indexed: 11/23/2022] Open
Abstract
The main biological threat to the western honeybee (Apis mellifera) is the parasitic mite Varroa destructor, largely because it vectors lethal epidemics of honeybee viruses that, in the absence of this mite, are relatively innocuous. The severe pathology is a direct consequence of excessive virus titres caused by this novel transmission route. However, little is known about how the virus adapts genetically during transmission and whether this influences the pathology. Here, we show that upon injection into honeybee pupae, the deformed wing virus type-A (DWV-A) quasispecies undergoes a rapid, extensive expansion of its sequence space, followed by strong negative selection towards a uniform, common shape by the time the pupae have completed their development, with no difference between symptomatic and asymptomatic adults in either DWV titre or genetic composition. This suggests that the physiological and molecular environment during pupal development has a strong, conservative influence on shaping the DWV-A quasispecies in emerging adults. There was furthermore no evidence of any progressive adaptation of the DWV-A quasispecies to serial intra-abdominal injection, simulating mite transmission, despite the generation of ample variation immediately following each transmission, suggesting that the virus either had already adapted to transmission by injection, or was unaffected by it.
Collapse
|
research-article |
5 |
12 |
11
|
Delgado S, Perales C, García-Crespo C, Soria ME, Gallego I, de Ávila AI, Martínez-González B, Vázquez-Sirvent L, López-Galíndez C, Morán F, Domingo E. A Two-Level, Intramutant Spectrum Haplotype Profile of Hepatitis C Virus Revealed by Self-Organized Maps. Microbiol Spectr 2021; 9:e0145921. [PMID: 34756074 PMCID: PMC8579923 DOI: 10.1128/spectrum.01459-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
RNA viruses replicate as complex mutant spectra termed viral quasispecies. The frequency of each individual genome in a mutant spectrum depends on its rate of generation and its relative fitness in the replicating population ensemble. The advent of deep sequencing methodologies allows for the first-time quantification of haplotype abundances within mutant spectra. There is no information on the haplotype profile of the resident genomes and how the landscape evolves when a virus replicates in a controlled cell culture environment. Here, we report the construction of intramutant spectrum haplotype landscapes of three amplicons of the NS5A-NS5B coding region of hepatitis C virus (HCV). Two-dimensional (2D) neural networks were constructed for 44 related HCV populations derived from a common clonal ancestor that was passaged up to 210 times in human hepatoma Huh-7.5 cells in the absence of external selective pressures. The haplotype profiles consisted of an extended dense basal platform, from which a lower number of protruding higher peaks emerged. As HCV increased its adaptation to the cells, the number of haplotype peaks within each mutant spectrum expanded, and their distribution shifted in the 2D network. The results show that extensive HCV replication in a monotonous cell culture environment does not limit HCV exploration of sequence space through haplotype peak movements. The landscapes reflect dynamic variation in the intramutant spectrum haplotype profile and may serve as a reference to interpret the modifications produced by external selective pressures or to compare with the landscapes of mutant spectra in complex in vivo environments. IMPORTANCE The study provides for the first time the haplotype profile and its variation in the course of virus adaptation to a cell culture environment in the absence of external selective constraints. The deep sequencing-based self-organized maps document a two-layer haplotype distribution with an ample basal platform and a lower number of protruding peaks. The results suggest an inferred intramutant spectrum fitness landscape structure that offers potential benefits for virus resilience to mutational inputs.
Collapse
|
research-article |
4 |
9 |
12
|
do Lago BV, Bezerra CS, Moreira DA, Parente TE, Portilho MM, Pessôa R, Sanabani SS, Villar LM. Genetic diversity of hepatitis B virus quasispecies in different biological compartments reveals distinct genotypes. Sci Rep 2023; 13:17023. [PMID: 37813888 PMCID: PMC10562391 DOI: 10.1038/s41598-023-43655-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
The selection pressure imposed by the host immune system impacts hepatitis B virus (HBV) quasispecies variability. This study evaluates HBV genetic diversity in different biological fluids. Twenty paired serum, oral fluid, and DBS samples from chronic HBV carriers were analyzed using both Sanger and next generation sequencing (NGS). The mean HBV viral load in serum was 5.19 ± 4.3 log IU/mL (median 5.29, IQR 3.01-7.93). Genotype distribution was: HBV/A1 55% (11/20), A2 15% (3/20), D3 10% (2/20), F2 15% (3/20), and F4 5% (1/20). Genotype agreement between serum and oral fluid was 100% (genetic distances 0.0-0.006), while that between serum and DBS was 80% (genetic distances 0.0-0.115). Two individuals presented discordant genotypes in serum and DBS. Minor population analysis revealed a mixed population. All samples displayed mutations in polymerase and/or surface genes. Major population analysis of the polymerase pointed to positions H122 and M129 as the most polymorphic (≥ 75% variability), followed by V163 (55%) and I253 (50%). Neither Sanger nor NGS detected any antiviral primary resistance mutations in the major populations. Minor population analysis, however, demonstrated the rtM204I resistance mutation in all individuals, ranging from 2.8 to 7.5% in serum, 2.5 to 6.3% in oral fluid, and 3.6 to 7.2% in DBS. This study demonstrated that different fluids can be used to assess HBV diversity, nonetheless, genotypic differences according to biological compartments can be observed.
Collapse
|
research-article |
2 |
6 |
13
|
Godoy C, Tabernero D, Sopena S, Gregori J, Cortese MF, González C, Casillas R, Yll M, Rando A, López-Martínez R, Quer J, González-Aseguinolaza G, Esteban R, Riveiro-Barciela M, Buti M, Rodríguez-Frías F. Characterization of hepatitis B virus X gene quasispecies complexity in mono-infection and hepatitis delta virus superinfection. World J Gastroenterol 2019; 25:1566-1579. [PMID: 30983817 PMCID: PMC6452231 DOI: 10.3748/wjg.v25.i13.1566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis delta virus (HDV) seems to strongly suppress hepatitis B virus (HBV) replication, although little is known about the mechanism of this interaction. Both these viruses show a dynamic distribution of mutants, resulting in viral quasispecies. Next-generation sequencing is a viable approach for analyzing the composition of these mutant spectra. As the regulatory hepatitis B X protein (HBx) is essential for HBV replication, determination of HBV X gene (HBX) quasispecies complexity in HBV/HDV infection compared to HBV mono-infection may provide information on the interactions between these two viruses. AIM To compare HBV quasispecies complexity in the HBX 5' region between chronic hepatitis delta (CHD) and chronic HBV mono-infected patients. METHODS Twenty-four untreated patients were included: 7/24 (29.2%) with HBeAg-negative chronic HBV infection (CI, previously termed inactive carriers), 8/24 (33.3%) with HBeAg-negative chronic hepatitis B (CHB) and 9/24 (37.5%) with CHD. A serum sample from each patient was first tested for HBV DNA levels. The HBX 5' region [nucleotides (nt) 1255-1611] was then PCR-amplified for subsequent next-generation sequencing (MiSeq, Illumina, United States). HBV quasispecies complexity in the region analyzed was evaluated using incidence-based indices (number of haplotypes and number of mutations), abundance-based indices (Hill numbers of order 1 and 2), and functional indices (mutation frequency and nucleotide diversity). We also evaluated the pattern of nucleotide changes to investigate which of them could be the cause of the quasispecies complexity. RESULTS CHB patients showed higher median HBV-DNA levels [5.4 logIU/mL, interquartile range (IQR) 3.5-7.9] than CHD (3.4 logIU/mL, IQR 3-7.6) (P = n.s.) or CI (3.2 logIU/mL, IQR 2.3-3.5) (P < 0.01) patients. The incidence and abundance indices indicated that HBV quasispecies complexity was significantly greater in CI than CHB. A similar trend was observed in CHD patients, although only Hill numbers of order 2 showed statistically significant differences (CHB 2.81, IQR 1.11-4.57 vs CHD 8.87, 6.56-11.18, P = 0.038). There were no significant differences in the functional indices, but CI and CHD patients also showed a trend towards greater complexity than CHB. No differences were found for any HBV quasispecies complexity indices between CHD and CI patients. G-to-A and C-to-T nucleotide changes, characteristic of APOBEC3G, were higher in CHD and CI than in CHB in genotype A haplotypes, but not in genotype D. The proportion of nt G-to-A vs A-to-G changes and C-to-T vs T-to-C changes in genotype A and D haplotypes in CHD patients showed no significant differences. In CHB and CI the results of these comparisons were dependent on HBV genotype. CONCLUSION The lower-replication CHD and CI groups show a trend to higher quasispecies complexity than the higher-replication CHB group. The mechanisms associated with this greater complexity require elucidation.
Collapse
|
Basic Study |
6 |
5 |
14
|
Jadhav A, Zhao L, Liu W, Ding C, Nair V, Ramos-Onsins SE, Ferretti L. Genomic Diversity and Evolution of Quasispecies in Newcastle Disease Virus Infections. Viruses 2020; 12:v12111305. [PMID: 33202558 PMCID: PMC7698180 DOI: 10.3390/v12111305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
Newcastle disease virus (NDV) infections are well known to harbour quasispecies, due to the error-prone nature of the RNA polymerase. Quasispecies variants in the fusion cleavage site of the virus are known to significantly change its virulence. However, little is known about the genomic patterns of diversity and selection in NDV viral swarms. We analyse deep sequencing data from in vitro and in vivo NDV infections to uncover the genomic patterns of diversity and the signatures of selection within NDV swarms. Variants in viruses from in vitro samples are mostly localised in non-coding regions and 3′ and 5′ untranslated regions (3′UTRs or 5′UTRs), while in vivo samples contain an order of magnitude more variants. We find different patterns of genomic divergence and diversity among NDV genotypes, as well as differences in the genomic distribution of intra-host variants among in vitro and in vivo infections of the same strain. The frequency spectrum shows clear signatures of intra-host purifying selection in vivo on the matrix protein (M) coding gene and positive or diversifying selection on nucleocapsid (NP) and haemagglutinin-neuraminidase (HN). The comparison between within-host polymorphisms and phylogenetic divergence reveals complex patterns of selective pressure on the NDV genome at between- and within-host level. The M sequence is strongly constrained both between and within hosts, fusion protein (F) coding gene is under intra-host positive selection, and NP and HN show contrasting patterns: HN RNA sequence is positively selected between hosts while its protein sequence is positively selected within hosts, and NP is under intra-host positive selection at the RNA level and negative selection at the protein level.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
4 |
15
|
Hauck NC, Kirpach J, Kiefer C, Farinelle S, Maucourant S, Morris SA, Rosenberg W, He FQ, Muller CP, Lu IN. Applying Unique Molecular Identifiers in Next Generation Sequencing Reveals a Constrained Viral Quasispecies Evolution under Cross-Reactive Antibody Pressure Targeting Long Alpha Helix of Hemagglutinin. Viruses 2018; 10:v10040148. [PMID: 29587397 PMCID: PMC5923442 DOI: 10.3390/v10040148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 12/14/2022] Open
Abstract
To overcome yearly efforts and costs for the production of seasonal influenza vaccines, new approaches for the induction of broadly protective and long-lasting immune responses have been developed in the past decade. To warrant safety and efficacy of the emerging crossreactive vaccine candidates, it is critical to understand the evolution of influenza viruses in response to these new immune pressures. Here we applied unique molecular identifiers in next generation sequencing to analyze the evolution of influenza quasispecies under in vivo antibody pressure targeting the hemagglutinin (HA) long alpha helix (LAH). Our vaccine targeting LAH of hemagglutinin elicited significant seroconversion and protection against homologous and heterologous influenza virus strains in mice. The vaccine not only significantly reduced lung viral titers, but also induced a well-known bottleneck effect by decreasing virus diversity. In contrast to the classical bottleneck effect, here we showed a significant increase in the frequency of viruses with amino acid sequences identical to that of vaccine targeting LAH domain. No escape mutant emerged after vaccination. These results not only support the potential of a universal influenza vaccine targeting the conserved LAH domains, but also clearly demonstrate that the well-established bottleneck effect on viral quasispecies evolution does not necessarily generate escape mutants.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
4 |
16
|
Nyayanit DA, Yadav PD, Kharde R, Shete-Aich A. Quasispecies analysis of the SARS-CoV-2 from representative clinical samples: A preliminary analysis. Indian J Med Res 2020; 152:105-107. [PMID: 32773417 PMCID: PMC7853256 DOI: 10.4103/ijmr.ijmr_2251_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 12/12/2022] Open
|
Letter |
5 |
4 |
17
|
Gregori J, Colomer-Castell S, Campos C, Ibañez-Lligoña M, Garcia-Cehic D, Rando-Segura A, Adombie CM, Pintó R, Guix S, Bosch A, Domingo E, Gallego I, Perales C, Cortese MF, Tabernero D, Buti M, Riveiro-Barciela M, Esteban JI, Rodriguez-Frias F, Quer J. Quasispecies Fitness Partition to Characterize the Molecular Status of a Viral Population. Negative Effect of Early Ribavirin Discontinuation in a Chronically Infected HEV Patient. Int J Mol Sci 2022; 23:14654. [PMID: 36498981 PMCID: PMC9739305 DOI: 10.3390/ijms232314654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The changes occurring in viral quasispecies populations during infection have been monitored using diversity indices, nucleotide diversity, and several other indices to summarize the quasispecies structure in a single value. In this study, we present a method to partition quasispecies haplotypes into four fractions according to their fitness: the master haplotype, rare haplotypes at two levels (those present at <0.1%, and those at 0.1−1%), and a fourth fraction that we term emerging haplotypes, present at frequencies >1%, but less than that of the master haplotype. We propose that by determining the changes occurring in the volume of the four quasispecies fitness fractions together with those of the Hill number profile we will be able to visualize and analyze the molecular changes in the composition of a quasispecies with time. To develop this concept, we used three data sets: a technical clone of the complete SARS-CoV-2 spike gene, a subset of data previously used in a study of rare haplotypes, and data from a clinical follow-up study of a patient chronically infected with HEV and treated with ribavirin. The viral response to ribavirin mutagenic treatment was selection of a rich set of synonymous haplotypes. The mutation spectrum was very complex at the nucleotide level, but at the protein (phenotypic/functional) level the pattern differed, showing a highly prevalent master phenotype. We discuss the putative implications of this observation in relation to mutagenic antiviral treatment.
Collapse
|
research-article |
3 |
4 |
18
|
Ng TTL, Su J, Lao HY, Lui WW, Chan CTM, Leung AWS, Jim SHC, Lee LK, Shehzad S, Tam KKG, Leung KSS, Tang F, Yam WC, Luo R, Siu GKH. Long-Read Sequencing with Hierarchical Clustering for Antiretroviral Resistance Profiling of Mixed Human Immunodeficiency Virus Quasispecies. Clin Chem 2023; 69:1174-1185. [PMID: 37537871 DOI: 10.1093/clinchem/hvad108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND HIV infections often develop drug resistance mutations (DRMs), which can increase the risk of virological failure. However, it has been difficult to determine if minor mutations occur in the same genome or in different virions using Sanger sequencing and short-read sequencing methods. Oxford Nanopore Technologies (ONT) sequencing may improve antiretroviral resistance profiling by allowing for long-read clustering. METHODS A new ONT sequencing-based method for profiling DRMs in HIV quasispecies was developed and validated. The method used hierarchical clustering of long amplicons that cover regions associated with different types of antiretroviral drugs. A gradient series of an HIV plasmid and 2 plasma samples was prepared to validate the clustering performance. The ONT results were compared to those obtained with Sanger sequencing and Illumina sequencing in 77 HIV-positive plasma samples to evaluate the diagnostic performance. RESULTS In the validation study, the abundance of detected quasispecies was concordant with the predicted result with the R2 of > 0.99. During the diagnostic evaluation, 59/77 samples were successfully sequenced for DRMs. Among 18 failed samples, 17 were below the limit of detection of 303.9 copies/μL. Based on the receiver operating characteristic analysis, the ONT workflow achieved an F1 score of 0.96 with a cutoff of 0.4 variant allele frequency. Four cases were found to have quasispecies with DRMs, in which 2 harbored quasispecies with more than one class of DRMs. Treatment modifications were recommended for these cases. CONCLUSIONS Long-read sequencing coupled with hierarchical clustering could differentiate the quasispecies resistance profiles in HIV-infected samples, providing a clearer picture for medical care.
Collapse
|
|
2 |
3 |
19
|
Dalmau J. Asymptotic Behavior of Eigen's Quasispecies Model. Bull Math Biol 2018; 80:1689-1712. [PMID: 29611110 DOI: 10.1007/s11538-018-0420-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 03/22/2018] [Indexed: 02/05/2023]
Abstract
We study Eigen's quasispecies model in the asymptotic regime where the length of the genotypes goes to [Formula: see text] and the mutation probability goes to 0. A limiting infinite system of differential equations is obtained. We prove convergence of trajectories, as well as convergence of the equilibrium solutions. We give analogous results for a discrete-time version of Eigen's model, which coincides with a model proposed by Moran.
Collapse
|
|
7 |
3 |
20
|
Obasa AE, Ambikan AT, Gupta S, Neogi U, Jacobs GB. Increased acquired protease inhibitor drug resistance mutations in minor HIV-1 quasispecies from infected patients suspected of failing on national second-line therapy in South Africa. BMC Infect Dis 2021; 21:214. [PMID: 33632139 PMCID: PMC7908688 DOI: 10.1186/s12879-021-05905-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND HIV-1C has been shown to have a greater risk of virological failure and reduced susceptibility towards boosted protease inhibitors (bPIs), a component of second-line combination antiretroviral therapy (cART) in South Africa. This study entailed an evaluation of HIV-1 drug resistance-associated mutations (RAMs) among minor viral populations through high-throughput sequencing genotypic resistance testing (HTS-GRT) in patients on the South African national second-line cART regimen receiving bPIs. METHODS During 2017 and 2018, 67 patient samples were sequenced using high-throughput sequencing (HTS), of which 56 samples were included in the final analysis because the patient's treatment regimen was available at the time of sampling. All patients were receiving bPIs as part of their cART. Viral RNA was extracted, and complete pol genes were amplified and sequenced using Illumina HiSeq2500, followed by bioinformatics analysis to quantify the RAMs according to the Stanford HIV Drug Resistance Database. RESULTS Statistically significantly higher PI RAMs were observed in minor viral quasispecies (25%; 14/56) compared to non-nucleoside reverse transcriptase inhibitors (9%; 5/56; p = 0.042) and integrase inhibitor RAM (4%; 2/56; p = 0.002). The majority of the drug resistance mutations in the minor viral quasispecies were observed in the V82A mutation (n = 13) in protease and K65R (n = 5), K103N (n = 7) and M184V (n = 5) in reverse transcriptase. CONCLUSIONS HTS-GRT improved the identification of PI and reverse transcriptase inhibitor (RTI) RAMs in second-line cART patients from South Africa compared to the conventional GRT with ≥20% used in Sanger-based sequencing. Several RTI RAMs, such as K65R, M184V or K103N and PI RAM V82A, were identified in < 20% of the population. Deep sequencing could be of greater value in detecting acquired resistance mutations early.
Collapse
|
research-article |
4 |
3 |
21
|
Molet L, Girlich D, Bonnin RA, Proust A, Bouligand J, Bachelerie F, Hantz S, Deback C. Identification by high-throughput sequencing of HPV variants and quasispecies that are untypeable by linear reverse blotting assay in cervical specimens. PAPILLOMAVIRUS RESEARCH (AMSTERDAM, NETHERLANDS) 2019; 8:100169. [PMID: 31283993 PMCID: PMC6620621 DOI: 10.1016/j.pvr.2019.100169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/11/2019] [Accepted: 06/03/2019] [Indexed: 11/17/2022]
Abstract
The linear reverse blotting assays are valid methods for accurate human papillomavirus (HPV) typing required to manage women at risk of developing cervical cancer. However, some samples showed a positive signal in HPV lines but failed to display a positive signal in subsequent typing lines (designated as HPV-X), which indicate that certain types were not available on the respective typing blots. The aim of this study is to elucidate the types or variants of HPV through the high-throughput sequencing (HTS) of 54 ASCUS cervical samples in which the viruses remained untypeable with INNO LiPA HPV® assays. Low-risk (LR)-HPV types (HPV6, 30, 42, 62, 67, 72, 74, 81, 83, 84, 87, 89, 90 and 114), high-risk (HR)-HPV35 and possibly (p)HR-HPV73 were detected among HPV-X. Individual multiple infections (two to seven types) were detected in 40.7% of samples. Twenty-two specimens contained variants characterised by 2-10 changes. HPV30 reached the maximal number of 17 variants with relative abundance inferior or equal to 2.7%. The presence of L1 quasispecies explains why linear reverse blotting assays fail when variants compete or do not match the specific probes. Further studies are needed to measure the LR-HPV quasispecies dynamics and its role during persistent infection.
Collapse
|
research-article |
6 |
3 |
22
|
Cortese MF, González C, Gregori J, Casillas R, Carioti L, Guerrero-Murillo M, Riveiro-Barciela M, Godoy C, Sopena S, Yll M, Quer J, Rando A, Lopez-Martinez R, Pacín Ruiz B, García-García S, Esteban-Mur R, Tabernero D, Buti M, Rodríguez-Frías F. Sophisticated viral quasispecies with a genotype-related pattern of mutations in the hepatitis B X gene of HBeAg-ve chronically infected patients. Sci Rep 2021; 11:4215. [PMID: 33603102 PMCID: PMC7892877 DOI: 10.1038/s41598-021-83762-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with HBeAg-negative chronic infection (CI) have not been extensively studied because of low viremia. The HBx protein, encoded by HBX, has a key role in viral replication. Here, we analyzed the viral quasispecies at the 5' end of HBX in CI patients and compared it with that of patients in other clinical stages. Fifty-eight HBeAg-negative patients were included: 16 CI, 19 chronic hepatitis B, 16 hepatocellular carcinoma and 6 liver cirrhosis. Quasispecies complexity and conservation were determined in the region between nucleotides 1255 and 1611. Amino acid changes detected were tested in vitro. CI patients showed higher complexity in terms of mutation frequency and nucleotide diversity and higher quasispecies conservation (p < 0.05). A genotype D-specific pattern of mutations (A12S/P33S/P46S/T36D-G) was identified in CI (median frequency, 81.7%), which determined a reduction in HBV DNA release of up to 1.5 log in vitro. CI patients showed a more complex and conserved viral quasispecies than the other groups. The genotype-specific pattern of mutations could partially explain the low viremia observed in these patients.
Collapse
|
research-article |
4 |
3 |
23
|
Gregori J, Ibañez-Lligoña M, Quer J. Quantifying In-Host Quasispecies Evolution. Int J Mol Sci 2023; 24:ijms24021301. [PMID: 36674827 PMCID: PMC9867078 DOI: 10.3390/ijms24021301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
What takes decades, centuries or millennia to happen with a natural ecosystem, it takes only days, weeks or months with a replicating viral quasispecies in a host, especially when under treatment. Some methods to quantify the evolution of a quasispecies are introduced and discussed, along with simple simulated examples to help in the interpretation and understanding of the results. The proposed methods treat the molecules in a quasispecies as individuals of competing species in an ecosystem, where the haplotypes are the competing species, and the ecosystem is the quasispecies in a host, and the evolution of the system is quantified by monitoring changes in haplotype frequencies. The correlation between the proposed indices is also discussed, and the R code used to generate the simulations, the data and the plots is provided. The virtues of the proposed indices are finally shown on a clinical case.
Collapse
|
research-article |
2 |
2 |
24
|
Tabernero D, Cortese MF, Buti M, Rodriguez-Frias F. HDV evolution-will viral resistance be an issue in HDV infection? Curr Opin Virol 2018; 32:100-107. [PMID: 30415162 DOI: 10.1016/j.coviro.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023]
Abstract
Hepatitis D virus (HDV) is a hepatotropic subviral infectious agent, obligate satellite of the Hepatitis B virus (HBV) and is highly related to viroids. HDV affects around 5% of the 257 million chronic HBV-carriers worldwide, leading to the most severe form of chronic viral hepatitis. Interferon alpha is the only approved treatment for chronic hepatitis D, albeit with low response rates (around 20%-30%). New antiviral strategies are currently under study. Due to the high viral evolution rates (10-3 to 10-4 substitutions/site/year) HDV forms an extremely complex viral population (quasispecies) that can be studied by Next-Generation Sequencing. Therefore, although specific viral resistance in HDV infection has not been reported, it cannot be completely discarded.
Collapse
|
Review |
7 |
2 |
25
|
Trinks J, Marciano S, Esposito I, Franco A, Mascardi MF, Mendizabal M, Livellara B, Arrigo D, Calzetta P, Vujacich C, Giunta D, Gadano A, Flichman D. The genetic variability of hepatitis B virus subgenotype F1b precore/core gene is related to the outcome of the acute infection. Virus Res 2019; 277:197840. [PMID: 31846615 DOI: 10.1016/j.virusres.2019.197840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/03/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
AIM To assess the association of viral and host genetic variability with the outcome of acute infection with hepatitis B virus subgenotype F1b (HBV/F1b). METHODS The cohort consisted of 26 patients with acute HBV/F1b infection who exhibit different outcomes: spontaneous resolution (n = 10), progression to chronic hepatitis (n = 10) and acute liver failure (n = 6). HLA SNPs (rs3077, rs9277542, rs2856718 and rs7453920) were determined. The S gene and core promoter/precore/core region were direct sequenced, and this latter region was also ultra-deep sequenced. Mean number of mutations, mutation rate, Shannon entropy, positive selection sites and mutational patterns of quasispecies were compared between groups. RESULTS HLA SNPs were associated with spontaneous resolution or progression to chronic hepatitis, but not with the development of acute liver failure. The mean number of mutations in the S gene was similar among the three groups. Patients with spontaneous resolution had the lowest number of mutations, mutation rates and Shannon entropy values in the precore/core compared to the other two groups. Ten positive selection sites mapped on HLA-restricted epitopes were related to progression to chronic hepatitis and acute liver failure. Mutations T1753C, A1762T, G1764A, C1766T, T1768A G1896A, G2092T and T2107C were associated with acute liver failure and progression to chronic hepatitis. CONCLUSION Highly heterogeneous and complex HBV precore/core carrying specific point mutations, combined with the host HLA background, were associated with a worse clinical outcome of acute HBV/F1b infection.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
2 |