1
|
Kraus KM, Bauer C, Steinhelfer L, Feuerecker B, Martins JC, Fischer JC, Borm KJ, Peeken JC, Bernhardt D, Combs SE. Pneumonitis after normofractionated radioimmunotherapy: a method for dosimetric evaluation. Radiat Oncol 2024; 19:169. [PMID: 39574136 PMCID: PMC11583538 DOI: 10.1186/s13014-024-02561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Post-Therapy-Pneumonitis (PTP) is a critical side effect of both, thoracic radio(chemo)therapy (R(C)T) and immune checkpoint inhibition (ICI). However, disease characteristics and patient-specific risk factors of PTP after combined R(C)T + ICI are less understood. Given that RT-triggered PTP is strongly dependent on the volume and dose of RT [1], driven by inflammatory mechanisms, we hypothesize that combination therapy of R(C)T with ICI influences the dose-volume-effect correlation for PTP. This study focuses on the development of a method for evaluation of alterations of dosimetric parameters for PTP after R(C)T with and without ICI. METHODS AND MATERIALS PTP volumes were delineated on the follow-up diagnostic Computed Tomography (CT) and deformably matched to the planning CT for patients with PTP after thoracic R(C)T + ICI or R(C)T. Dose data was converted to 2-Gy equivalent doses (EQD2) and dosimetrically analyzed. Dosimetric and volumetric parameters of the segmented PTP volumes were analyzed. The method was exemplarily tested on an internal patient cohort including 90 patients having received thoracic R(C)T + ICI (39) and R(C)T (51). Thirtytwo patients with PTP were identified for further analysis. Additional data on previous chemotherapy, RT, smoking status and pulmonary co-morbidity were conducted. A matched pair analysis with regard to planning target volumes (PTV) was conducted for curative intended (definitive) and palliative patient cohorts individually. RESULTS The presented method was able to quantify and compare the dosimetric parameters of PTP for the different therapies. For our study group, no significant differences between R(C)T + ICI and R(C)T only was observed. However, the dosimetric analysis revealed large volumetric fractions (55%) of the PTP volumes to be located outside of high dose (EQD2 < 40 Gy) regions for R(C)T + ICI. There was a non-significant trend towards increased area under the curve of the dose volume histogram (AUC) values for R(C)T + ICI compared to R(C)T only (3743.6 Gy∙% vs. 2848.8 Gy∙%; p-value = 0.171). In contrast to the data for the palliative intended treatment group, for definitive R(C)T + ICI, data tended towards increased volumes with higher doses. CONCLUSIONS The proposed method was capable to quantify dosimetric differences in the dose-volume-effect relationship of PTP for patients with R(C)T + ICI and patients with R(C)T only. In this exploratory analysis, no significant dosimetric differences within PTP volumes for the different groups could be observed. However, our observations suggest, that for safe application of thoracic R(C)T + ICI, further careful investigation of dosimetric prescription and analysis concepts with larger and conformer study groups is recommendable.
Collapse
|
2
|
Chen Z, Yi G, Li X, Yi B, Bao X, Zhang Y, Zhang X, Yang Z, Guo Z. Predicting radiation pneumonitis in lung cancer using machine learning and multimodal features: a systematic review and meta-analysis of diagnostic accuracy. BMC Cancer 2024; 24:1355. [PMID: 39501204 PMCID: PMC11539622 DOI: 10.1186/s12885-024-13098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
OBJECTIVES To evaluate the diagnostic accuracy of machine learning models incorporating multimodal features for predicting radiation pneumonitis in lung cancer through a systematic review and meta-analysis. METHODS Relevant studies were identified through a systematic search of PubMed, Web of Science, Embase, and the Cochrane Library from October 2003 to December 2023. Additional studies were located by reviewing bibliographies and relevant websites. Two independent researchers screened titles, abstracts, and full-text articles according to predefined inclusion and exclusion criteria. Data extraction was performed using standardized forms, and study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The primary outcomes, including combined sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC), were calculated using STATA MP-64 software(Stata Corporation LLC, College Station, USA) with a random-effects model. Meta-analysis was conducted to synthesize diagnostic accuracy measures, and analyses of heterogeneity and publication bias were performed. RESULTS A total of 1,406 patients with primary lung cancer were included in this systematic review, drawing data from 9 studies. The pooled analysis revealed a sensitivity of 0.74 [0.58-0.85] and a specificity of 0.91 [0.87-0.95] for machine learning models in diagnosing radiation pneumonitis. The positive likelihood ratio (PLR) was 8.69 [5.21-14.50], the negative likelihood ratio (NLR) was 0.28 [0.16-0.49], and the diagnostic odds ratio (DOR) was 30.73 [11.96-78.97]. The area under the curve (AUC) was 0.93 [0.90-0.95], indicating excellent diagnostic performance. Meta-regression analysis identified that the number of machine learning models, year of publication, and study design contributed to heterogeneity among studies. No evidence of publication bias was found. Overall, machine learning models incorporating multimodal characteristics demonstrated 75% accuracy in predicting moderate to severe radiation pneumonitis. CONCLUSION In conclusion, by integrating the current machine learning (ML) algorithm's ability in big data mining, a predictive model can be constructed by combining multi-modal features such as genetics, imaging, and cell factors. By selecting multiple machine learning algorithm frameworks and competing for the best combination model based on research goals, the reliability and accuracy of the radiation pneumonitis prediction model can be greatly improved. TRIAL REGISTRATION PROSPERO (CRD42024497599).
Collapse
|
3
|
Brooks T, Wood M, Rabinovitch R. Radiation Pneumonitis After Partial Breast Irradiation. Pract Radiat Oncol 2024; 14:478-483. [PMID: 38825228 DOI: 10.1016/j.prro.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 06/04/2024]
Abstract
This case presentation describes development of symptomatic radiation pneumonitis in a healthy woman who underwent partial breast irradiation with deep inspiration breath hold for early stage breast cancer meeting all published dose constraints. Risk factors for, diagnosis and management of radiation pneumonitis are discussed in detail. Radiation pneumonitis is rare, ranging from <1% to 1.5% (when regional nodal irradiation is included). Partial breast irradiation spares breast tissue, but may not spare lung tissue better than whole breast irradiation, depending upon treatment technique such as prone positioning. Dose constraints for normal and target structures from published trials are reviewed, however data specifically relating to pneumonitis in partial breast trials are limited.
Collapse
|
4
|
van Rossum PSN, Wolfhagen N, van Bockel LW, Coremans IEM, van Es CA, van der Geest AM, De Jaeger KEA, Wachters B, Knol HP, Koppe FLA, Pomp J, Reymen BJT, Schinagl DAX, Spoelstra FOB, Tissing-Tan CJA, Peters M, van der Voort van Zijp NCMG, van der Wel AM, Wiegman EM, Wijsman R, Damhuis RAM, Belderbos JSA. Real-World Acute Toxicity and 90-Day Mortality in Patients With Stage I NSCLC Treated With Stereotactic Body Radiotherapy. J Thorac Oncol 2024; 19:1550-1563. [PMID: 39067700 DOI: 10.1016/j.jtho.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/30/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Stereotactic body radiotherapy (SBRT) has firmly established its role in stage I NSCLC. Clinical trial results may not fully apply to real-world scenarios. This study aimed to uncover the real-world incidence of acute toxicity and 90-day mortality in patients with SBRT-treated stage I NSCLC and develop prediction models for these outcomes. METHODS Prospective data from the Dutch Lung Cancer Audit for Radiotherapy (DLCA-R) were collected nationally. Patients with stage I NSCLC (cT1-2aN0M0) treated with SBRT in 2017 to 2021 were included. Acute toxicity was assessed, defined as grade greater than or equal to 2 radiation pneumonitis or grade greater than or equal to 3 non-hematologic toxicity less than or equal to 90 days after SBRT. Prediction models for acute toxicity and 90-day mortality were developed and internally validated. RESULTS Among 7279 patients, the mean age was 72.5 years, with 21.6% being above 80 years. Most were male (50.7%), had WHO scores 0 to 1 (73.3%), and had cT1a-b tumors (64.6%), predominantly in the upper lobes (65.2%). Acute toxicity was observed in 280 (3.8%) of patients and 90-day mortality in 122 (1.7%). Predictors for acute toxicity included WHO greater than or equal to 2, lower forced expiratory volume in 1 second and diffusion capacity for carbon monoxide, no pathology confirmation, middle or lower lobe tumor location, cT1c-cT2a stage, and higher mean lung dose (c-statistic 0.68). Male sex, WHO greater than or equal to 2, and acute toxicity predicted higher 90-day mortality (c-statistic 0.73). CONCLUSIONS This nationwide study revealed a low rate of acute toxicity and an acceptable 90-day mortality rate in patients with SBRT-treated stage I NSCLC. Notably, advanced age did not increase acute toxicity or mortality risk. Our predictive models, with satisfactory performance, offer valuable tools for identifying high-risk patients.
Collapse
|
5
|
Gunnarsson K, Mövik L, Pettersson N, Bäck A, Nyman J, Hallqvist A. Assessment of radiation pneumonitis and predictive factors in patients with locally advanced non-small cell lung cancer treated with chemoradiotherapy. Acta Oncol 2024; 63:791-797. [PMID: 39415565 PMCID: PMC11495145 DOI: 10.2340/1651-226x.2024.40576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
PURPOSE Radiation pneumonitis (RP) is a dose-limiting toxicity associated with increased mortality for patients with non-small cell lung cancer (NSCLC) treated with chemoradiotherapy (CRT). This study aims to assess the incidence of symptomatic RP (grade 2-5), rate of recovery and associated predictive factors. MATERIAL AND METHODS We performed a retrospective population-based study including 602 patients with NSCLC who were treated with CRT between 2002 and 2016. RP and rate of recovery were analysed using Common Terminology Criteria for Adverse Events version 4.0. Stepwise logistic regression was performed to analyse potential predictive factors for the two endpoints RP grade ≥ 2 and RP grade ≥ 3. RESULTS A total of 136 (23%) patients developed symptomatic RP and 37 (6%) developed RP grade ≥ 3. A total of 67 (71%) recovered, whereas the remaining 27 (29%), with the major proportion of patients belonging to the RP grade ≥ 3 group, suffered from prevailing sequelae. On multivariable analysis, the selected model for predicting RP grade ≥ 2 included the factors V20, smoking status, average fractions per week and chemotherapy agent. V20 and age were selected factors for RP grade ≥ 3. INTERPRETATION The results suggest that regardless of all proposed factors predictive for RP, the most important influenceable significant factor still is dose to the lung. The main aim should be to avoid RP grade ≥ 3, where a substantial proportion of patients suffer from prevailing sequalae. Consequently, the technical improvement and precision of radiotherapy delivery should continue to focus on lung sparing techniques also in the ongoing immunotherapy-containing schedules where the risk of pneumonitis may be increased. e factor still is dose to the lung. Consequently, the technical improvement and precision of radiotherapy delivery should continue to focus on lung sparing techniques also in the ongoing immunotherapy-containing schedules where the risk of pneumonitis may be increased.
Collapse
|
6
|
Kim KH, Kang N, Song SY, Kim HJ, Kim YS, Oh MJ, Cho J. Safety and Efficacy of HL301 In Radiation Pneumonitis in Patients With Unresectable Non-Small Cell Lung Cancer Receiving Curative Concurrent Chemoradiotherapy: A Multicenter, Randomized, Double-Blinded, Placebo-Controlled, Phase 2a Clinical Trial. Int J Radiat Oncol Biol Phys 2024; 120:432-438. [PMID: 38565405 DOI: 10.1016/j.ijrobp.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE We aimed to investigate the safety and efficacy of HL301, a standardized combination product of 7 medicinal plants, in radiation pneumonitis in patients with unresectable non-small cell lung cancer undergoing curative concurrent chemoradiotherapy. METHODS AND MATERIALS The target accrual was 87 and a total of 63 patients were enrolled due to poor accrual rate. We randomly assigned the 63 patients to receive a placebo (arm A), or 1200 mg HL301 (arm B), or 1800 mg HL301 (arm C). Patients received weekly paclitaxel and carboplatin concurrently with intensity-modulated radiation therapy at 60 to 66 Gy in conventional fractionation. Durvalumab was administered as a maintenance treatment according to standard clinical practice. HL301 was administered orally, daily for 12 weeks. The primary endpoint was incidence of grade ≥2 radiation pneumonitis at 24 weeks postchemoradiotherapy. RESULTS The baseline characteristics of the patients were well balanced. The drug was tolerable with a compliance rate of 86.6%, 86.2%, and 88.8% in arms A, B, and C, respectively (P = .874). None of the patients experienced severe drug-related adverse events. No significant difference in the rate of adverse events were observed between the treatment arms. The incidence of grade ≥2 radiation pneumonitis at 24 weeks postchemoradiotherapy was 37.5% (95% CI, 18.5%-61.4%), 55.6% (95% CI, 33.7%-75.4%), and 52.4% (95% CI, 32.4%-71.7%) in arms A, B, and C, respectively (P = .535). CONCLUSIONS This is the first exploratory clinical trial to test the safety and efficacy of HL301 in patients with non-small cell lung cancer. Safety and feasibility of HL301 were established but no signals of efficacy in reducing radiation pneumonitis was observed in this dose level.
Collapse
|
7
|
Levin N, Killingberg KT, Halvorsen TO, Danielsen S, Grønberg BH. Evaluation of Radiation Therapy Treatment Plans in a Randomized Phase 2 Trial Comparing 2 Schedules of Twice-Daily Thoracic Radiation Therapy in Limited Stage Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2024; 120:332-342. [PMID: 38583494 DOI: 10.1016/j.ijrobp.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE There is limited clinical data for recommendations on how to deliver thoracic radiation therapy (TRT) concurrently with chemotherapy in limited-stage small cell lung cancer. We reviewed radiation therapy treatment plans in a randomized phase 2 trial comparing high-dose with standard-dose twice-daily TRT to assess treatment planning techniques, dose-volume data for target volumes and organs at risk (OARs), evaluate compliance with the protocol, associations with radiation-induced toxicity, and whether an imbalance in treatment planning parameters might be a reason for the large survival benefit of the higher dose (median overall survival 43.6 vs 22.6 months). METHODS AND MATERIALS In the study, 170 patients were to receive 4 courses of platinum/etoposide and were randomized to receive twice-daily TRT of 60 Gy/40 fractions (fx) or 45 Gy/30 fx. TRT treatment plans for those who received 1 or more fx of TRT (n = 166) were analyzed. RESULTS The most common treatment planning technique was 3-dimensional conformal radiation therapy (67%). The 75th percentile of the reported dose-volume parameters for the OARs were within the protocol-recommended limits for both groups. Mean doses to the esophagus of 25.5 Gy (IQR, 20.2-31.3; 60 Gy/40 fx) and 24.3 Gy (IQR, 20.3-27.5; 45 Gy/30 fx) were associated with 21% and 18% ≥ grade 3 acute esophagitis, respectively. In the 60 Gy/40 fx group, a mean dose to the lungs of 16.5 Gy (IQR, 15.8-16.9), V20 Gy of 29.5% (IQR, 28.8-30.4), and V5 Gy of 65.6% (IQR, 61.5-68.7) led to ≥ grade 3 pneumonitis in 4% of the patients. There was no ≥ grade 3 pneumonitis in the 45 Gy/30 fx group. The treatment planning techniques, the percentage change in volumes between original and redelineated OARs, planning target volumes, relative doses, and laterality were well balanced between the randomly assigned groups. CONCLUSIONS Considering the incidences of severe radiation-induced toxicities were within the range of other recent trials, the reported doses to the OARs appear to be safe. Treatment planning parameters were well balanced between the randomly assigned groups, supporting that the survival benefit of the twice-daily 60 Gy/40 fx TRT schedule was due to the higher dose.
Collapse
|
8
|
Bertho A, Ortiz R, Maurin M, Juchaux M, Gilbert C, Espenon J, Ramasamy G, Patriarca A, De Marzi L, Pouzoulet F, Prezado Y. Thoracic Proton Minibeam Radiation Therapy: Tissue Preservation and Survival Advantage Over Conventional Proton Therapy. Int J Radiat Oncol Biol Phys 2024; 120:579-592. [PMID: 38621606 DOI: 10.1016/j.ijrobp.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE Proton minibeam radiation therapy (pMBRT) is an innovative radiation therapy approach that highly modulates the spatial dimension of the dose delivery using narrow, parallel, and submillimetric proton beamlets. pMBRT has proven its remarkable healthy tissue preservation in the brain and skin. This study assesses the potential advantages of pMBRT for thoracic irradiations compared with conventional radiation therapy in terms of normal tissue toxicity. The challenge here was the influence of respiratory motion on the typical peak and valley dose patterns of pMBRT and its potential biologic effect. METHODS AND MATERIALS The whole thorax of naïve C57BL/6 mice received one fraction of high dose (18 Gy) pMBRT or conventional proton therapy (CPT) without any respiratory control. The development of radiation-induced pulmonary fibrosis was longitudinally monitored using cone beam computed tomography. Anatomopathologic analysis was carried out at 9 months postirradiation and focused on the reaction of the lungs' parenchyma and the response of cell types involved in the development of radiation-induced fibrosis and lung regeneration as alveolar type II epithelial cells, club cells, and macrophages. RESULTS pMBRT has milder effects on survival, skin reactions, and lung fibrosis compared with CPT. The pMBRT-induced lung changes were more regional and less severe, with evidence of potential reactive proliferation of alveolar type II epithelial cells and less extensive depletion of club cells and macrophage invasion than the more damaging effects observed in CPT. CONCLUSIONS pMBRT appears suitable to treat moving targets, holding a significant ability to preserve healthy lung tissue, even without respiratory control or precise targeting.
Collapse
|
9
|
Chang S, Lv J, Wang X, Su J, Bian C, Zheng Z, Yu H, Bao J, Xin Y, Jiang X. Pathogenic mechanisms and latest therapeutic approaches for radiation-induced lung injury: A narrative review. Crit Rev Oncol Hematol 2024; 202:104461. [PMID: 39103129 DOI: 10.1016/j.critrevonc.2024.104461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
The treatment of thoracic tumors with ionizing radiation can cause radiation-induced lung injury (RILI), which includes radiation pneumonitis and radiation-induced pulmonary fibrosis. Preventing RILI is crucial for controlling tumor growth and improving quality of life. However, the serious adverse effects of traditional RILI treatment methods remain a major obstacle, necessitating the development of novel treatment options that are both safe and effective. This review summarizes the molecular mechanisms of RILI and explores novel treatment options, including natural compounds, gene therapy, nanomaterials, and mesenchymal stem cells. These recent experimental approaches show potential as effective prevention and treatment options for RILI in clinical practice.
Collapse
|
10
|
Klaar R, Rabe M, Stüber AT, Hering S, Corradini S, Eze C, Marschner S, Belka C, Landry G, Dinkel J, Kurz C. MRI-based ventilation and perfusion imaging to predict radiation-induced pneumonitis in lung tumor patients at a 0.35T MR-Linac. Radiother Oncol 2024; 199:110468. [PMID: 39111637 DOI: 10.1016/j.radonc.2024.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND AND PURPOSE Radiation-induced pneumonitis (RP), diagnosed 6-12 weeks after treatment, is a complication of lung tumor radiotherapy. So far, clinical and dosimetric parameters have not been reliable in predicting RP. We propose using non-contrast enhanced magnetic resonance imaging (MRI) based functional parameters acquired over the treatment course for patient stratification for improved follow-up. MATERIALS AND METHODS 23 lung tumor patients received MR-guided hypofractionated stereotactic body radiation therapy at a 0.35T MR-Linac. Ventilation- and perfusion-maps were generated from 2D-cine MRI-scans acquired after the first and last treatment fraction (Fx) using non-uniform Fourier decomposition. The relative differences in ventilation and perfusion between last and first Fx in three regions (planning target volume (PTV), lung volume receiving more than 20Gy (V20) excluding PTV, whole tumor-bearing lung excluding PTV) and three dosimetric parameters (mean lung dose, V20, mean dose to the gross tumor volume) were investigated. Univariate receiver operating characteristic curve - area under the curve (ROC-AUC) analysis was performed (endpoint RP grade≥1) using 5000 bootstrapping samples. Differences between RP and non-RP patients were tested for statistical significance with the non-parametric Mann-Whitney U test (α=0.05). RESULTS 14/23 patients developed RP of grade≥1 within 3 months. The dosimetric parameters showed no significant differences between RP and non-RP patients. In contrast, the functional parameters, especially the relative ventilation difference in the PTV, achieved a p-value<0.05 and an AUC value of 0.84. CONCLUSION MRI-based functional parameters extracted from 2D-cine MRI-scans were found to be predictive of RP development in lung tumor patients.
Collapse
|
11
|
Midroni J, Salunkhe R, Liu Z, Chow R, Boldt G, Palma D, Hoover D, Vinogradskiy Y, Raman S. Incorporation of Functional Lung Imaging Into Radiation Therapy Planning in Patients With Lung Cancer: A Systematic Review and Meta-Analysis. Int J Radiat Oncol Biol Phys 2024; 120:370-408. [PMID: 38631538 PMCID: PMC11580018 DOI: 10.1016/j.ijrobp.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
Our purpose was to provide an understanding of current functional lung imaging (FLI) techniques and their potential to improve dosimetry and outcomes for patients with lung cancer receiving radiation therapy (RT). Excerpta Medica dataBASE (EMBASE), PubMed, and Cochrane Library were searched from 1990 until April 2023. Articles were included if they reported on FLI in one of: techniques, incorporation into RT planning for lung cancer, or quantification of RT-related outcomes for patients with lung cancer. Studies involving all RT modalities, including stereotactic body RT and particle therapy, were included. Meta-analyses were conducted to investigate differences in dose-function parameters between anatomic and functional RT planning techniques, as well as to investigate correlations of dose-function parameters with grade 2+ radiation pneumonitis (RP). One hundred seventy-eight studies were included in the narrative synthesis. We report on FLI modalities, dose-response quantification, functional lung (FL) definitions, FL avoidance techniques, and correlations between FL irradiation and toxicity. Meta-analysis results show that FL avoidance planning gives statistically significant absolute reductions of 3.22% to the fraction of well-ventilated lung receiving 20 Gy or more, 3.52% to the fraction of well-perfused lung receiving 20 Gy or more, 1.3 Gy to the mean dose to the well-ventilated lung, and 2.41 Gy to the mean dose to the well-perfused lung. Increases in the threshold value for defining FL are associated with decreases in functional parameters. For intensity modulated RT and volumetric modulated arc therapy, avoidance planning results in a 13% rate of grade 2+ RP, which is reduced compared with results from conventional planning cohorts. A trend of increased predictive ability for grade 2+ RP was seen in models using FL information but was not statistically significant. FLI shows promise as a method to spare FL during thoracic RT, but interventional trials related to FL avoidance planning are sparse. Such trials are critical to understanding the effect of FL avoidance planning on toxicity reduction and patient outcomes.
Collapse
|
12
|
Lv X, Wu Y, Li Q, Zheng C, Lin Q, Pang Q, Zhao M, Zhang J, Wang J. Treatment-related pneumonitis after thoracic radiotherapy/chemoradiotherapy combined with anti-PD-1 monoclonal antibodies in advanced esophageal squamous cell carcinoma. Strahlenther Onkol 2024; 200:857-866. [PMID: 38267589 PMCID: PMC11442583 DOI: 10.1007/s00066-024-02199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
PURPOSE This study aims to evaluate the risk factors of treatment-related pneumonitis (TRP) following thoracic radiotherapy/chemoradiotherapy combined with anti-PD‑1 monoclonal antibodies (mAbs) in patients with advanced esophageal squamous cell carcinoma (ESCC). METHODS We retrospectively reviewed 97 patients with advanced ESCC who were treated with thoracic radiotherapy/chemoradiotherapy combined with anti-PD‑1 mAbs. Among them, 56 patients received concurrent radiotherapy with anti-PD‑1 mAbs and 41 patients received sequential radiotherapy with anti-PD‑1 mAbs. The median prescribed planning target volume (PTV) dose was 59.4 Gy (range from 50.4 to 66 Gy, 1.8-2.2 Gy/fraction). Clinical characteristics, the percentage of lung volume receiving more than 5-50 Gy in increments of 5 Gy (V5-V50, respectively) and the mean lung dose (MLD) were analyzed as potential risk factors for TRP. RESULTS 46.4% (45/97), 20.6% (20/97), 20.6% (20/97), 4.1% (4/97), and 1.0% (1/97) of the patients developed any grade of TRP, grade 1 TRP, grade 2 TRP, grade 3 TRP, and fatal (grade 5) TRP, respectively. Anti-PD‑1 mAbs administered concurrently with radiotherapy, V5, V10, V15, V25, V30, V35, V40 and MLD were associated with the occurrence of grade 2 or higher TRP. Concurrent therapy (P = 0.010, OR = 3.990) and V5 (P = 0.001, OR = 1.126) were independent risk factors for grade 2 or higher TRP. According to the receiver operating characteristic (ROC) curve analysis, the optimal V5 threshold for predicting grade 2 or higher TRP was 55.7%. CONCLUSION The combination of thoracic radiotherapy/chemoradiotherapy with anti-PD‑1 mAbs displayed a tolerable pulmonary safety profile. Although the incidence of TRP was high, grade 1-2 TRP accounted for the majority. Anti-PD‑1 mAbs administered concurrently with radiotherapy and the lung V5 were significantly associated with the occurrence of grade 2 or higher TRP. Therefore, it seems safer to control V5 below 55% in clinical, especially for the high-risk populations receiving concurrent therapy.
Collapse
|
13
|
Rankine LJ, Lu J, Wang Z, Kelsey CR, Marks LB, Das SK, Driehuys B. Quantifying Regional Radiation-Induced Lung Injury in Patients Using Hyperpolarized 129Xe Gas Exchange Magnetic Resonance Imaging. Int J Radiat Oncol Biol Phys 2024; 120:216-228. [PMID: 38452858 DOI: 10.1016/j.ijrobp.2024.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE Radiation-induced lung injury has been shown to alter regional ventilation and perfusion in the lung. However, changes in regional pulmonary gas exchange have not previously been measured. METHODS AND MATERIALS Ten patients receiving conventional radiation therapy (RT) for lung cancer underwent pre-RT and 3-month post-RT magnetic resonance imaging (MRI) using an established hyperpolarized 129Xe gas exchange technique to map lung function. Four patients underwent an additional 8-month post-RT MRI. The MR signal from inhaled xenon was measured in the following 3 pulmonary compartments: the lung airspaces, the alveolar membrane tissue, and the pulmonary capillaries (interacting with red blood cells [RBCs]). Thoracic 1H MRI scans were acquired, and deformable registration was used to transfer 129Xe functional maps to the RT planning computed tomography scan. The RT-associated changes in ventilation, membrane uptake, and RBC transfer were computed as a function of regional lung dose (equivalent dose in 2-Gy fractions). Pearson correlations and t tests were used to determine statistical significance, and weighted sum of squares linear regression subsequently characterized the dose dependence of each functional component. The pulmonary function testing metrics of forced vital capacity and diffusing capacity for carbon monoxide were also acquired at each time point. RESULTS Compared with pre-RT baseline, 3-month post-RT ventilation decreased by an average of -0.24 ± 0.05%/Gy (ρ = -0.88; P < .001), membrane uptake increased by 0.69 ± 0.14%/Gy (ρ = 0.94; P < .001), and RBC transfer decreased by -0.41 ± 0.06%/Gy (ρ = -0.92; P < .001). Membrane uptake maintained a strong positive correlation with regional dose at 8 months post-RT, demonstrating an increase of 0.73 ± 0.11%/Gy (ρ = 0.92; P = .006). Changes in membrane uptake and RBC transfer appeared greater in magnitude (%/Gy) for individuals with low heterogeneity in their baseline lung function. An increase in whole-lung membrane uptake showed moderate correlation with decreases in forced vital capacity (ρ = -0.50; P = .17) and diffusing capacity for carbon monoxide (ρ = -0.44; P = .23), with neither correlation reaching statistical significance. CONCLUSIONS Hyperpolarized 129Xe MRI measured and quantified regional, RT-associated, dose-dependent changes in pulmonary gas exchange. This tool could enable future work to improve our understanding and management of radiation-induced lung injury.
Collapse
|
14
|
Yoneyama M, Matsuo Y, Kishi N, Itotani R, Oguma T, Ozasa H, Tanizawa K, Handa T, Hirai T, Mizowaki T. Quantitative analysis of interstitial lung abnormalities on computed tomography to predict symptomatic radiation pneumonitis after lung stereotactic body radiotherapy. Radiother Oncol 2024; 198:110408. [PMID: 38917885 DOI: 10.1016/j.radonc.2024.110408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND AND PURPOSE Symptomatic radiation pneumonitis (SRP) is a complication of thoracic stereotactic body radiotherapy (SBRT). As visual assessments pose limitations, artificial intelligence-based quantitative computed tomography image analysis software (AIQCT) may help predict SRP risk. We aimed to evaluate high-resolution computed tomography (HRCT) images with AIQCT to develop a predictive model for SRP. MATERIALS AND METHODS AIQCT automatically labelled HRCT images of patients treated with SBRT for stage I lung cancer according to lung parenchymal pattern. Quantitative data including the volume and mean dose (Dmean) were obtained for reticulation + honeycombing (Ret + HC), consolidation + ground-glass opacities, bronchi (Br), and normal lungs (NL). After associations between AIQCT's quantified metrics and SRP were investigated, we developed a predictive model using recursive partitioning analysis (RPA) for the training cohort and assessed its reproducibility with the testing cohort. RESULTS Overall, 26 of 207 patients developed SRP. There were significant between-group differences in the Ret + HC, Br-volume, and NL-Dmean in patients with and without SRP. RPA identified the following risk groups: NL-Dmean ≥ 6.6 Gy (high-risk, n = 8), NL-Dmean < 6.6 Gy and Br-volume ≥ 2.5 % (intermediate-risk, n = 13), and NL-Dmean < 6.6 Gy and Br-volume < 2.5 % (low-risk, n = 133). The incidences of SRP in these groups within the training cohort were 62.5, 38.4, and 7.5 %; and in the testing cohort 50.0, 27.3, and 5.0 %, respectively. CONCLUSION AIQCT identified CT features associated with SRP. A predictive model for SRP was proposed based on AI-detected Br-volume and the NL-Dmean.
Collapse
|
15
|
Su W, Cheng D, Ni W, Ai Y, Yu X, Tan N, Wu J, Fu W, Li C, Xie C, Shen M, Jin X. Multi-omics deep learning for radiation pneumonitis prediction in lung cancer patients underwent volumetric modulated arc therapy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108295. [PMID: 38905987 DOI: 10.1016/j.cmpb.2024.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND AND OBJECTIVE To evaluate the feasibility and accuracy of radiomics, dosiomics, and deep learning (DL) in predicting Radiation Pneumonitis (RP) in lung cancer patients underwent volumetric modulated arc therapy (VMAT) to improve radiotherapy safety and management. METHODS Total of 318 and 31 lung cancer patients underwent VMAT from First Affiliated Hospital of Wenzhou Medical University (WMU) and Quzhou Affiliated Hospital of WMU were enrolled for training and external validation, respectively. Models based on radiomics (R), dosiomics (D), and combined radiomics and dosiomics features (R+D) were constructed and validated using three machine learning (ML) methods. DL models trained with CT (DLR), dose distribution (DLD), and combined CT and dose distribution (DL(R+D)) images were constructed. DL features were then extracted from the fully connected layers of the best-performing DL model to combine with features of the ML model with the best performance to construct models of R+DLR, D+DLD, R+D+DL(R+D)) for RP prediction. RESULTS The R+D model achieved a best area under curve (AUC) of 0.84, 0.73, and 0.73 in the internal validation cohorts with Support Vector Machine (SVM), XGBoost, and Logistic Regression (LR), respectively. The DL(R+D) model achieved a best AUC of 0.89 and 0.86 using ResNet-34 in training and internal validation cohorts, respectively. The R+D+DL(R+D) model achieved a best performance in the external validation cohorts with an AUC, accuracy, sensitivity, and specificity of 0.81(0.62-0.99), 0.81, 0.84, and 0.67, respectively. CONCLUSIONS The integration of radiomics, dosiomics, and DL features is feasible and accurate for the RP prediction to improve the management of lung cancer patients underwent VMAT.
Collapse
|
16
|
Kubo Y, Yamamoto H, Matsubara K, Hashimoto K, Tanaka S, Shien K, Suzawa K, Miyoshi K, Okazaki M, Sugimoto S, Katsui K, Hiraki T, Kiura K, Toyooka S. Impact of the neutrophil-to-lymphocyte ratio on patients with locally advanced non-small cell lung cancer who suffer radiation pneumonitis during the course of induction chemoradiotherapy followed by surgery. Surg Today 2024; 54:995-1004. [PMID: 38451313 DOI: 10.1007/s00595-024-02816-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/04/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE Radiation pneumonitis (RP) is an obstacle for patients after surgery following induction chemoradiotherapy for locally advanced non-small cell lung cancer (LA-NSCLC). We performed a comparative analysis of the association between clinicopathological factors, including the neutrophil-to-lymphocyte ratio (NLR) and prognosis, in LA-NSCLC patients with or without RP during induction chemoradiotherapy followed by surgery. METHODS The subjects of this analysis were 168 patients undergoing trimodality therapy for LA-NSCLC between January, 1999 and May, 2019. Patients were divided into two groups: the RP group (n = 41) and the non-RP group (n = 127). We compared the clinicopathological factors including the NLR between the groups and analyzed the association between the NLR and prognosis. RESULTS The RP group had more patients with tumors located in the lower lobe, more bilobar resections, shorter operative times, no implementation of postoperative adjuvant chemotherapy, and a higher postoperative NLR than the non-RP group. There were no significant differences in serious postoperative complications and the prognosis. Patients with a low postoperative NLR had a significantly better prognosis in the non-RP group, and a trend toward a better prognosis even in the RP group. CONCLUSION Postoperative NLR may be a useful prognostic factor, even for patients who suffer RP after trimodality therapy for LA-NSCLC.
Collapse
|
17
|
Jo NC, Shroff GS, Ahuja J, Agrawal R, Price MC, Wu CC. Radiation Recall Pneumonitis: Imaging Appearance and Differential Considerations. Korean J Radiol 2024; 25:843-850. [PMID: 39197829 PMCID: PMC11361796 DOI: 10.3348/kjr.2024.0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/22/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Radiation recall pneumonitis is an inflammatory reaction of previously radiated lung parenchyma triggered by systemic pharmacological agents (such as chemotherapy and immunotherapy) or vaccination. Patients present with non-specific symptoms such as cough, shortness of breath, or hypoxia soon after the initiation of medication or vaccination. Careful assessment of the patient's history, including the thoracic radiation treatment plan and timing of the initiation of the triggering agent, in conjunction with CT findings, contribute to the diagnosis. Once a diagnosis is established, treatment includes cessation of the causative medication and/or initiation of steroid therapy. Differentiating this relatively rare entity from other common post-therapeutic complications in oncology patients, such as recurrent malignancy, infection, or medication-induced pneumonitis, is essential for guiding downstream clinical management.
Collapse
|
18
|
Yang X, Dai Z, Song H, Gong H, Li X. A novel predictor for dosimetry data of lung and the radiation pneumonitis incidence prior to SBRT in lung cancer patients. Sci Rep 2024; 14:18628. [PMID: 39128912 PMCID: PMC11317486 DOI: 10.1038/s41598-024-69293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024] Open
Abstract
Normal tissue complication probability (NTCP) models for radiation pneumonitis (RP) in lung cancer patients with stereotactic body radiation therapy (SBRT), which based on dosimetric data from treatment planning, are limited to patients who have already received radiation therapy (RT). This study aims to identify a novel predictive factor for lung dose distribution and RP probability before devising actionable SBRT plans for lung cancer patients. A comprehensive correlation analysis was performed on the clinical and dose parameters of lung cancer patients who underwent SBRT. Linear regression models were utilized to analyze the dosimetric data of lungs. The performance of the regression models was evaluated using mean squared error (MSE) and the coefficient of determination (R2). Correlational analysis revealed that most clinical data exhibited weak correlations with dosimetric data. However, nearly all dosimetric variables showed "strong" or "very strong" correlations with each other, particularly concerning the mean dose of the ipsilateral lung (MI) and the other dosimetric parameters. Further study verified that the lung tumor ratio (LTR) was a significant predictor for MI, which could predict the incidence of RP. As a result, LTR can predict the probability of RP without the need to design an elaborate treatment plan. This study, as the first to offer a comprehensive correlation analysis of dose parameters, explored the specific relationships among them. Significantly, it identified LTR as a novel predictor for both dose parameters and the incidence of RP, without the need to design an elaborate treatment plan.
Collapse
|
19
|
Sheen H, Cho W, Kim C, Han MC, Kim H, Lee H, Kim DW, Kim JS, Hong CS. Radiomics-based hybrid model for predicting radiation pneumonitis: A systematic review and meta-analysis. Phys Med 2024; 123:103414. [PMID: 38906047 DOI: 10.1016/j.ejmp.2024.103414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
PURPOSE This study reviewed and meta-analyzed evidence on radiomics-based hybrid models for predicting radiation pneumonitis (RP). These models are crucial for improving thoracic radiotherapy plans and mitigating RP, a common complication of thoracic radiotherapy. We examined and compared the RP prediction models developed in these studies with the radiomics features employed in RP models. METHODS We systematically searched Google Scholar, Embase, PubMed, and MEDLINE for studies published up to April 19, 2024. Sixteen studies met the inclusion criteria. We compared the RP prediction models developed in these studies and the radiomics features employed. RESULTS Radiomics, as a single-factor evaluation, achieved an area under the receiver operating characteristic curve (AUROC) of 0.73, accuracy of 0.69, sensitivity of 0.64, and specificity of 0.74. Dosiomics achieved an AUROC of 0.70. Clinical and dosimetric factors showed lower performance, with AUROCs of 0.59 and 0.58. Combining clinical and radiomic factors yielded an AUROC of 0.78, while combining dosiomic and radiomics factors produced an AUROC of 0.81. Triple combinations, including clinical, dosimetric, and radiomics factors, achieved an AUROC of 0.81. The study identifies key radiomics features, such as the Gray Level Co-occurrence Matrix (GLCM) and Gray Level Size Zone Matrix (GLSZM), which enhance the predictive accuracy of RP models. CONCLUSIONS Radiomics-based hybrid models are highly effective in predicting RP. These models, combining traditional predictive factors with radiomic features, particularly GLCM and GLSZM, offer a clinically feasible approach for identifying patients at higher RP risk. This approach enhances clinical outcomes and improves patient quality of life. PROTOCOL REGISTRATION The protocol of this study was registered on PROSPERO (CRD42023426565).
Collapse
|
20
|
Ohguri T, Morisaki T, Itamura H, Tani S, Yatera K, Tanaka F. Prophylactic Effect of Clarithromycin on Radiation Pneumonitis in IMRT for Lung Cancer. Anticancer Res 2024; 44:2989-2995. [PMID: 38925832 DOI: 10.21873/anticanres.17111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND/AIM To evaluate the association between prophylactic administration of clarithromycin (CAM) and the development of radiation pneumonitis (RP) in patients treated with intensity modulated radiation therapy (IMRT) for lung cancer. PATIENTS AND METHODS A total of 89 patients who underwent definitive or salvage IMRT for lung cancer were retrospectively evaluated. The median total and daily doses were 60 Gy and 2 Gy, respectively. A total of 39 patients (44%) received CAM for a median of three months after the start of IMRT. The relationship between the development of RP and certain clinical factors was analyzed. RESULTS RP of Grade ≥2 was recognized in 10 (11%) patients; Grade 2 in six patients and Grade 3 in four patients. The incidence of Grade ≥2 RP was 3% (1/39) in patients treated with CAM, which was significantly lower than that of 18% (9/50) in patients without CAM. The median lung V20 and V5 in the 10 patients with RP Grade ≥2 were 24% and 46%, respectively, compared with 18% and 37% in the 79 patients with RP Grade 0-1, and the differences were significant. Durvalumab administration after IMRT was also a significant factor for RP Grade ≥2. CONCLUSION Prophylactic administration of CAM may reduce Grade ≥2 RP in patients treated with IMRT for lung cancer. Therefore, further clinical trials are warranted.
Collapse
|
21
|
Liang B, Lu X, Liu L, Dai J, Wang L, Bi N. Synergizing the interaction of single nucleotide polymorphisms with dosiomics features to build a dual-omics model for the prediction of radiation pneumonitis. Radiother Oncol 2024; 196:110261. [PMID: 38548115 DOI: 10.1016/j.radonc.2024.110261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE Radiation pneumonitis (RP) is the major dose-limiting toxicity of thoracic radiotherapy. This study aimed to developed a dual-omics (single nucleotide polymorphisms, SNP and dosiomics) prediction model for symptomatic RP. MATERIALS AND METHODS The potential SNPs, which are of significant difference between the RP grade ≥ 3 group and the RP grade ≤ 1 group, were selected from the whole exome sequencing SNPs using the Fisher's exact test. Patients with lung cancer who received thoracic radiotherapy at our institution from 2009 to 2016 were enrolled for SNP selection and model construction. The factorization machine (FM) method was used to model the SNP epistasis effect, and to construct the RP prediction model (SNP-FM). The dosiomics features were extracted, and further selected using the minimum redundancy maximum relevance (mRMR) method. The selected dosiomics features were added to the SNP-FM model to construct the dual-omics model. RESULTS For SNP screening, peripheral blood samples of 28 patients with RP grade ≥ 3 and the matched 28 patients with RP grade ≤ 1 were sequenced. 81 SNPs were of significant difference (P < 0.015) and considered as potential SNPs. In addition, 21 radiation toxicity related SNPs were also included. For model construction, 400 eligible patients (including 108 RP grade ≥ 2) were enrolled. Single SNP showed no strong correlation with RP. On the other hand, the SNP-SNP interaction (epistasis effect) of 19 SNPs were modeled by the FM method, and achieved an area under the curve (AUC) of 0.76 in the testing group. In addition, 4 dosiomics features were selected and added to the model, and increased the AUC to 0.81. CONCLUSIONS A novel dual-omics model by synergizing the SNP epistasis effect with dosiomics features was developed. The enhanced the RP prediction suggested its promising clinical utility in identifying the patients with severe RP during thoracic radiotherapy.
Collapse
|
22
|
Yiu WS, Chu TSM, Meng Y, Kong FMS. DNA Repair Genetics and the Risk of Radiation Pneumonitis in Patients With Lung Cancer: A Systematic Review and Meta-analysis. Clin Oncol (R Coll Radiol) 2024; 36:e182-e196. [PMID: 38653664 DOI: 10.1016/j.clon.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/01/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
AIMS ERCC1 rs11615 and ERCC2 rs238406 single nuclear polymorphism (SNPs) are known for their association with treatment outcome, likely related to radiosensitivity of both tumor and normal tissue in patients with non-small-cell lung cancer. This study aimed to review the effect of 1) these ERCC1/2 SNPs and 2) other SNPs of DNA repair genes on radiation pneumonitis (RP) in patients with lung cancer. MATERIALS AND METHODS SNPs of our interest included ERCC1 rs11615 and ERCC2 rs238406 and other genes of DNA repair pathways that are functional and biologically active. DNA repair SNPs reported by at least two independent studies were pooled for meta-analysis. The study endpoint was radiation pneumonitis (RP) after radiotherapy. Recessive, dominant, homozygous, heterozygous, and allelic genotype models were used where appropriate. RESULTS A total of 16 studies (3080 patients) were identified from the systematic review and 12 studies (2090 patients) on 11 SNPs were included in the meta-analysis. The SNPs were ATM rs189037, ATM rs373759, NEIL1 rs4462560, NEIL1 rs7402844, APE1 rs1130409, XRCC3 rs861539, ERCC1 rs11615, ERCC1 rs3212986, ERCC2 rs238406, ERCC2 rs13181, and XRCC1 rs25487. ERCC1 rs11615 (236 patients) and ERCC2 rs238406 (254 patients) were not significantly associated with RP. Using the allelic model, the G allele for NEIL1 gene was significantly associated with a reduced odds of developing symptomatic (grade ≥2) RP compared to the C allele for rs7402844 (OR 0.70, 95% CI: 0.49, 0.99, P = 0.04). Similarly, the T allele for APE1 gene was significantly associated with a reduced odds of developing symptomatic (grade ≥2) RP compared to the G allele for rs1130409 (OR 0.59, 95% CI: 0.43, 0.81, P = 0.001). CONCLUSION Genetic variation in the DNA repair pathway genes may play a significant role in the risk of developing radiation pneumonitis in patients with lung cancer. Further studies are needed on genotypic features of DNA repair pathway genes and their association with treatment sensitivity, as such knowledge may guide personalized radiation dose prescription.
Collapse
|
23
|
Moore ZR, Huang X, Lobaugh S, Zhang Z, Wong P, Geyer A, Pagano A, Rudin CM, Jones DR, Gomez DR, Deasy JO, Mak R, Schmitt AM, Paik PK, Rimner A. Biomarkers associated with pulmonary exacerbations in a randomized trial of nintedanib for radiation pneumonitis. Radiother Oncol 2024; 196:110320. [PMID: 38740091 DOI: 10.1016/j.radonc.2024.110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND AND PURPOSE Radiation pneumonitis (RP) is a common side effect of thoracic radiotherapy and often has a long course characterized by acute exacerbations and progression to permanent lung fibrosis. There are no validated biomarkers of prognosis in patients diagnosed with RP. MATERIALS AND METHODS We analyzed a time course of serum chemokines, cytokines, and other proteins from patients with grade 2+ RP in a randomized clinical trial of a steroid taper plus nintedanib, a multiple tyrosine kinase inhibitor, versus placebo plus a steroid taper for the treatment of RP. Weighted gene correlation network analysis (WGCNA) and univariable zero inflated Poisson models were used to identify groups of correlated analytes and their associations with clinical outcomes. RESULTS Thirty enrolled patients had biomarker data available, and 17 patients had enough analytes tested for network analysis. WGNCA identified ten analytes, including transforming growth factor beta-1 (TGF-β1), monocyte chemoattractant protein-1 (MCP-1), and platelet-derived growth factor (PDGF), that in aggregate were correlated with the occurrence of pulmonary exacerbations (p = 0.008), the total number of acute pulmonary exacerbations (p = 0.002), and treatment arm (p = 0.036). By univariable analysis, an increase in rate of change of two components of the RP module were associated with an increased incidence rate of pulmonary exacerbations: interleukin 5 (IL-5, incidence rate ratio (IRR) 1.02, 95% CI 1.01-1.04, p = 0.002), and tumor necrosis factor superfamily 12 (TNFSF12, IRR 1.06, CI 1-1.11, p = 0.036). An increased slope of epidermal growth factor (EGF) was associated with a decreased incidence rate of exacerbations (IRR 0.94, CI 0.89-1, p = 0.036). CONCLUSION We identified a panel of serum biomarkers that showed association with nintedanib treatment and acute pulmonary exacerbations in patients with RP. A confirmatory study will be needed to validate this panel for use as a prognostic tool in patients with RP.
Collapse
|
24
|
Li C, Zhang J, Ning B, Xu J, Lin Z, Zhang J, Tan N, Yu X, Su W, Ni W, Yu W, Wu J, Cao G, Cao Z, Xie C, Jin X. Radiation pneumonitis prediction with dual-radiomics for esophageal cancer underwent radiotherapy. Radiat Oncol 2024; 19:72. [PMID: 38851718 PMCID: PMC11161999 DOI: 10.1186/s13014-024-02462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND To integrate radiomics and dosiomics features from multiple regions in the radiation pneumonia (RP grade ≥ 2) prediction for esophageal cancer (EC) patients underwent radiotherapy (RT). METHODS Total of 143 EC patients in the authors' hospital (training and internal validation: 70%:30%) and 32 EC patients from another hospital (external validation) underwent RT from 2015 to 2022 were retrospectively reviewed and analyzed. Patients were dichotomized as positive (RP+) or negative (RP-) according to CTCAE V5.0. Models with radiomics and dosiomics features extracted from single region of interest (ROI), multiple ROIs and combined models were constructed and evaluated. A nomogram integrating radiomics score (Rad_score), dosiomics score (Dos_score), clinical factors, dose-volume histogram (DVH) factors, and mean lung dose (MLD) was also constructed and validated. RESULTS Models with Rad_score_Lung&Overlap and Dos_score_Lung&Overlap achieved a better area under curve (AUC) of 0.818 and 0.844 in the external validation in comparison with radiomics and dosiomics models with features extracted from single ROI. Combining four radiomics and dosiomics models using support vector machine (SVM) improved the AUC to 0.854 in the external validation. Nomogram integrating Rad_score, and Dos_score with clinical factors, DVH factors, and MLD further improved the RP prediction AUC to 0.937 and 0.912 in the internal and external validation, respectively. CONCLUSION CT-based RP prediction model integrating radiomics and dosiomics features from multiple ROIs outperformed those with features from a single ROI with increased reliability for EC patients who underwent RT.
Collapse
|
25
|
Ehler ED, Turcotte LM, Skamene S, Baker KS, Das SK, Constine LS, Yuan J, Dusenbery KE. Idiopathic Pneumonitis Syndrome After Total Body Irradiation in Pediatric Patients Undergoing Myeloablative Hematopoietic Stem Cell Transplantation: A PENTEC Comprehensive Review. Int J Radiat Oncol Biol Phys 2024; 119:625-639. [PMID: 36973099 DOI: 10.1016/j.ijrobp.2023.02.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 02/16/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Pulmonary complications, especially idiopathic pneumonitis syndrome (IPS), are potentially life altering or fatal sequelae of hematopoietic cell transplantation (HCT). Total body irradiation (TBI) as part of the conditioning regimen has been implicated in IPS. A comprehensive PENTEC (Pediatric Normal Tissues in the Clinic) review was performed to increase our understanding of the role of TBI in the development of acute, noninfectious IPS. METHODS AND MATERIALS A systematic literature search was conducted using the MEDLINE, PubMed, and Cochrane library databases for articles describing pulmonary toxicity in children treated with HCT. Data pertaining to TBI and pulmonary endpoints were extracted. Risk of IPS was analyzed in relation to patient age, TBI dose, fractionation, dose rate, lung shielding, timing, and type of transplant, with the goal to better understand factors associated with this complication in children undergoing HCT. A logistic regression model was developed using a subset of studies with comparable transplant regimens and sufficient TBI data. RESULTS Six studies met criteria for modeling of the correlation of TBI parameters with IPS; all consisted of pediatric patients undergoing allogeneic HCT with a cyclophosphamide-based chemotherapy regimen. IPS was variably defined, but all studies that reported IPS were included in this analysis. The mean incidence of post-HCT IPS was 16% (range, 4%-41%). Mortality from IPS, when it occurred, was high (median, 50%; range, 45%-100%). Fractionated TBI prescription doses encompassed a narrow range of 9 to 14 Gy. Many differing TBI methods were reported, and there was an absence of 3-dimensional dose analysis of lung blocking techniques. Thus, a univariate correlation between IPS and total TBI dose, dose fractionation, dose rate, or TBI technique could not be made. However, a model, built from these studies based on prescribed dose using a normalized dose parameter of equivalent dose in 2-Gy fractions (EQD2), adjusted for dose rate, suggested correlation with the development of IPS (P = .0004). The model-predicted odds ratio for IPS was 24.3 Gy-1 (95% confidence interval, 7.0-84.3). Use of TBI lung dose metrics (eg, midlung point dose) could not be successfully modeled, potentially because of dosimetric uncertainties in the actual delivered volumetric lung dose and imperfections in our modeling process. CONCLUSIONS This PENTEC report is a comprehensive review of IPS in pediatric patients receiving fractionated TBI regimens for allogenic HCT. IPS was not clearly associated with 1 single TBI factor. Modeling using dose-rate adjusted EQD2 showed a response with IPS for allogeneic HCT using a cyclophosphamide-based chemotherapy regimen. Therefore, this model suggests IPS mitigation strategies can focus on not just the dose and dose per fraction but also the dose rate used in TBI. More data are needed to confirm this model and to determine the influence of chemotherapy regimens and contribution from graft-versus-host disease. The presence of confounding variables (eg, systemic chemotherapies) that affect risk, the narrow range of fractionated TBI doses found in the literature, and limitations of other reported data (eg, lung point dose) may have prevented a more straightforward link between IPS and total dose from being observed.
Collapse
|