1
|
Abstract
The French paradox is a dietary anomaly which has focused attention on the Mediterranean diet. Epidemiological studies revealed that this diet, replete in flavonoid-rich foods (Allium and Brassica vegetables, and red wine), correlated with the increased longevity and decreased incidence of cardiovascular disease seen in these populations. The most frequently studied flavonoid, quercetin, has been shown to have biological properties consistent with its sparing effect on the cardiovascular system. Quercetin and other flavonoids have been shown to modify eicosanoid biosynthesis (antiprostanoid and anti-inflammatory responses), protect low-density lipoprotein from oxidation (prevent atherosclerotic plaque formation), prevent platelet aggregation (antithrombic effects), and promote relaxation of cardiovascular smooth muscle (antihypertensive, antiarrhythmic effects). In addition, flavonoids have been shown to have antiviral and carcinostatic properties. However, flavonoids are poorly absorbed from the gut and are subject to degradation by intestinal micro-organisms. The amount of quercetin that remains biologically available may not be of sufficient concentration, theoretically, to explain the beneficial effects seen with the Mediterranean diet. The role of flavonoids may transcend their presence in food. The activity of flavonoids as inhibitors of reverse transcriptase suggests a place for these compounds in the control of retrovirus infections, such as acquired immunodeficiency syndrome (AIDS). In addition to specific effects, the broad-modulating effects of flavonoids as antioxidants, inhibitors of ubiquitous enzymes (ornithine carboxylase, protein kinase, calmodulin), and promoters of vasodilatation and platelet disaggregation can serve as starting material for drug development programmes.
Collapse
|
Review |
30 |
1087 |
2
|
Metodiewa D, Jaiswal AK, Cenas N, Dickancaité E, Segura-Aguilar J. Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med 1999; 26:107-16. [PMID: 9890646 DOI: 10.1016/s0891-5849(98)00167-1] [Citation(s) in RCA: 358] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the last ten years, there has been an important increase in interest in quercetin action as a unique antioxidant, but its putative role in numerous prooxidant effects is also being continually updated. The mechanism underlying this undesirable ability seems to involve its metabolic oxidoreductive activation. Based on the structural properties of quercetin, we have investigated whether its catechol moiety may be the potential tool for revealed toxicity. We demonstrated, with an ESR spin-stabilization technique coupled to conventional spectrophotometry, that o-semiquinone and o-quinone are indeed the products of enzymatically catalyzed oxidative degradation of quercetin. The former radical might serve to facilitate the formation of superoxide and depletion of GSH, which could confer a specificity of its prooxidative action in situ. The observed one-electron reduction of o-quinone may enrich the semiquinone pool, thereby magnifying its effect. The two-electron reduction of quinone can result in constant resupply of quercetin in situ, thereby also modulating another pathway of its known biological activities. We have also tried to see whether the intracellular oxidative degradation of quercetin can be confirmed under the controlled conditions of model monolayer cell cultures. The results are indicative of the intracellular metabolic activation of quercetin to o-quinone, the process which can be partially associated with the observed concentration-dependent cytotoxic effect of quercetin.
Collapse
|
|
26 |
358 |
3
|
Iwashita K, Kobori M, Yamaki K, Tsushida T. Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci Biotechnol Biochem 2000; 64:1813-20. [PMID: 11055382 DOI: 10.1271/bbb.64.1813] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We investigated the growth inhibitory activity of several flavonoids, including apigenin, luteolin, kaempherol, quercetin, butein, isoliquiritigenin, naringenin, genistein, and daizein against B16 mouse melanoma 4A5 cells. Isoliquiritigenin and butein, belonging to the chalcone group, markedly suppressed the growth of B16 melanoma cells and induced cell death. The other flavonoids tested showed little growth inhibitory activity and scarcely caused cell death. In cells treated with isoliquiritigenin or butein, condensation of nuclei and fragmentation of nuclear DNA, which are typical phenomena of apoptosis, were observed by Hoechst 33258 staining and by agarose gel electrophoresis of DNA. Flowcytometric analysis showed that isoliquiritigenin and butein increased the proportion of hypodiploid cells in the population of B16 melanoma cells. These results demonstrate that isoliquiritigenin and butein inhibit cell proliferation and induce apoptosis in B16 melanoma cells. Extracellular glucose decreased the proportion of hypodiploid cells that appeared as a result of isoliquiritigenin treatment. p53 was not detected in cells treated with either of these chalcones, however, protein of the Bcl-2 family were detected. The level of expression of Bax in cells treated with either of these chalcones was markedly elevated and the level of Bcl-XL decreased slightly. Isoliquiritigenin did not affect Bcl-2 expression, but butein down-regulated Bcl-2 expression. From these results, it seems that the pathway by which the chalcones induce apoptosis may be independent of p53 and dependent on proteins of the Bcl-2 family. It was supposed that isoliquiritigenin induces apoptosis in B16 cells by a mechanism involving inhibition of glucose transmembrane transport and promotion of Bax expression. On the other hand, it was suggested that butein induces apoptosis via down-regulation of Bcl-2 expression and promotion of Bax expression. This mechanism differs from the isoliquiritigenin induction pathway.
Collapse
|
|
25 |
190 |
4
|
Alía M, Mateos R, Ramos S, Lecumberri E, Bravo L, Goya L. Influence of quercetin and rutin on growth and antioxidant defense system of a human hepatoma cell line (HepG2). Eur J Nutr 2005; 45:19-28. [PMID: 15782287 DOI: 10.1007/s00394-005-0558-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 01/10/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Dietary polyphenols like quercetin and rutin are considered beneficial because of their potential protective role in the pathogenesis of multiple diseases associated to oxidative stress such as cancer, coronary heart disease and atherosclerosis. However, many of these effects may depend on the concentration of the polyphenol utilized since high doses of some phenolic compounds may be prooxidant and negatively affect cell growth and viability. AIM OF THE STUDY To test the potential chemoprotective effects of quercetin and rutin, two flavonols with high antioxidant capacity, on cell growth, viability and the response of the antioxidant defense system of a human hepatoma cell line (HepG2). METHODS Cell growth was measured by diaminobenzoic acid and bromodeoxyuridine assays, cell toxicity by lactate dehydrogenase leakage assay, reduced glutathione was quantified by a fluorimetric assay, cellular malondialdehyde was analyzed by high-performance liquid chromatography, reactive oxygen species were quantified by the dichlorofluorescein assay, antioxidant enzyme activities were determined by spectrophotometric analysis and their gene expression by northern blot. RESULTS Short-term exposure (4 h) to these flavonols had no antiproliferative nor cytotoxic effect. High doses of quercetin (50-100 microM) increased glutathione concentration and gene expression of Cu/Zn superoxide dismutase and catalase inhibiting the activity of the latter enzyme, whereas lower doses (0.1-1 microM) decreased gene expression of Cu/Zn superoxide dismutase and increased that of glutathione peroxidase. All doses of quercetin and rutin diminished reactive oxygen species and high doses (10-100 microM) decreased malondialdehyde concentration. CONCLUSION The results indicate that both natural antioxidants induce favorable changes in the antioxidant defense system of cultured HepG2 that prevent or delay conditions which favor cellular oxidative stress.
Collapse
|
|
20 |
175 |
5
|
Chang RCC, Suen KC, Ma CH, Elyaman W, Ng HK, Hugon J. Involvement of double-stranded RNA-dependent protein kinase and phosphorylation of eukaryotic initiation factor-2alpha in neuronal degeneration. J Neurochem 2002; 83:1215-25. [PMID: 12437593 DOI: 10.1046/j.1471-4159.2002.01237.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inhibition of protein translation plays an important role in apoptosis. While double-stranded RNA-dependent protein kinase (PKR) is named as it is activated by double-stranded RNA produced by virus, its activation induces an inhibition of protein translation and apoptosis via the phosphorylation of the eukaryotic initiation factor 2alpha (eIF2alpha). PKR is also a stress kinase and its levels increase during ageing. Here we show that PKR activation and eIF2alpha phosphorylation play a significant role in apoptosis of neuroblastoma cells and primary neuronal cultures induced by the beta-amyloid (Abeta) peptides, the calcium ionophore A23187 and flavonoids. The phosphorylation of eIF2alpha and the number of apoptotic cells were enhanced in over-expressed wild-type PKR neuroblastoma cells exposed to Abeta peptide, while dominant-negative PKR reduced eIF2alpha phosphorylation and apoptosis induced by Abeta peptide. Primary cultured neurons from PKR knockout mice were also less sensitive to Abeta peptide toxicity. Activation of PKR and eIF2alpha pathway by Abeta peptide are triggered by an increase in intracellular calcium because the intracellular calcium chelator BAPTA-AM significantly reduced PKR phosphorylation. Taken together, these results reveal that PKR and eIF2alpha phosphorylation could be involved in the molecular signalling events leading to neuronal apoptosis and death and could be a new target in neuroprotection.
Collapse
|
|
23 |
146 |
6
|
Hirono I, Ueno I, Hosaka S, Takanashi H, Matsushima T, Sugimura T, Natori S. Carcinogenicity examination of quercetin and rutin in ACI rats. Cancer Lett 1981; 13:15-21. [PMID: 7306940 DOI: 10.1016/0304-3835(81)90081-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Carcinogenicity of quercetin and rutin were examined in inbred ACI strain rats. Rats were given a diet containing 1% or 5% quercetin or 5% rutin for 540 days, or 10% quercetin and 10% rutin for 850 days. Rats in control groups were fed a normal basal diet. Most tumors found in experimental groups were also found in the corresponding control groups. Furthermore, there was no significant difference between the incidence of tumors in the experimental or control groups (P greater than 0.05). Thus, quercetin and rutin tested were not shown to be carcinogenic to ACI rats.
Collapse
|
|
44 |
139 |
7
|
Dunnick JK, Hailey JR. Toxicity and carcinogenicity studies of quercetin, a natural component of foods. FUNDAMENTAL AND APPLIED TOXICOLOGY : OFFICIAL JOURNAL OF THE SOCIETY OF TOXICOLOGY 1992; 19:423-31. [PMID: 1459373 DOI: 10.1016/0272-0590(92)90181-g] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Quercetin is a naturally occurring chemical found in our daily diet in fruits and vegetables. Toxicity and carcinogenicity studies of quercetin were conducted in male and female F344/N rats, under conditions which allowed comparison to results of approximately 400 previously tested chemicals. The chemical was administered in the feed for 2-years at concentrations of 0, 1000, 10,000, or 40,000 ppm, and the estimated dose delivered was approximately 40-1900 mg/kg/day. There were no treatment-related effects on survival and no treatment-related clinical signs of toxicity. The high-dose groups had reduced body weight gain in comparison to controls during the last half of the study. At interim evaluations at 6 and 15 months, treatment-related toxic lesions were not observed, but at 2 years toxic and neoplastic lesions were seen in the kidney of male rats, including increased severity of chronic nephropathy, hyperplasia, and neoplasia of the renal tubular epithelium. Under the conditions of these 2-year studies quercetin showed carcinogenic activity in the kidney of the male rat, causing primarily benign tumors of the renal tubular epithelium. Quercetin did not cause tumors at other sites. Quercetin is a genotoxic chemical, but the neoplastic response observed in the kidney may be due in part to a combination of nongenotoxic and genotoxic events.
Collapse
|
|
33 |
138 |
8
|
Ruiz MJ, Fernández M, Picó Y, Mañes J, Asensi M, Carda C, Asensio G, Estrela JM. Dietary administration of high doses of pterostilbene and quercetin to mice is not toxic. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3180-6. [PMID: 19292443 DOI: 10.1021/jf803579e] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The aim of this study is to evaluate possible harmful effects of high doses of t-pterostilbene (t-PTER) and quercetin (QUER) in Swiss mice. Mice were fed during 28 days at doses of 0, 30, 300, and 3000 mg/kg body weight/day of t-PTER, QUER, or a mixture of both, t-PTER + QUER, which are equivalent to 5, 50, and 500 times, respectively, the estimated mean human intake of these polyphenols (25 mg/day). Daily oral administration of QUER, t-PTER, or a mixture of both of them did not cause mortality during the experimental period. There were no differences in food and water consumption on sex. No significant body weight gain in the male or female groups was observed. Red blood cell number and the hematocrit increased after polyphenols administration compared to control groups. Biochemical parameters were not affected. Histopathological examination revealed no alterations in clinical signs or organ weight at any dose.
Collapse
|
|
16 |
138 |
9
|
Wattel A, Kamel S, Prouillet C, Petit JP, Lorget F, Offord E, Brazier M. Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NF?B and AP-1. J Cell Biochem 2004; 92:285-95. [PMID: 15108355 DOI: 10.1002/jcb.20071] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Flavonoids are micronutrients widely present in food of plant origin. They have been attributed pharmacological properties such as anticancer and prevention of age-related pathologies. It has been recently hypothesized that flavonoids increase bone mass and prevent osteoporosis. However, little is known about the in vitro effects of flavonoids on osteoclast activities. We investigated the effects of quercetin, one of the most commonly occurring flavonoids, on osteoclast differentiation which is a critical determinant step of in vivo bone resorption. Two in vitro models of osteoclast differentiation were used in this study: a murine one, involving the culture of RAW 264.7 cells in presence of receptor activator of NF kappa B ligand (RANKL), and a human model consisting of differentiating peripheral blood monocytic cells (PBMC) isolated from peripheral blood in presence of RANKL and macrophage-colony stimulating factor (M-CSF). Osteoclastogenesis was assessed by osteoclast-like number, tartrate resistant acid phosphatase (TRAP) activity, and bone resorbing activity. We showed that quercetin (0.1-10 microM) decreased osteoclastogenesis in a dose dependent manner in both models with significant effects observed at low concentrations, from 1 to 5 microM. The IC(50) value was about 1 microM. Analysis of protein-DNA interaction by electrophoretic mobility shift assay (EMSA) performed on RAW cells showed that a pre-treatment with quercetin inhibited RANKL-induced nuclear factor kB (NF kappa B) and activator protein 1 (AP-1) activation. NF kappa B and AP-1 are transcription factors highly involved in osteoclastic differentiation and their inhibition could play an important role in the decrease of osteoclastogenesis observed in the presence of quercetin. In conclusion, the present results demonstrate for the first time that quercetin, a flavonoid characterized by antioxidant activities, is a potent inhibitor of in vitro osteoclastic differentiation, via a mechanism involving NF kappa B and AP-1.
Collapse
|
|
21 |
137 |
10
|
Abstract
Flavonoids are widely distributed in plant-derived foods and possess a variety of biological activities including antithyroid effects in experimental animals and humans. A structure-activity study of 13 commonly consumed flavonoids was conducted to evaluate inhibition of thyroid peroxidase (TPO), the enzyme that catalyzes thyroid hormone biosynthesis. Most flavonoids tested were potent inhibitors of TPO, with IC50 values ranging from 0.6 to 41 microM. Inhibition by the more potent compounds, fisetin, kaempferol, naringenin, and quercetin, which contain a resorcinol moiety, was consistent with mechanism-based inactivation of TPO as previously observed for resorcinol and derivatives. Other flavonoids inhibited TPO by different mechanisms, such as myricetin and naringin, showed noncompetitive inhibition of tyrosine iodination with respect to iodine ion and linear mixed-type inhibition with respect to hydrogen peroxide. In contrast, biochanin A was found to be an alternate substrate for iodination. The major product, 6,8-diiodo-biochanin A, was characterized by electrospray mass spectrometry and 1H-NMR. These inhibitory mechanisms for flavonoids are consistent with the antithyroid effects observed in experimental animals and, further, predict differences in hazards for antithyroid effects in humans consuming dietary flavonoids. In vivo, suicide substrate inhibition, which could be reversed only by de novo protein synthesis, would be long-lasting. However, the effects of reversible binding inhibitors and alternate substrates would be temporary due to attenuation by metabolism and excretion. The central role of hormonal regulation in growth and proliferation of thyroid tissue suggests that chronic consumption of flavonoids, especially suicide substrates, could play a role in the etiology of thyroid cancer.
Collapse
|
|
29 |
137 |
11
|
Salucci M, Stivala LA, Maiani G, Bugianesi R, Vannini V. Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2). Br J Cancer 2002; 86:1645-51. [PMID: 12085217 PMCID: PMC2746583 DOI: 10.1038/sj.bjc.6600295] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2001] [Revised: 03/04/2002] [Accepted: 03/11/2002] [Indexed: 02/06/2023] Open
Abstract
Green tea, mainly through its constituents epigallocatechin gallate, epigallocatechin, epicatechin gallate and epicatechin, has demonstrated anticarcinogenic activity in several animal models, including those for skin, lung and gastro-intestinal tract cancer, although less is known about colorectal cancer. Quercetin, the major flavonoid present in vegetables and fruit, exerts potential anticarcinogenic effects in animal models and cell cultures, but less is known about quercetin glucosides. The objectives of this study were to investigate (i) the antioxidant activity of the phenolic compounds epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside; (ii) the cytotoxicity of different concentrations of epicatechin, epigallocatechin gallate, and gallic acid; (iii) the cellular uptake of epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside and (iv) their effect on the cell cycle. Human colon adenocarcinoma cells were used as experimental model. The results of this study indicate that all dietary flavonoids studied (epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside) show a significant antioxidant effect in a chemical model system, but only epigallocatechin gallate or gallic acid are able to interfere with the cell cycle in Caco2 cell lines. These data suggest that the antioxidant activity of flavonoids is not related to the inhibition of cellular growth. From a structural point of view, the galloyl moiety appears to be required for both the antioxidant and the antiproliferative effects.
Collapse
|
research-article |
23 |
135 |
12
|
Yamashita N, Tanemura H, Kawanishi S. Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu(II). Mutat Res 1999; 425:107-15. [PMID: 10082921 DOI: 10.1016/s0027-5107(99)00029-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Quercetin, one of flavonoids, has been reported to be carcinogenic. There have been no report concerning carcinogenicity of kaempferol and luteolin which have structure similar to quercetin. DNA damage was examined by using DNA fragments obtained from the human p53 tumor suppressor gene. Quercetin induced extensive DNA damage via reacting with Cu(II), but kaempferol and luteolin induced little DNA damage even in the presence of Cu(II). Excessive quercetin inhibited copper-dependent DNA damage induced by quercetin. Bathocuproine, a Cu(I)-specific chelator, catalase and methional inhibited the DNA damage by quercetin, whereas free hydroxyl radical scavengers did not. Site specificity of the DNA damage was thymine and cytosine residues. The site specificity and the inhibitory effects suggested that DNA-copper-oxygen complex rather than free hydroxyl radical induced the DNA damage. Formation of 8-oxodG by quercetin increased extensively in the presence of Cu(II), whereas 8-oxodG formation by kaempferol or luteolin increased only slightly. This study suggests a good relationship between carcinogenicity and oxidative DNA damage of three flavonoids. The mechanism of DNA damage by quercetin was discussed in relation to the safety in cancer chemoprevention by flavonoids.
Collapse
|
|
26 |
132 |
13
|
van der Woude H, Boersma MG, Vervoort J, Rietjens IMCM. Identification of 14 Quercetin Phase II Mono- and Mixed Conjugates and Their Formation by Rat and Human Phase II in Vitro Model Systems. Chem Res Toxicol 2004; 17:1520-30. [PMID: 15540950 DOI: 10.1021/tx049826v] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, the HPLC, UV-vis, LC-MS, and 1H NMR characteristics of 14 different phase II mono- and mixed conjugates of quercetin were determined, providing a useful tool in the identification of quercetin phase II metabolite patterns in various biological systems. Using these data, the phase II metabolism of quercetin by different rat and human liver and intestine in vitro models, including cell lines, S9 samples, and hepatocytes, was investigated. A comparison of quercetin phase II metabolism between rat and human liver and intestinal cell lines, S9, and hepatocytes showed considerable variation in the nature and ratios of quercetin conjugate formation. It could be established that the intestine contributes significantly to the phase II metabolism of quercetin, especially to its sulfation, that organ-dependent phase II metabolism in rat and man differ significantly, and that human interindividual variation is higher for quercetin sulfation than for glucuronidation or methylation. Furthermore, quercetin conjugation by different in vitro models from corresponding origins may differ significantly. The identification of the various mono- and mixed quercetin phase II conjugates revealed significant differences in phase II conjugation by a variety of in vitro models and led to the conclusion that none of the in vitro models converted quercetin to a phase II metabolite mixture similar to the in vivo plasma metabolite pattern of quercetin. Altogether, the identification of a wide range of phase II metabolites of quercetin as presented in this study allows the determination of quercetin phase II biotransformation patterns and opens the way for a better-funded assessment of the biological activity of quercetin in a variety of biological systems.
Collapse
|
|
21 |
131 |
14
|
Czeczot H, Tudek B, Kusztelak J, Szymczyk T, Dobrowolska B, Glinkowska G, Malinowski J, Strzelecka H. Isolation and studies of the mutagenic activity in the Ames test of flavonoids naturally occurring in medical herbs. Mutat Res 1990; 240:209-16. [PMID: 2179716 DOI: 10.1016/0165-1218(90)90060-f] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Quercetin, rhamnetin, isohamnetin, apigenin and luteolin were isolated from medicinal herbs: Erigeron canadensis L., Anthyllis vulneraria L. and Pyrola chloranta L. The mutagenicity of these naturally occurring flavonoids was tested by the Ames method with S. typhimurium strains TA1535, TA1538, TA97, TA98, TA100 and TA102 in the presence and absence of metabolic activation. Of the above flavonoids only quercetin and rhamnetin revealed mutagenic activity in the Ames test. Quercetin induced point mutations in strains TA97, TA98, TA100 and TA102 of S. typhimurium. The presence of S9 rat liver microsome fraction markedly enhanced the mutagenic activity of quercetin in these strains. Rhamnetin appeared to be a much weaker mutagen in the Ames test. The compound induced mutations in strains TA97, TA98 and TA100 of S. typhimurium but only in the presence of metabolic activation. Comparison of the structure of the studied flavonoids with their mutagenic activity indicates that the mutagenicity of flavonoids is dependent on the presence of hydroxyl groups in the 3' and 4' positions of the B ring, and that the presence of a free hydroxy or methoxy group in the 7 position of the A ring also probably contributes to the appearance of mutagenic activity of flavonoids in the Ames test. It also appeared that the presence of methoxy groups, particularly in the B ring of the flavonoid molecule, markedly decreases the mutagenic activity of the compound.
Collapse
|
|
35 |
113 |
15
|
Gao X, Wang B, Wei X, Men K, Zheng F, Zhou Y, Zheng Y, Gou M, Huang M, Guo G, Huang N, Qian Z, Wei Y. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. NANOSCALE 2012; 4:7021-30. [PMID: 23044718 DOI: 10.1039/c2nr32181e] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Encapsulation of hydrophobic agents in polymer micelles can improve the water solubility of cargos, contributing to develop novel drugs. Quercetin (QU) is a hydrophobic agent with potential anticancer activity. In this work, we encapsulated QU into biodegradable monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles and tried to provide proof-of-principle for treating ovarian cancer with this nano-formulation of quercetin. These QU loaded MPEG-PCL (QU/MPEG-PCL) micelles with drug loading of 6.9% had a mean particle size of 36 nm, rendering the complete dispersion of quercetin in water. QU inhibited the growth of A2780S ovarian cancer cells on a dose dependent manner in vitro. Intravenous administration of QU/MPEG-PCL micelles significantly suppressed the growth of established xenograft A2780S ovarian tumors through causing cancer cell apoptosis and inhibiting angiogenesis in vivo. Furthermore, the anticancer activity of quercetin on ovarian cancer cells was studied in vitro. Quercetin treatment induced the apoptosis of A2780S cells associated with activating caspase-3 and caspase-9. MCL-1 downregulation, Bcl-2 downregulation, Bax upregulation and mitochondrial transmembrane potential change were observed, suggesting that quercetin may induce apoptosis of A2780S cells through the mitochondrial apoptotic pathway. Otherwise, quercetin treatment decreased phosphorylated p44/42 mitogen-activated protein kinase and phosphorylated Akt, contributing to inhibition of A2780S cell proliferation. Our data suggested that QU/MPEG-PCL micelles were a novel nano-formulation of quercetin with a potential clinical application in ovarian cancer therapy.
Collapse
|
|
13 |
110 |
16
|
Carver JH, Carrano AV, MacGregor JT. Genetic effects of the flavonols quercetin, kaempferol, and galangin on Chinese hamster ovary cells in vitro. Mutat Res 1983; 113:45-60. [PMID: 6828043 DOI: 10.1016/0165-1161(83)90240-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The genotoxicity of selected flavonols was evaluated by multiple endpoints in Chinese hamster ovary (CHO) cells. Chromosomal aberrations, sister-chromatid exchange (SCE), and forward mutation at 4 gene loci were measured in a single population of cells exposed to quercetin, kaempferol, or galangin for 15 h with and without metabolic activation. The incidence of chromosomal aberrations was significantly increased by quercetin in the absence of activation and by kaempferol and galangin with and without activation. Flavonol treatment affected SCE and mutation at the hgprt, aprt, or Na+/K+-ATPase loci only marginally, but significantly increased mutation frequencies at the tk locus. The response at the tk locus suggests that the CHO cells may behave similarly to L5178Y cells, in which the tk locus is thought to reflect chromosomal lesions in addition to point mutation. These results indicate that, at least under the conditions examined, flavonols induce chromosomal aberrations in CHO cells, but have little effect on point mutation or SCE.
Collapse
|
|
42 |
93 |
17
|
Canivenc-Lavier MC, Vernevaut MF, Totis M, Siess MH, Magdalou J, Suschetet M. Comparative effects of flavonoids and model inducers on drug-metabolizing enzymes in rat liver. Toxicology 1996; 114:19-27. [PMID: 8931757 DOI: 10.1016/s0300-483x(96)03412-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The inducing effects of some flavonoids (flavone, flavanone, tangeretin and quercetin) and model substances have been studied in rats, and the activity and the expression of drug-metabolizing enzymes have been compared in rats. The addition of flavonoids to the diet (0.3% w/w) for 2 weeks did not change the liver cytochrome P450 content nor the activities of the NADPH-cytochrome P450 and NADH-cytochrome b5 reductases, but it affected the activities of phase I and phase II enzymes. Flavone, and to a lesser extent tangeretin, increased the activities mediated by the P450 1A1,2 (EROD) and 2B1,2 (PROD) as well as the activities of p-nitrophenol UDP-glucuronyl transferase (UGT) and glutathione transferase (GST). Flavanone mainly enhanced PROD, UGT and GST, whereas quercetin did not modify any enzyme activities. None of the tested flavonoids modulated the activities catalyzed by P450 2E1, 3A and 4A. Immunoblotting studies showed that flavone and tangeretin increased the expression of cytochrome P450 1A and 2B forms, whereas flavanone only induced cytochrome P450 2B. Flavone and to a lesser extent flavanone, markedly increased the phenol-UGT protein level. Both flavone and flavanone also increased the androsterone- and testosterone-UGTs, whereas tangeretin and quercetin did not increase any UGT isoform. We concluded that the flavonoids tested specifically affected the expression of the drug-metabolizing isozymes in rat liver, their inducing properties were dependent on their chemical structures.
Collapse
|
Comparative Study |
29 |
91 |
18
|
Morino K, Matsukara N, Kawachi T, Ohgaki H, Sugimura T, Hirono I. Carcinogenicity test of quercetin and rutin in golden hamsters by oral administration. Carcinogenesis 1982; 3:93-7. [PMID: 7067042 DOI: 10.1093/carcin/3.1.93] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Quercetin and its glycoside, rutin were tested for carcinogenicity in non-inbred golden hamsters of both sexes. In Experiment I, 10% quercetin, 10% rutin, or control diet was given to animals for 735 days. In this experiment, tumors appeared mainly in the forestomach, but the incidence was not statistically different among the three groups. Quercetin and rutin were not carcinogenic under these conditions. In Experiment II, Group 1 was given 4% quercetin diet for 709 days. Group 2 was given 1% quercetin diet for 351 days and then the basal diet for 350 days. Group 3 was given 1% quercetin diet and then 1% croton oil diet and Group 4 was given the basal diet followed by 1% croton oil diet, for the same periods as Group 2. Group 5 was given the basal diet for 701 days. In Experiment II, papillomas of the forestomach appeared in Groups 1, 2, and 5, and papillomatosis in Group 3 and 4. There were no statistical differences among experimental groups and respective controls. Thus, quercetin was not carcinogenic when given at the concentrations of 4% and 1%; even with the administration of 1% croton oil after 1% quercetin, there was no increase in tumor incidence.
Collapse
|
|
43 |
90 |
19
|
Saito D, Shirai A, Matsushima T, Sugimura T, Hirono I. Test of carcinogenicity of quercetin, a widely distributed mutagen in food. TERATOGENESIS, CARCINOGENESIS, AND MUTAGENESIS 1981; 1:213-21. [PMID: 6119812 DOI: 10.1002/tcm.1770010209] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The carcinogenicity of quercetin, a flavonol, was tested in six-week-old ddY mice of both sexes. Groups of 38 males and 35 females were given pellet diet containing 2% quercetin throughout their life span. As controls, 16 males and 15 females were given basal diet. Animals in both test and control groups developed leukemia and tumors of the lung, forestomach, mammary gland, adrenal, and soft part tissues. In addition, some animals in groups treated with quercetin developed tumors of the heart, liver, salivary gland, ovary, and uterus. The incidences of these tumors in test and control groups were not statistically different.
Collapse
|
|
44 |
88 |
20
|
Pasetto S, Pardi V, Murata RM. Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model. PLoS One 2014; 9:e115323. [PMID: 25546350 PMCID: PMC4278898 DOI: 10.1371/journal.pone.0115323] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 11/23/2014] [Indexed: 11/18/2022] Open
Abstract
HIV infection by sexual transmission remains an enormous global health concern. More than 1 million new infections among women occur annually. Microbicides represent a promising prevention strategy that women can easily control. Among emerging therapies, natural small molecules such as flavonoids are an important source of new active substances. In this study we report the in vitro cytotoxicity and anti-HIV-1 and microbicide activity of the following flavonoids: Myricetin, Quercetin and Pinocembrin. Cytotoxicity tests were conducted on TZM-bl, HeLa, PBMC, and H9 cell cultures using 0.01-100 µM concentrations. Myricetin presented the lowest toxic effect, with Quercetin and Pinocembrin relatively more toxic. The anti-HIV-1 activity was tested with TZM-bl cell plus HIV-1 BaL (R5 tropic), H9 and PBMC cells plus HIV-1 MN (X4 tropic), and the dual tropic (X4R5) HIV-1 89.6. All flavonoids showed anti-HIV activity, although Myricetin was more effective than Quercetin or Pinocembrin. In TZM-bl cells, Myricetin inhibited ≥90% of HIV-1 BaL infection. The results were confirmed by quantification of HIV-1 p24 antigen in supernatant from H9 and PBMC cells following flavonoid treatment. In H9 and PBMC cells infected by HIV-1 MN and HIV-1 89.6, Myricetin showed more than 80% anti-HIV activity. Quercetin and Pinocembrin presented modest anti-HIV activity in all experiments. Myricetin activity was tested against HIV-RT and inhibited the enzyme by 49%. Microbicide activities were evaluated using a dual-chamber female genital tract model. In the in vitro microbicide activity model, Myricetin showed promising results against different strains of HIV-1 while also showing insignificant cytotoxic effects. Further studies of Myricetin should be performed to identify its molecular targets in order to provide a solid biological foundation for translational research.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
86 |
21
|
Sahu SC, Gray GC. Pro-oxidant activity of flavonoids: effects on glutathione and glutathione S-transferase in isolated rat liver nuclei. Cancer Lett 1996; 104:193-6. [PMID: 8665487 DOI: 10.1016/0304-3835(96)04251-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effects of three representative flavonoids, quercetin, myricetin and kaempferol, on the nuclear antioxidant defense glutathione (GSH) and glutathione S-transferase (GST) were investigated in a model system of isolated rat liver nuclei. The three flavonoids induced a concentration-dependent decrease of both the nuclear GSH content and GST activity. Myricetin, which has the maximum number of hydroxyl groups, was the most active. The results demonstrate the pro-oxidant activity of these polyphenolic flavonoids. The impairment of the nuclear antioxidant defense GSH and GST by the polyphenolic flavonoids can lead to oxidative DNA damage, which may be responsible for their mutagenicity.
Collapse
|
|
29 |
84 |
22
|
da Silva J, Herrmann SM, Heuser V, Peres W, Possa Marroni N, González-Gallego J, Erdtmann B. Evaluation of the genotoxic effect of rutin and quercetin by comet assay and micronucleus test. Food Chem Toxicol 2002; 40:941-7. [PMID: 12065216 DOI: 10.1016/s0278-6915(02)00015-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Flavonoids are phenolic compounds, naturally found in vegetables, tea and red wines. A recent study has demonstrated that the flavonoids rutin and quercetin show a protective role against the deleterious effects of free radicals in cirrhotic rats. Considering this finding and the controversial results concerning the mutagenicity of rutin and quercetin recorded in the literature, the capacity of these flavonoids to cause damage to the DNA was evaluated using the alkaline single-cell gel electrophoresis (SCG) and micronucleus test in the bone marrow of mice. The doses for both compounds were 2 x 2500, 2 x 1250 and 2 x 625 mg/kg. Micronucleus test showed that rutin caused no damage to the DNA of the mice bone marrow cells, and the SCG assay demonstrated an increase of damage only at the dose of 2 x 1250 mg/kg. But when the mice cells of the three quercetin doses were compared with the negative control, significantly higher damage was observed by SCG assay, although not proportional to the dose. The micronucleus test also demonstrated a significant increase of damage, but only at the 2 x 1250 mg/kg dose. Considering the results obtained in this study with very high doses, it is unlikely that the consumption of rutin and quercetin produces any clastogenic effects. Our results also indicated that SCG could profitably be used in drug genotoxicity evaluation protocols.
Collapse
|
Evaluation Study |
23 |
84 |
23
|
Yamashita N, Kawanishi S. Distinct mechanisms of DNA damage in apoptosis induced by quercetin and luteolin. Free Radic Res 2000; 33:623-33. [PMID: 11200093 DOI: 10.1080/10715760000301141] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Quercetin has been reported to have carcinogenic effects. However, both quercetin and luteolin have anti-cancer activity. To clarify the mechanism underlying the carcinogenic effects of quercetin, we compared DNA damage occurring during apoptosis induced by quercetin with that occuring during apoptosis induced by luteolin. Both quercetin and luteolin similarly induced DNA cleavage with subsequent DNA ladder formation, characteristics of apoptosis, in HL-60 cells. In HP 100 cells, an H2O2-resistant clone of HL-60 cells, the extent of DNA cleavage and DNA ladder formation induced by quercetin was less than that in HL-60 cells, whereas differences between the two cell types were minimal after treatment with luteolin. In addition, quercetin increased the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in HL-60 cells but not in HP 100 cells. Luteolin did not increase 8-oxodG formation, but inhibited topoisomerase II (topo II) activity of nuclear extract more strongly than quercetin and cleaved DNA by forming a luteolin-topo II-DNA ternary complex. These results suggest that quercetin induces H2O2-mediated DNA damage, resulting in apoptosis or mutations, whereas luteolin induces apoptosis via topo II-mediated DNA cleavage. The H2O2-mediated DNA damage may be related to the carcinogenic effects of quercetin.
Collapse
|
|
25 |
81 |
24
|
|
Review |
31 |
78 |
25
|
Caltagirone S, Ranelletti FO, Rinelli A, Maggiano N, Colasante A, Musiani P, Aiello FB, Piantelli M. Interaction with type II estrogen binding sites and antiproliferative activity of tamoxifen and quercetin in human non-small-cell lung cancer. Am J Respir Cell Mol Biol 1997; 17:51-9. [PMID: 9224209 DOI: 10.1165/ajrcmb.17.1.2728] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The antiestrogen tamoxifen is thought to antagonize the effects of estrogens by competing with them for estrogen receptor (ER) binding. However, tarnoxifen can also reverse multidrug resistance, synergize with cisplatin cytotoxicity, and inhibit growth in ER-negative lung cancer cells. In addition to ERs, rat and human target tissues contain a second binding macromolecule termed the type II estrogen binding site (type II EBS). It has been shown that tamoxifen and flavonoids, a widely distributed class of natural substances with a variety of biologic actions, bind to type II EBS and inhibit the growth of several tumor cell types. At present, conflicting data about ERs and an absence of data about type II EBSs exist for lung tumors. We have tested non-small-cell lung carcinoma cell lines and primary tumor cells for the presence of ERs and type II EBSs and have evaluated the effects of tamoxifen and quercetin (pentahydroxyflavone) on the growth of these cells. Using a whole-cell assay and nuclear and cytosolic radiobinding experiments with [3H]estradiol as tracer, we have found that SK-LU1, SW900, ChaGo-K-1, H441, H661, and A549 cells, as well as primary tumors, bind estrogen specifically. This binding results mainly from the presence of a large number of type II EBSs, whereas ERs are absent or present at low concentrations. Type II EBSs bound tamoxifen and quercetin with similar affinity. Cell counts and a thymidine incorporation assay showed that both compounds inhibit cell growth in a concentration-dependent manner at concentrations ranging from 10 nM to 1 microM. Neither ipriflavone, an isoflavone, nor rutin, the 3-rhamnosylglucoside of quercetin, bound type II EBSs or inhibited cell growth. These findings suggest that tamoxifen and quercetin could regulate lung cancer cell growth through a binding interaction with type II EBSs. This mechanism could also be active in vivo, in that we have observed that nuclear and cytosolic type II EBSs were present in all primary lung cancers tested (n = 12), and that tamoxifen and quercetin were effective in inhibiting in vitro bromodeoxyuridine (BrdU) incorporation and proliferation-cell nuclear antigen expression by neoplastic cells in these cancers.
Collapse
|
|
28 |
72 |