1
|
Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001; 98:5116-21. [PMID: 11309499 PMCID: PMC33173 DOI: 10.1073/pnas.091062498] [Citation(s) in RCA: 9115] [Impact Index Per Article: 379.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Microarrays can measure the expression of thousands of genes to identify changes in expression between different biological states. Methods are needed to determine the significance of these changes while accounting for the enormous number of genes. We describe a method, Significance Analysis of Microarrays (SAM), that assigns a score to each gene on the basis of change in gene expression relative to the standard deviation of repeated measurements. For genes with scores greater than an adjustable threshold, SAM uses permutations of the repeated measurements to estimate the percentage of genes identified by chance, the false discovery rate (FDR). When the transcriptional response of human cells to ionizing radiation was measured by microarrays, SAM identified 34 genes that changed at least 1.5-fold with an estimated FDR of 12%, compared with FDRs of 60 and 84% by using conventional methods of analysis. Of the 34 genes, 19 were involved in cell cycle regulation and 3 in apoptosis. Surprisingly, four nucleotide excision repair genes were induced, suggesting that this repair pathway for UV-damaged DNA might play a previously unrecognized role in repairing DNA damaged by ionizing radiation.
Collapse
|
research-article |
24 |
9115 |
2
|
Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. INTERNATIONAL REVIEW OF CYTOLOGY 1980; 68:251-306. [PMID: 7014501 DOI: 10.1016/s0074-7696(08)62312-8] [Citation(s) in RCA: 4835] [Impact Index Per Article: 107.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
Review |
45 |
4835 |
3
|
Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, Parker L, Berrington de González A. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 2012; 380:499-505. [PMID: 22681860 PMCID: PMC3418594 DOI: 10.1016/s0140-6736(12)60815-0] [Citation(s) in RCA: 2621] [Impact Index Per Article: 201.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although CT scans are very useful clinically, potential cancer risks exist from associated ionising radiation, in particular for children who are more radiosensitive than adults. We aimed to assess the excess risk of leukaemia and brain tumours after CT scans in a cohort of children and young adults. METHODS In our retrospective cohort study, we included patients without previous cancer diagnoses who were first examined with CT in National Health Service (NHS) centres in England, Wales, or Scotland (Great Britain) between 1985 and 2002, when they were younger than 22 years of age. We obtained data for cancer incidence, mortality, and loss to follow-up from the NHS Central Registry from Jan 1, 1985, to Dec 31, 2008. We estimated absorbed brain and red bone marrow doses per CT scan in mGy and assessed excess incidence of leukaemia and brain tumours cancer with Poisson relative risk models. To avoid inclusion of CT scans related to cancer diagnosis, follow-up for leukaemia began 2 years after the first CT and for brain tumours 5 years after the first CT. FINDINGS During follow-up, 74 of 178,604 patients were diagnosed with leukaemia and 135 of 176,587 patients were diagnosed with brain tumours. We noted a positive association between radiation dose from CT scans and leukaemia (excess relative risk [ERR] per mGy 0·036, 95% CI 0·005-0·120; p=0·0097) and brain tumours (0·023, 0·010-0·049; p<0·0001). Compared with patients who received a dose of less than 5 mGy, the relative risk of leukaemia for patients who received a cumulative dose of at least 30 mGy (mean dose 51·13 mGy) was 3·18 (95% CI 1·46-6·94) and the relative risk of brain cancer for patients who received a cumulative dose of 50-74 mGy (mean dose 60·42 mGy) was 2·82 (1·33-6·03). INTERPRETATION Use of CT scans in children to deliver cumulative doses of about 50 mGy might almost triple the risk of leukaemia and doses of about 60 mGy might triple the risk of brain cancer. Because these cancers are relatively rare, the cumulative absolute risks are small: in the 10 years after the first scan for patients younger than 10 years, one excess case of leukaemia and one excess case of brain tumour per 10,000 head CT scans is estimated to occur. Nevertheless, although clinical benefits should outweigh the small absolute risks, radiation doses from CT scans ought to be kept as low as possible and alternative procedures, which do not involve ionising radiation, should be considered if appropriate. FUNDING US National Cancer Institute and UK Department of Health.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
2621 |
4
|
Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421:499-506. [PMID: 12556884 DOI: 10.1038/nature01368] [Citation(s) in RCA: 2556] [Impact Index Per Article: 116.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2002] [Accepted: 12/16/2002] [Indexed: 02/06/2023]
Abstract
The ATM protein kinase, mutations of which are associated with the human disease ataxia-telangiectasia, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer or higher-order multimer, with the kinase domain bound to a region surrounding serine 1981 that is contained within the previously described 'FAT' domain. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. Most ATM molecules in the cell are rapidly phosphorylated on this site after doses of radiation as low as 0.5 Gy, and binding of a phosphospecific antibody is detectable after the introduction of only a few DNA double-strand breaks in the cell. Activation of the ATM kinase seems to be an initiating event in cellular responses to irradiation, and our data indicate that ATM activation is not dependent on direct binding to DNA strand breaks, but may result from changes in the structure of chromatin.
Collapse
|
|
22 |
2556 |
5
|
Abstract
The function of the ATR (ataxia-telangiectasia mutated- and Rad3-related)-ATRIP (ATR-interacting protein) protein kinase complex is crucial for the cellular response to replication stress and DNA damage. Here, we show that replication protein A (RPA), a protein complex that associates with single-stranded DNA (ssDNA), is required for the recruitment of ATR to sites of DNA damage and for ATR-mediated Chk1 activation in human cells. In vitro, RPA stimulates the binding of ATRIP to ssDNA. The binding of ATRIP to RPA-coated ssDNA enables the ATR-ATRIP complex to associate with DNA and stimulates phosphorylation of the Rad17 protein that is bound to DNA. Furthermore, Ddc2, the budding yeast homolog of ATRIP, is specifically recruited to double-strand DNA breaks in an RPA-dependent manner. A checkpoint-deficient mutant of RPA, rfa1-t11, is defective for recruiting Ddc2 to ssDNA both in vivo and in vitro. Our data suggest that RPA-coated ssDNA is the critical structure at sites of DNA damage that recruits the ATR-ATRIP complex and facilitates its recognition of substrates for phosphorylation and the initiation of checkpoint signaling.
Collapse
|
|
22 |
2116 |
6
|
Wang CY, Mayo MW, Baldwin AS. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 1996; 274:784-7. [PMID: 8864119 DOI: 10.1126/science.274.5288.784] [Citation(s) in RCA: 2067] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many cells are resistant to stimuli that can induce apoptosis, but the mechanisms involved are not fully understood. The activation of the transcription factor nuclear factor-kappa B (NF-kappaB) by tumor necrosis factor (TNF), ionizing radiation, or daunorubicin (a cancer chemotherapeutic compound), was found to protect from cell killing. Inhibition of NF-kappaB nuclear translocation enhanced apoptotic killing by these reagents but not by apoptotic stimuli that do not activate NF-kappaB. These results provide a mechanism of cellular resistance to killing by some apoptotic reagents, offer insight into a new role for NF-kappaB, and have potential for improvement of the efficacy of cancer therapies.
Collapse
|
|
29 |
2067 |
7
|
Abstract
The loss of chromosomal integrity from DNA double-strand breaks introduced into mammalian cells by ionizing radiation results in the specific phosphorylation of histone H2AX on serine residue 139, yielding a specific modified form named gamma-H2AX. An antibody prepared to the unique region of human gamma-H2AX shows that H2AX homologues are phosphorylated not only in irradiated mammalian cells but also in irradiated cells from other species, including Xenopus laevis, Drosophila melanogaster, and Saccharomyces cerevisiae. The antibody reveals that gamma-H2AX appears as discrete nuclear foci within 1 min after exposure of cells to ionizing radiation. The numbers of these foci are comparable to the numbers of induced DNA double-strand breaks. When DNA double-strand breaks are introduced into specific partial nuclear volumes of cells by means of a pulsed microbeam laser, gamma-H2AX foci form at these sites. In mitotic cells from cultures exposed to nonlethal amounts of ionizing radiation, gamma-H2AX foci form band-like structures on chromosome arms and on the end of broken arms. These results offer direct visual confirmation that gamma-H2AX forms en masse at chromosomal sites of DNA double-strand breaks. The results further suggest the possible existence of units of higher order chromatin structure involved in monitoring DNA integrity.
Collapse
|
research-article |
26 |
1940 |
8
|
Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu YX. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 2014; 124:687-95. [PMID: 24382348 DOI: 10.1172/jci67313] [Citation(s) in RCA: 1635] [Impact Index Per Article: 148.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022] Open
Abstract
High-dose ionizing irradiation (IR) results in direct tumor cell death and augments tumor-specific immunity, which enhances tumor control both locally and distantly. Unfortunately, local relapses often occur following IR treatment, indicating that IR-induced responses are inadequate to maintain antitumor immunity. Therapeutic blockade of the T cell negative regulator programmed death-ligand 1 (PD-L1, also called B7-H1) can enhance T cell effector function when PD-L1 is expressed in chronically inflamed tissues and tumors. Here, we demonstrate that PD-L1 was upregulated in the tumor microenvironment after IR. Administration of anti-PD-L1 enhanced the efficacy of IR through a cytotoxic T cell-dependent mechanism. Concomitant with IR-mediated tumor regression, we observed that IR and anti-PD-L1 synergistically reduced the local accumulation of tumor-infiltrating myeloid-derived suppressor cells (MDSCs), which suppress T cells and alter the tumor immune microenvironment. Furthermore, activation of cytotoxic T cells with combination therapy mediated the reduction of MDSCs in tumors through the cytotoxic actions of TNF. Our data provide evidence for a close interaction between IR, T cells, and the PD-L1/PD-1 axis and establish a basis for the rational design of combination therapy with immune modulators and radiotherapy.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
1635 |
9
|
Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, Li XD, Mauceri H, Beckett M, Darga T, Huang X, Gajewski TF, Chen ZJ, Fu YX, Weichselbaum RR. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity 2014; 41:843-52. [PMID: 25517616 DOI: 10.1016/j.immuni.2014.10.019] [Citation(s) in RCA: 1527] [Impact Index Per Article: 138.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
Ionizing radiation-mediated tumor regression depends on type I interferon (IFN) and the adaptive immune response, but several pathways control I IFN induction. Here, we demonstrate that adaptor protein STING, but not MyD88, is required for type I IFN-dependent antitumor effects of radiation. In dendritic cells (DCs), STING was required for IFN-? induction in response to irradiated-tumor cells. The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) mediated sensing of irradiated-tumor cells in DCs. Moreover, STING was essential for radiation-induced adaptive immune responses, which relied on type I IFN signaling on DCs. Exogenous IFN-? treatment rescued the cross-priming by cGAS or STING-deficient DCs. Accordingly, activation of STING by a second messenger cGAMP administration enhanced antitumor immunity induced by radiation. Thus radiation-mediated antitumor immunity in immunogenic tumors requires a functional cytosolic DNA-sensing pathway and suggests that cGAMP treatment might provide a new strategy to improve radiotherapy.
Collapse
MESH Headings
- Adaptive Immunity
- Adaptor Proteins, Vesicular Transport/genetics
- Animals
- Antineoplastic Agents/pharmacology
- Cells, Cultured
- Cross-Priming/immunology
- DNA/immunology
- Dendritic Cells/immunology
- Immunity, Innate
- Interferon-beta/biosynthesis
- Interferon-beta/immunology
- Interferon-beta/pharmacology
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Differentiation Factor 88/genetics
- Neoplasms/immunology
- Neoplasms/radiotherapy
- Nucleotides, Cyclic/pharmacology
- Nucleotidyltransferases/immunology
- RNA Interference
- RNA, Small Interfering
- Radiation, Ionizing
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/immunology
- Signal Transduction/immunology
- Xanthones/pharmacology
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
1527 |
10
|
Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 1998; 281:1677-9. [PMID: 9733515 DOI: 10.1126/science.281.5383.1677] [Citation(s) in RCA: 1516] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The p53 tumor suppressor protein is activated and phosphorylated on serine-15 in response to various DNA damaging agents. The gene product mutated in ataxia telangiectasia, ATM, acts upstream of p53 in a signal transduction pathway initiated by ionizing radiation. Immunoprecipitated ATM had intrinsic protein kinase activity and phosphorylated p53 on serine-15 in a manganese-dependent manner. Ionizing radiation, but not ultraviolet radiation, rapidly enhanced this p53-directed kinase activity of endogenous ATM. These observations, along with the fact that phosphorylation of p53 on serine-15 in response to ionizing radiation is reduced in ataxia telangiectasia cells, suggest that ATM is a protein kinase that phosphorylates p53 in vivo.
Collapse
|
|
27 |
1516 |
11
|
Boudaïffa B, Cloutier P, Hunting D, Huels MA, Sanche L. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 2000; 287:1658-60. [PMID: 10698742 DOI: 10.1126/science.287.5458.1658] [Citation(s) in RCA: 1263] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Most of the energy deposited in cells by ionizing radiation is channeled into the production of abundant free secondary electrons with ballistic energies between 1 and 20 electron volts. Here it is shown that reactions of such electrons, even at energies well below ionization thresholds, induce substantial yields of single- and double-strand breaks in DNA, which are caused by rapid decays of transient molecular resonances localized on the DNA's basic components. This finding presents a fundamental challenge to the traditional notion that genotoxic damage by secondary electrons can only occur at energies above the onset of ionization, or upon solvation when they become a slowly reacting chemical species.
Collapse
|
|
25 |
1263 |
12
|
Stadtman ER. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 1993; 62:797-821. [PMID: 8352601 DOI: 10.1146/annurev.bi.62.070193.004053] [Citation(s) in RCA: 1043] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Basic mechanisms that underlie the oxygen free radical-promoted oxidation of free amino acids and amino acid residues of proteins are derived from radiolysis studies. Results of these studies indicate that the most common pathway for the oxidation of simple aliphatic amino acids involves the hydroxyl radical-mediated abstraction of a hydrogen atom to form a carbon-centered radical at the alpha-position of the amino acid or amino acid residue in the polypeptide chain. Addition of O2 to the carbon-centered radicals leads to formation of peroxy radical derivatives, which upon decomposition lead to production of NH3 and alpha-ketoacids, or to production of NH3, CO2, and aldehydes or carboxylic acids containing one less carbon atom. As the number of carbon atoms in the amino acid is increased, hydrogen abstraction at other positions in the carbon chain becomes more important and leads either to the formation of hydroxy derivatives, or to amino acid cross-linked products as a consequence of carbon-centered radical recombination processes. alpha-Hydrogen abstraction plays a minor role in the oxidation of aromatic amino acids by radiolysis. Instead, the aromatic ring is the primary site of attack leading to hydroxy derivatives, to ring scission, and in the case of tyrosine to the formation of Tyr-Tyr cross-linked dimers. The basic pattern for the oxidation of amino acids by metal ion-catalyzed reactions (Fenton chemistry) is similar to the alpha-hydrogen abstraction pathway. But unlike the case of oxidation by radiolysis, this Fenton pathway is the major mechanism for the oxidation of all aliphatic amino acids, regardless of chain length, as well as for the oxidation of aromatic amino acids. Curiously, the Fe(III)-catalyzed oxidation of free amino acids is almost completely dependent upon the presence of bicarbonate ion, and is greatly stimulated by iron chelators at chelator/Fe(III) ratios less than 1.0, and is inhibited at chelator/Fe(III) ratios greater than 1.0. It is deduced that the most active catalytic complex is composed of two equivalents of HCO3-, an amino acid, and at least one equivalent of iron; however, two forms of iron, an iron-chelate and another form, must somehow be involved. In contrast to the situation with radiolysis, the aromatic rings of aromatic amino acids are only minor targets for metal-catalyzed reactions. All amino acid residues in proteins are subject to attack by hydroxyl radicals generated by ionizing radiation; however, the aromatic amino acids and sulfur-containing amino acids are most sensitive to oxidation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
Review |
32 |
1043 |
13
|
Abstract
A number of mechanisms are responsible for the resistance of spores of Bacillus species to heat, radiation and chemicals and for spore killing by these agents. Spore resistance to wet heat is determined largely by the water content of spore core, which is much lower than that in the growing cell protoplast. A lower core water content generally gives more wet heat-resistant spores. The level and type of spore core mineral ions and the intrinsic stability of total spore proteins also play a role in spore wet heat resistance, and the saturation of spore DNA with alpha/beta-type small, acid-soluble spore proteins (SASP) protects DNA against wet heat damage. However, how wet heat kills spores is not clear, although it is not through DNA damage. The alpha/beta-type SASP are also important in spore resistance to dry heat, as is DNA repair in spore outgrowth, as Bacillus subtilis spores are killed by dry heat via DNA damage. Both UV and gamma-radiation also kill spores via DNA damage. The mechanism of spore resistance to gamma-radiation is not well understood, although the alpha/beta-type SASP are not involved. In contrast, spore UV resistance is due largely to an alteration in spore DNA photochemistry caused by the binding of alpha/beta-type SASP to the DNA, and to a lesser extent to the photosensitizing action of the spore core's large pool of dipicolinic acid. UV irradiation of spores at 254 nm does not generate the cyclobutane dimers (CPDs) and (6-4)-photoproducts (64PPs) formed between adjacent pyrimidines in growing cells, but rather a thymidyl-thymidine adduct termed spore photoproduct (SP). While SP is formed in spores with approximately the same quantum efficiency as that for generation of CPDs and 64PPs in growing cells, SP is repaired rapidly and efficiently in spore outgrowth by a number of repair systems, at least one of which is specific for SP. Some chemicals (e.g. nitrous acid, formaldehyde) again kill spores by DNA damage, while others, in particular oxidizing agents, appear to damage the spore's inner membrane so that this membrane ruptures upon spore germination and outgrowth. There are also other agents such as glutaraldehyde for which the mechanism of spore killing is unclear. Factors important in spore chemical resistance vary with the chemical, but include: (i) the spore coat proteins that likely react with and detoxify chemical agents; (ii) the relative impermeability of the spore's inner membrane that restricts access of exogenous chemicals to the spore core; (iii) the protection of spore DNA by its saturation with alpha/beta-type SASP; and (iv) DNA repair for agents that kill spores via DNA damage. Given the importance of the killing of spores of Bacillus species in the food and medical products industry, a deeper understanding of the mechanisms of spore resistance and killing may lead to improved methods for spore destruction.
Collapse
|
Review |
18 |
953 |
14
|
Fazel R, Krumholz HM, Wang Y, Ross JS, Chen J, Ting HH, Shah ND, Nasir K, Einstein AJ, Nallamothu BK. Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med 2009; 361:849-57. [PMID: 19710483 PMCID: PMC3707303 DOI: 10.1056/nejmoa0901249] [Citation(s) in RCA: 949] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The growing use of imaging procedures in the United States has raised concerns about exposure to low-dose ionizing radiation in the general population. METHODS We identified 952,420 nonelderly adults (between 18 and 64 years of age) in five health care markets across the United States between January 1, 2005, and December 31, 2007. Utilization data were used to estimate cumulative effective doses of radiation from imaging procedures and to calculate population-based rates of exposure, with annual effective doses defined as low (< or = 3 mSv), moderate (> 3 to 20 mSv), high (> 20 to 50 mSv), or very high (> 50 mSv). RESULTS During the study period, 655,613 enrollees (68.8%) underwent at least one imaging procedure associated with radiation exposure. The mean (+/-SD) cumulative effective dose from imaging procedures was 2.4+/-6.0 mSv per enrollee per year; however, a wide distribution was noted, with a median effective dose of 0.1 mSv per enrollee per year (interquartile range, 0.0 to 1.7). Overall, moderate effective doses of radiation were incurred in 193.8 enrollees per 1000 per year, whereas high and very high doses were incurred in 18.6 and 1.9 enrollees per 1000 per year, respectively. In general, cumulative effective doses of radiation from imaging procedures increased with advancing age and were higher in women than in men. Computed tomographic and nuclear imaging accounted for 75.4% of the cumulative effective dose, with 81.8% of the total administered in outpatient settings. CONCLUSIONS Imaging procedures are an important source of exposure to ionizing radiation in the United States and can result in high cumulative effective doses of radiation.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
949 |
15
|
Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1988; 35:95-125. [PMID: 3065826 DOI: 10.1016/s0079-6603(08)60611-x] [Citation(s) in RCA: 940] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
Review |
37 |
940 |
16
|
Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, Grompe M, D'Andrea AD. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 2001; 7:249-62. [PMID: 11239454 DOI: 10.1016/s1097-2765(01)00173-3] [Citation(s) in RCA: 927] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fanconi anemia (FA) is a human autosomal recessive cancer susceptibility disorder characterized by cellular sensitivity to mitomycin C and ionizing radiation. Although six FA genes (for subtypes A, C, D2, E, F, and G) have been cloned, their relationship to DNA repair remains unknown. In the current study, we show that a nuclear complex containing the FANCA, FANCC, FANCF, and FANCG proteins is required for the activation of the FANCD2 protein to a monoubiquitinated isoform. In normal (non-FA) cells, FANCD2 is monoubiquitinated in response to DNA damage and is targeted to nuclear foci (dots). Activated FANCD2 protein colocalizes with the breast cancer susceptibility protein, BRCA1, in ionizing radiation-induced foci and in synaptonemal complexes of meiotic chromosomes. The FANCD2 protein, therefore, provides the missing link between the FA protein complex and the cellular BRCA1 repair machinery. Disruption of this pathway results in the cellular and clinical phenotype common to all FA subtypes.
Collapse
|
|
24 |
927 |
17
|
Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR, Hays L, Morgan WF, Petrini JH. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 1998; 93:477-86. [PMID: 9590181 DOI: 10.1016/s0092-8674(00)81175-7] [Citation(s) in RCA: 926] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nijmegen breakage syndrome (NBS) is an autosomal recessive disorder characterized by increased cancer incidence, cell cycle checkpoint defects, and ionizing radiation sensitivity. We have isolated the gene encoding p95, a member of the hMre11/hRad50 double-strand break repair complex. The p95 gene mapped to 8q21.3, the region that contains the NBS locus, and p95 was absent from NBS cells established from NBS patients. p95 deficiency in these cells completely abrogates the formation of hMre11/hRad50 ionizing radiation-induced foci. Comparison of the p95 cDNA to the NBS1 cDNA indicated that the p95 gene and NBS1 are identical. The implication of hMre11/hRad50/p95 protein complex in NBS reveals a direct molecular link between DSB repair and cell cycle checkpoint functions.
Collapse
|
|
27 |
926 |
18
|
Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol 2005; 109:93-108. [PMID: 15685439 DOI: 10.1007/s00401-005-0991-y] [Citation(s) in RCA: 880] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 11/01/2004] [Indexed: 02/01/2023]
Abstract
Gliomas of astrocytic, oligodendroglial and ependymal origin account for more than 70% of all brain tumors. The most frequent (65%) and most malignant histological type is the glioblastoma. Since the introduction of computerized tomography and magnetic resonance imaging, the incidence rates of brain tumors have been rather stable, with a tendency of higher rates in highly developed, industrialized countries. Some reports indicate that Caucasians have higher incidence than black or Asian populations, but to some extent, this may reflect socio-economic differences and under-ascertainment in some regions, rather than a significant difference in genetic susceptibility. With the exception of pilocytic astrocytomas, the prognosis of glioma patients is still poor. Less than 3% of glioblastoma patients are still alive at 5 years after diagnosis, higher age being the most significant predictor of poor outcome. Brain tumors are a component of several inherited tumor syndromes, but the prevalence of these syndromes is very low. Several occupations, environmental carcinogens, and diet (N-nitroso compounds) have been reported to be associated with an elevated glioma risk, but the only environmental factor unequivocally associated with an increased risk of brain tumors, including gliomas, is therapeutic X-irradiation. In particular, children treated with X-irradiation for acute lymphoblastic leukemia show a significantly elevated risk of developing gliomas and primitive neuroectodermal tumor (PNET), often within 10 years after therapy. TP53 mutations are frequent in low-grade gliomas and secondary glioblastomas derived therefrom. Approximately 60% of mutations are located in the hot spot codons 248 and 273, and the majority of these are G:C-->A:T transitions at CpG sites. TP53 mutations are significantly more frequent in low-grade astrocytomas with promoter methylation of the O(6)-methylguanine-DNA methyltransferase repair gene, suggesting that, in addition to deamination of 5-methylcytosine, exogenous or endogenous alkylation in the O(6) position of guanine may contribute to the formation of these mutations.
Collapse
|
Review |
20 |
880 |
19
|
Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, Shore RE, Wallace WH. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012; 41:1-322. [PMID: 22925378 DOI: 10.1016/j.icrp.2012.02.001] [Citation(s) in RCA: 858] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of 'practical' threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40-50years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1-1.2, and in a few cases 1.5-2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating agents, anti-angiogenic drugs, and antibiotics, as well as genetic and comorbidity factors. Most tissues show a sparing effect of dose fractionation, so that total doses for a given endpoint are higher if the dose is fractionated rather than when given as a single dose. However, for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease, it appears that the rate of dose delivery does not modify the low incidence. This implies that the injury in these cases and at these low dose levels is caused by single-hit irreparable-type events. For these two tissues, a threshold dose of 0.5Gy is proposed herein for practical purposes, irrespective of the rate of dose delivery, and future studies may elucidate this judgement further.
Collapse
|
Review |
13 |
858 |
20
|
van Gent DC, Hoeijmakers JH, Kanaar R. Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2001; 2:196-206. [PMID: 11256071 DOI: 10.1038/35056049] [Citation(s) in RCA: 854] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome stability is of primary importance for the survival and proper functioning of all organisms. Double-stranded breaks in DNA are important threats to genome integrity because they can result in chromosomal aberrations that can affect, simultaneously, many genes, and lead to cell malfunctioning and cell death. These detrimental consequences are counteracted by two mechanistically distinct pathways of double-stranded break repair: homologous recombination and non-homologous end-joining. Recently, unexpected links between these double-stranded break-repair systems, and several human genome instability and cancer predisposition syndromes, have emerged. Now, interactions between both double-stranded break-repair pathways and other cellular processes, such as cell-cycle regulation and replication, are being unveiled.
Collapse
|
Review |
24 |
854 |
21
|
Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004; 59:928-42. [PMID: 15234026 DOI: 10.1016/j.ijrobp.2004.03.005] [Citation(s) in RCA: 783] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 03/01/2004] [Accepted: 03/08/2004] [Indexed: 02/09/2023]
Abstract
Multiple pathways are involved in maintaining the genetic integrity of a cell after its exposure to ionizing radiation. Although repair mechanisms such as homologous recombination and nonhomologous end-joining are important mammalian responses to double-strand DNA damage, cell cycle regulation is perhaps the most important determinant of ionizing radiation sensitivity. A common cellular response to DNA-damaging agents is the activation of cell cycle checkpoints. The DNA damage induced by ionizing radiation initiates signals that can ultimately activate either temporary checkpoints that permit time for genetic repair or irreversible growth arrest that results in cell death (necrosis or apoptosis). Such checkpoint activation constitutes an integrated response that involves sensor (RAD, BRCA, NBS1), transducer (ATM, CHK), and effector (p53, p21, CDK) genes. One of the key proteins in the checkpoint pathways is the tumor suppressor gene p53, which coordinates DNA repair with cell cycle progression and apoptosis. Specifically, in addition to other mediators of the checkpoint response (CHK kinases, p21), p53 mediates the two major DNA damage-dependent cellular checkpoints, one at the G(1)-S transition and the other at the G(2)-M transition, although the influence on the former process is more direct and significant. The cell cycle phase also determines a cell's relative radiosensitivity, with cells being most radiosensitive in the G(2)-M phase, less sensitive in the G(1) phase, and least sensitive during the latter part of the S phase. This understanding has, therefore, led to the realization that one way in which chemotherapy and fractionated radiotherapy may work better is by partial synchronization of cells in the most radiosensitive phase of the cell cycle. We describe how cell cycle and DNA damage checkpoint control relates to exposure to ionizing radiation.
Collapse
|
Review |
21 |
783 |
22
|
Falck J, Mailand N, Syljuåsen RG, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001; 410:842-7. [PMID: 11298456 DOI: 10.1038/35071124] [Citation(s) in RCA: 757] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
When exposed to ionizing radiation (IR), eukaryotic cells activate checkpoint pathways to delay the progression of the cell cycle. Defects in the IR-induced S-phase checkpoint cause 'radioresistant DNA synthesis', a phenomenon that has been identified in cancer-prone patients suffering from ataxia-telangiectasia, a disease caused by mutations in the ATM gene. The Cdc25A phosphatase activates the cyclin-dependent kinase 2 (Cdk2) needed for DNA synthesis, but becomes degraded in response to DNA damage or stalled replication. Here we report a functional link between ATM, the checkpoint signalling kinase Chk2/Cds1 (Chk2) and Cdc25A, and implicate this mechanism in controlling the S-phase checkpoint. We show that IR-induced destruction of Cdc25A requires both ATM and the Chk2-mediated phosphorylation of Cdc25A on serine 123. An IR-induced loss of Cdc25A protein prevents dephosphorylation of Cdk2 and leads to a transient blockade of DNA replication. We also show that tumour-associated Chk2 alleles cannot bind or phosphorylate Cdc25A, and that cells expressing these Chk2 alleles, elevated Cdc25A or a Cdk2 mutant unable to undergo inhibitory phosphorylation (Cdk2AF) fail to inhibit DNA synthesis when irradiated. These results support Chk2 as a candidate tumour suppressor, and identify the ATM-Chk2-Cdc25A-Cdk2 pathway as a genomic integrity checkpoint that prevents radioresistant DNA synthesis.
Collapse
|
|
24 |
757 |
23
|
Freund A, Laberge RM, Demaria M, Campisi J. Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell 2012; 23:2066-75. [PMID: 22496421 PMCID: PMC3364172 DOI: 10.1091/mbc.e11-10-0884] [Citation(s) in RCA: 712] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 12/30/2022] Open
Abstract
Cellular senescence is a potent tumor-suppressive mechanism that arrests cell proliferation and has been linked to aging. However, studies of senescence have been impeded by the lack of simple, exclusive biomarkers of the senescent state. Senescent cells develop characteristic morphological changes, which include enlarged and often irregular nuclei and chromatin reorganization. Because alterations to the nuclear lamina can affect both nuclear morphology and gene expression, we examined the nuclear lamina of senescent cells. We show here than lamin B1 is lost from primary human and murine cell strains when they are induced to senesce by DNA damage, replicative exhaustion, or oncogene expression. Lamin B1 loss did not depend on the p38 mitogen-activated protein kinase, nuclear factor-κB, ataxia telangiectasia-mutated kinase, or reactive oxygen species signaling pathways, which are positive regulators of senescent phenotypes. However, activation of either the p53 or pRB tumor suppressor pathway was sufficient to induce lamin B1 loss. Lamin B1 declined at the mRNA level via a decrease in mRNA stability rather than by the caspase-mediated degradation seen during apoptosis. Last, lamin B1 protein and mRNA declined in mouse tissue after senescence was induced by irradiation. Our findings suggest that lamin B1 loss can serve as biomarker of senescence both in culture and in vivo.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
712 |
24
|
Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J, MacLean KH, Han J, Chittenden T, Ihle JN, McKinnon PJ, Cleveland JL, Zambetti GP. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 2003; 4:321-8. [PMID: 14585359 DOI: 10.1016/s1535-6108(03)00244-7] [Citation(s) in RCA: 704] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Puma encodes a BH3-only protein that is induced by the p53 tumor suppressor and other apoptotic stimuli. To assess its physiological role in apoptosis, we generated Puma knockout mice by gene targeting. Here we report that Puma is essential for hematopoietic cell death triggered by ionizing radiation (IR), deregulated c-Myc expression, and cytokine withdrawal. Puma is also required for IR-induced death throughout the developing nervous system and accounts for nearly all of the apoptotic activity attributed to p53 under these conditions. These findings establish Puma as a principal mediator of cell death in response to diverse apoptotic signals, implicating Puma as a likely tumor suppressor.
Collapse
|
|
22 |
704 |
25
|
Roos WP, Kaina B. DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett 2012; 332:237-48. [PMID: 22261329 DOI: 10.1016/j.canlet.2012.01.007] [Citation(s) in RCA: 680] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/10/2012] [Indexed: 01/22/2023]
Abstract
DNA damaging agents are potent inducers of cell death triggered by apoptosis. Since these agents induce a plethora of different DNA lesions, it is firstly important to identify the specific lesions responsible for initiating apoptosis before the apoptotic executing pathways can be elucidated. Here, we describe specific DNA lesions that have been identified as apoptosis triggers, their repair and the signaling provoked by them. We discuss methylating agents such as temozolomide, ionizing radiation and cisplatin, all of them are important in cancer therapy. We show that the potentially lethal events for the cell are O(6)-methylguanine adducts that are converted by mismatch repair into DNA double-strand breaks (DSBs), non-repaired N-methylpurines and abasic sites as well as bulky adducts that block DNA replication leading to DSBs that are also directly induced following ionizing radiation. Transcriptional inhibition may also contribute to apoptosis. Cells are equipped with sensors that detect DNA damage and relay the signal via kinases to executors, who on their turn evoke a process that inhibits cell cycle progression and provokes DNA repair or, if this fails, activate the receptor and/or mitochondrial apoptotic cascade. The main DNA damage recognition factors MRN and the PI3 kinases ATM, ATR and DNA-PK, which phosphorylate a multitude of proteins and thus induce the DNA damage response (DDR), will be discussed as well as the downstream players p53, NF-κB, Akt and survivin. We review data and models describing the signaling from DNA damage to the apoptosis executing machinery and discuss the complex interplay between cell survival and death.
Collapse
|
Review |
13 |
680 |