1
|
Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003; 19:71-82. [PMID: 12871640 DOI: 10.1016/s1074-7613(03)00174-2] [Citation(s) in RCA: 2566] [Impact Index Per Article: 116.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Peripheral blood monocytes are a heterogeneous population of circulating leukocytes. Using a murine adoptive transfer system to probe monocyte homing and differentiation in vivo, we identified two functional subsets among murine blood monocytes: a short-lived CX(3)CR1(lo)CCR2(+)Gr1(+) subset that is actively recruited to inflamed tissues and a CX(3)CR1(hi)CCR2(-)Gr1(-) subset characterized by CX(3)CR1-dependent recruitment to noninflamed tissues. Both subsets have the potential to differentiate into dendritic cells in vivo. The level of CX(3)CR1 expression also defines the two major human monocyte subsets, the CD14(+)CD16(-) and CD14(lo)CD16(+) monocytes, which share phenotype and homing potential with the mouse subsets. These findings raise the potential for novel therapeutic strategies in inflammatory diseases.
Collapse
|
|
22 |
2566 |
2
|
Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998; 394:894-7. [PMID: 9732872 DOI: 10.1038/29788] [Citation(s) in RCA: 1466] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemokines are proinflammatory cytokines that function in leukocyte chemoattraction and activation and have recently been shown to block the HIV-1 infection of target cells through interactions with chemokine receptors. In addition to their function in viral disease, chemokines have been implicated in the pathogenesis of atherosclerosis. Expression of the CC chemokine monocyte chemoattractant protein-1 (MCP-1) is upregulated in human atherosclerotic plaques, in arteries of primates on a hypercholesterolaemic diet; and in vascular endothelial and smooth muscle cells exposed to minimally modified lipids. To determine whether MCP-1 is causally related to the development of atherosclerosis, we generated mice that lack CCR2, the receptor for MCP-1 (ref. 7), and crossed them with apolipoprotein (apo) E-null mice which develop severe atherosclerosis. Here we show that the selective absence of CCR2 decreases lesion formation markedly in apoE-/- mice but has no effect on plasma lipid or lipoprotein concentrations. These data reveal a role for MCP-1 in the development of early atherosclerotic lesions and suggest that upregulation of this chemokine by minimally oxidized lipids is an important link between hyperlipidaemia and fatty streak formation.
Collapse
|
|
27 |
1466 |
3
|
Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 2006; 7:311-7. [PMID: 16462739 DOI: 10.1038/ni1309] [Citation(s) in RCA: 1268] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 01/10/2006] [Indexed: 02/06/2023]
Abstract
Monocytes recruited to tissues mediate defense against microbes or contribute to inflammatory diseases. Regulation of the number of circulating monocytes thus has implications for disease pathogenesis. However, the mechanisms controlling monocyte emigration from the bone marrow niche where they are generated remain undefined. We demonstrate here that the chemokine receptor CCR2 was required for emigration of Ly6C(hi) monocytes from bone marrow. Ccr2(-/-) mice had fewer circulating Ly6C(hi) monocytes and, after infection with Listeria monocytogenes, accumulated activated monocytes in bone marrow. In blood, Ccr2(-/-) monocytes could traffic to sites of infection, demonstrating that CCR2 is not required for migration from the circulation into tissues. Thus, CCR2-mediated signals in bone marrow determine the frequency of Ly6C(hi) monocytes in the circulation.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
1268 |
4
|
Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel RL, Ferrante AW. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2005; 116:115-24. [PMID: 16341265 PMCID: PMC1307559 DOI: 10.1172/jci24335] [Citation(s) in RCA: 1237] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Accepted: 09/12/2005] [Indexed: 12/13/2022] Open
Abstract
The C-C motif chemokine receptor-2 (CCR2) regulates monocyte and macrophage recruitment and is necessary for macrophage-dependent inflammatory responses and the development of atherosclerosis. Although adipose tissue expression and circulating concentrations of CCL2 (also known as MCP1), a high-affinity ligand for CCR2, are elevated in obesity, the role of CCR2 in metabolic disorders, including insulin resistance, hepatic steatosis, and inflammation associated with obesity, has not been studied. To determine what role CCR2 plays in the development of metabolic phenotypes, we studied the effects of Ccr2 genotype on the development of obesity and its associated phenotypes. Genetic deficiency in Ccr2 reduced food intake and attenuated the development of obesity in mice fed a high-fat diet. In obese mice matched for adiposity, Ccr2 deficiency reduced macrophage content and the inflammatory profile of adipose tissue, increased adiponectin expression, ameliorated hepatic steatosis, and improved systemic glucose homeostasis and insulin sensitivity. In mice with established obesity, short-term treatment with a pharmacological antagonist of CCR2 lowered macrophage content of adipose tissue and improved insulin sensitivity without significantly altering body mass or improving hepatic steatosis. These data suggest that CCR2 influences the development of obesity and associated adipose tissue inflammation and systemic insulin resistance and plays a role in the maintenance of adipose tissue macrophages and insulin resistance once obesity and its metabolic consequences are established.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
1237 |
5
|
Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N, Lira SA, Habenicht AJ, Randolph GJ. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 2007; 117:185-94. [PMID: 17200718 PMCID: PMC1716202 DOI: 10.1172/jci28549] [Citation(s) in RCA: 1072] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 10/24/2006] [Indexed: 12/12/2022] Open
Abstract
Monocytes participate critically in atherosclerosis. There are 2 major subsets expressing different chemokine receptor patterns: CCR2(+)CX3CR1(+)Ly-6C(hi) and CCR2(-)CX3CR1(++)Ly-6C(lo) monocytes. Both C-C motif chemokine receptor 2 (CCR2) and C-X(3)-C motif chemokine receptor 1 (CX3CR1) are linked to progression of atherosclerotic plaques. Here, we analyzed mouse monocyte subsets in apoE-deficient mice and traced their differentiation and chemokine receptor usage as they accumulated within atherosclerotic plaques. Blood monocyte counts were elevated in apoE(-/-) mice and skewed toward an increased frequency of CCR2(+)Ly-6C(hi) monocytes in apoE(-/-) mice fed a high-fat diet. CCR2(+)Ly-6C(hi) monocytes efficiently accumulated in plaques, whereas CCR2(-)Ly-6C(lo) monocytes entered less frequently but were more prone to developing into plaque cells expressing the dendritic cell-associated marker CD11c, indicating that phagocyte heterogeneity in plaques is linked to distinct types of entering monocytes. CCR2(-) monocytes did not rely on CX3CR1 to enter plaques. Instead, they were partially dependent upon CCR5, which they selectively upregulated in apoE(-/-) mice. By comparison, CCR2(+)Ly-6C(hi) monocytes unexpectedly required CX3CR1 in addition to CCR2 and CCR5 to accumulate within plaques. In many other inflammatory settings, these monocytes utilize CCR2, but not CX3CR1, for trafficking. Thus, antagonizing CX3CR1 may be effective therapeutically in ameliorating CCR2(+) monocyte recruitment to plaques without impairing their CCR2-dependent responses to inflammation overall.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
1072 |
6
|
Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 2003; 19:59-70. [PMID: 12871639 DOI: 10.1016/s1074-7613(03)00171-7] [Citation(s) in RCA: 900] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Dendritic cells (DCs) present microbial antigens to T cells and provide inflammatory signals that modulate T cell differentiation. While the role of DCs in adaptive immunity is well established, their involvement in innate immune defenses is less well defined. We have identified a TNF/iNOS-producing (Tip)-DC subset in spleens of Listeria monocytogenes-infected mice that is absent from CCR2-deficient mice. The absence of Tip-DCs results in profound TNF and iNOS deficiencies and an inability to clear primary bacterial infection. CD8 and CD4 T cell responses to L. monocytogenes antigens are preserved in CCR2-deficient mice, indicating that Tip-DCs are not essential for T cell priming. Tip-DCs, as the predominant source of TNF and iNOS during L. monocytogenes infection, orchestrate and mediate innate immune defense against this intracellular bacterial pathogen.
Collapse
|
|
22 |
900 |
7
|
Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, Mack M, Charo IF. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 2007; 117:902-9. [PMID: 17364026 PMCID: PMC1810572 DOI: 10.1172/jci29919] [Citation(s) in RCA: 891] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 01/24/2007] [Indexed: 12/24/2022] Open
Abstract
Monocyte recruitment to sites of inflammation is regulated by members of the chemokine family of chemotactic cytokines. However, the mechanisms that govern the migration of monocytes from bone marrow to blood and from blood to inflamed tissues are not well understood. Here we report that CC chemokine receptor 2 (CCR2) is highly expressed on a subpopulation of blood monocytes whose numbers are markedly decreased in CCR2(-/-) mice. In bone marrow, however, CCR2(-/-) mice had an increased number of monocytes, suggesting that CCR2 is critical for monocyte egress. Intravenous infusion of ex vivo-labeled WT or CCR2(-/-) bone marrow into WT recipient mice demonstrated that CCR2 is necessary for efficient monocyte recruitment from the blood to inflamed tissue. Analysis of mice lacking monocyte chemoattractant protein-1 (MCP-1), MCP-3, MCP-5, or MCP-2 plus MCP-5 revealed that MCP-3 and MCP-1 are the CCR2 agonists most critical for the maintenance of normal blood monocyte counts. These findings provide evidence that CCR2 and MCP-3/MCP-1 are critical for monocyte mobilization and suggest new roles for monocyte chemoattractants in leukocyte homeostasis.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
891 |
8
|
Boring L, Gosling J, Chensue SW, Kunkel SL, Farese RV, Broxmeyer HE, Charo IF. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest 1997; 100:2552-61. [PMID: 9366570 PMCID: PMC508456 DOI: 10.1172/jci119798] [Citation(s) in RCA: 835] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is a potent agonist for mononuclear leukocytes and has been implicated in the pathogenesis of atherosclerosis and granulomatous lung disease. To determine the role of MCP-1 and related family members in vivo, we used homologous recombination in embryonic stem cells to generate mice with a targeted disruption of C-C chemokine receptor 2 (CCR2), the receptor for MCP-1. CCR2-/- mice were born at the expected Mendelian ratios and developed normally. In response to thioglycollate, the recruitment of peritoneal macrophages decreased selectively. In in vitro chemotaxis assays, CCR2-/- leukocytes failed to migrate in response to MCP-1. Granulomatous lung disease was induced in presensitized mice by embolization with beads coupled to purified protein derivative (PPD) of Mycobacterium bovis. As compared with wild-type littermates, CCR2-/- mice had a decrease in granuloma size accompanied by a dramatic decrease in the level of interferon gamma in the draining lymph nodes. Production of interferon gamma was also decreased in PPD-sensitized splenocytes from CCR2-/- mice and in naive splenocytes activated by concanavalin A. We conclude that CCR2-/- mice have significant defects in both delayed-type hypersensitivity responses and production of Th1-type cytokines. These data suggest an important and unexpected role for CCR2 activation in modulating the immune response, as well as in recruiting monocytes/macrophages to sites of inflammation.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/cytology
- Chemokine CCL2/pharmacology
- Chemokines/pharmacology
- Chemotaxis, Leukocyte/genetics
- Chemotaxis, Leukocyte/physiology
- Cytokines/biosynthesis
- Embryo, Mammalian
- Granuloma, Respiratory Tract/immunology
- Granuloma, Respiratory Tract/microbiology
- Granuloma, Respiratory Tract/physiopathology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/physiology
- Humans
- Lung Diseases/immunology
- Lung Diseases/physiopathology
- Lymph Nodes/immunology
- Macrophages, Alveolar/immunology
- Mice
- Mice, Knockout
- Monocytes/physiology
- Mycobacterium bovis
- Receptors, CCR2
- Receptors, CCR5/biosynthesis
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/physiology
- Recombinant Proteins/pharmacology
- Th1 Cells/immunology
- Transcription, Genetic
- Tuberculin
Collapse
|
research-article |
28 |
835 |
9
|
Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I, Weissman IL, Cyster JG, Engleman EG. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 2002; 3:1135-41. [PMID: 12415265 PMCID: PMC4727838 DOI: 10.1038/ni852] [Citation(s) in RCA: 729] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2002] [Accepted: 09/10/2002] [Indexed: 01/25/2023]
Abstract
Langerhans cells (LCs) are bone marrow (BM)-derived epidermal dendritic cells (DCs) that represent a critical immunologic barrier to the external environment, but little is known about their life cycle. Here, we show that in lethally irradiated mice that had received BM transplants, LCs of host origin remained for at least 18 months, whereas DCs in other organs were almost completely replaced by donor cells within 2 months. In parabiotic mice with separate organs, but a shared blood circulation, there was no mixing of LCs. However, in skin exposed to ultraviolet light, LCs rapidly disappeared and were replaced by circulating LC precursors within 2 weeks. The recruitment of new LCs was dependent on their expression of the CCR2 chemokine receptor and on the secretion of CCR2-binding chemokines by inflamed skin. These data indicate that under steady-state conditions, LCs are maintained locally, but inflammatory changes in the skin result in their replacement by blood-borne LC progenitors.
Collapse
|
research-article |
23 |
729 |
10
|
Smith MW, Dean M, Carrington M, Winkler C, Huttley GA, Lomb DA, Goedert JJ, O'Brien TR, Jacobson LP, Kaslow R, Buchbinder S, Vittinghoff E, Vlahov D, Hoots K, Hilgartner MW, O'Brien SJ. Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. Science 1997; 277:959-65. [PMID: 9252328 DOI: 10.1126/science.277.5328.959] [Citation(s) in RCA: 684] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The critical role of chemokine receptors (CCR5 and CXCR4) in human immunodeficiency virus-type 1 (HIV-1) infection and pathogenesis prompted a search for polymorphisms in other chemokine receptor genes that mediate HIV-1 disease progression. A mutation (CCR2-64I) within the first transmembrane region of the CCR2 chemokine and HIV-1 receptor gene is described that occurred at an allele frequency of 10 to 15 percent among Caucasians and African Americans. Genetic association analysis of five acquired immunodeficiency syndrome (AIDS) cohorts (3003 patients) revealed that although CCR2-64I exerts no influence on the incidence of HIV-1 infection, HIV-1-infected individuals carrying the CCR2-64I allele progressed to AIDS 2 to 4 years later than individuals homozygous for the common allele. Because CCR2-64I occurs invariably on a CCR5-+-bearing chromosomal haplotype, the independent effects of CCR5-Delta32 (which also delays AIDS onset) and CCR2-64I were determined. An estimated 38 to 45 percent of AIDS patients whose disease progresses rapidly (less than 3 years until onset of AIDS symptoms after HIV-1 exposure) can be attributed to their CCR2-+/+ or CCR5-+/+ genotype, whereas the survival of 28 to 29 percent of long-term survivors, who avoid AIDS for 16 years or more, can be explained by a mutant genotype for CCR2 or CCR5.
Collapse
|
Multicenter Study |
28 |
684 |
11
|
Tsuda M, Inoue K, Salter MW. Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia. Trends Neurosci 2005; 28:101-7. [PMID: 15667933 DOI: 10.1016/j.tins.2004.12.002] [Citation(s) in RCA: 629] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is a common and severely disabling state that affects millions of people worldwide. Such pain can be experienced after nerve injury or as part of diseases that affect peripheral nerve function, such as diabetes and AIDS; it can also be a component of pain in other conditions, such as cancer. Following peripheral nerve injury, microglia in the spinal cord become activated. Recent evidence indicates that activated microglia are key cellular intermediaries in the pathogenesis of nerve injury-induced pain hypersensitivity because P2X(4) purinoceptors and p38 mitogen-activated protein kinase, which are present in activated microglia, are required molecular mediators. It is important to establish how these molecules are activated in spinal microglia following nerve injury and how they cause signaling to neurons in the dorsal horn pain transmission network. Answers to these questions could lead to new strategies that assist in the diagnosis and management of neuropathic pain--strategies not previously anticipated by a neuron-centric view of pain plasticity in the dorsal horn.
Collapse
|
Review |
20 |
629 |
12
|
Charo IF, Myers SJ, Herman A, Franci C, Connolly AJ, Coughlin SR. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci U S A 1994; 91:2752-6. [PMID: 8146186 PMCID: PMC43448 DOI: 10.1073/pnas.91.7.2752] [Citation(s) in RCA: 576] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Monocyte chemoattractant protein 1 (MCP-1) is a member of the chemokine family of cytokines that mediate leukocyte chemotaxis. The potent and specific activation of monocytes by MCP-1 may mediate the monocytic infiltration of tissues in atherosclerosis and other inflammatory diseases. We have isolated cDNAs that encode two MCP-1-specific receptors with alternatively spliced carboxyl tails. Expression of the receptors in Xenopus oocytes conferred robust mobilization of intracellular calcium in response to nanomolar concentrations of MCP-1 but not to related chemokines. The MCP-1 receptors are most closely related to the receptor for the chemokines macrophage inflammatory protein 1 alpha and RANTES (regulated on activation, normal T expressed and secreted). The identification of the MCP-1 receptor and cloning of two distinct isoforms provide powerful tools for understanding the specificity and signaling mechanisms of this important chemokine.
Collapse
|
research-article |
31 |
576 |
13
|
Abstract
Our increasing appreciation of the importance of inflammation in vascular disease has focused attention on the molecules that direct the migration of leukocytes from the blood stream to the vessel wall. In this review, we summarize roles of the chemokines, a family of small secreted proteins that selectively recruit monocytes, neutrophils, and lymphocytes to sites of vascular injury, inflammation, and developing atherosclerosis. Chemokines induce chemotaxis through the activation of G-protein-coupled receptors, and the receptors that a given leukocyte expresses determines the chemokines to which it will respond. Monocyte chemoattractant protein 1 (MCP-1), acting through its receptor CCR2, appears to play an early and important role in the recruitment of monocytes to atherosclerotic lesions and in the formation of intimal hyperplasia after arterial injury. Acute thrombosis is an often fatal complication of atherosclerotic plaque rupture, and recent evidence suggests that MCP-1 contributes to thrombin generation and thrombus formation by generating tissue factor. Because of their critical roles in monocyte recruitment in vascular and nonvascular diseases, MCP-1 and CCR2 have become important therapeutic targets, and efforts are underway to develop potent and specific antagonists of these and related chemokines.
Collapse
|
|
21 |
571 |
14
|
Kuziel WA, Morgan SJ, Dawson TC, Griffin S, Smithies O, Ley K, Maeda N. Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci U S A 1997; 94:12053-8. [PMID: 9342361 PMCID: PMC23699 DOI: 10.1073/pnas.94.22.12053] [Citation(s) in RCA: 550] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/1997] [Indexed: 02/05/2023] Open
Abstract
CC chemokine receptor 2 (CCR2) is a prominent receptor for the monocyte chemoattractant protein (MCP) group of CC chemokines. Mice generated by gene targeting to lack CCR2 exhibit normal leukocyte rolling but have a pronounced defect in MCP-1-induced leukocyte firm adhesion to microvascular endothelium and reduced leukocyte extravasation. Constitutive macrophage trafficking into the peritoneal cavity was not significantly different between CCR2-deficient and wild-type mice. However, after intraperitoneal thioglycollate injection, the number of peritoneal macrophages in CCR2-deficient mice did not rise above basal levels, whereas in wild-type mice the number of macrophages at 36 h was approximately 3.5 times the basal level. The CCR2-deficient mice showed enhanced early accumulation and delayed clearance of neutrophils and eosinophils. However, by 5 days neutrophils and eosinophils in both CCR2-deficient and wild-type mice had returned to near basal levels, indicating that resolution of this inflammatory response can occur in the absence of macrophage influx and CCR2-mediated activation of the resident peritoneal macrophages. After intravenous injection with yeast beta-glucan, wild-type mice formed numerous large, well-defined granulomas throughout the liver parenchyma, whereas CCR2-deficient mice had much fewer and smaller granulomas. These results demonstrate that CCR2 is a major regulator of induced macrophage trafficking in vivo.
Collapse
|
research-article |
28 |
550 |
15
|
Winkler C, Modi W, Smith MW, Nelson GW, Wu X, Carrington M, Dean M, Honjo T, Tashiro K, Yabe D, Buchbinder S, Vittinghoff E, Goedert JJ, O'Brien TR, Jacobson LP, Detels R, Donfield S, Willoughby A, Gomperts E, Vlahov D, Phair J, O'Brien SJ. Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC). Science 1998; 279:389-93. [PMID: 9430590 DOI: 10.1126/science.279.5349.389] [Citation(s) in RCA: 533] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stromal-derived factor (SDF-1) is the principal ligand for CXCR4, a coreceptor with CD4 for T lymphocyte cell line-tropic human immunodeficiency virus-type 1 (HIV-1). A common polymorphism, SDF1-3'A, was identified in an evolutionarily conserved segment of the 3' untranslated region of the SDF-1 structural gene transcript. In the homozygous state, SDF1-3'A/3'A delays the onset of acquired immunodeficiency syndrome (AIDS), according to a genetic association analysis of 2857 patients enrolled in five AIDS cohort studies. The recessive protective effect of SDF1-3'A was increasingly pronounced in individuals infected with HIV-1 for longer periods, was twice as strong as the dominant genetic restriction of AIDS conferred by CCR5 and CCR2 chemokine receptor variants in these populations, and was complementary with these mutations in delaying the onset of AIDS.
Collapse
|
Multicenter Study |
27 |
533 |
16
|
Kurihara T, Warr G, Loy J, Bravo R. Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med 1997; 186:1757-62. [PMID: 9362535 PMCID: PMC2199145 DOI: 10.1084/jem.186.10.1757] [Citation(s) in RCA: 517] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chemokines are a structurally related family of cytokines that are important for leukocyte trafficking. The C-C chemokine monocyte chemoattractant protein-1 (MCP-1) is a potent monocyte activator in vitro and has been associated with monocytic infiltration in several inflammatory diseases. One C-C chemokine receptor, CCR2, has been identified that mediates in vitro responses to MCP-1 and its close structural homologues. CCR2 has also recently been demonstrated to be a fusion cofactor for several HIV isolates. To investigate the normal physiological function of CCR2, we generated mice with a targeted disruption of the ccr2 gene. Mice deficient for CCR2 developed normally and had no hematopoietic abnormalities. However, ccr2(-/-) mice failed to recruit macrophages in an experimental peritoneal inflammation model. In addition, these mice were unable to clear infection by the intracellular bacteria, Listeria monocytogenes. These results suggest that CCR2 has a nonredundant role as a major mediator of macrophage recruitment and host defense against bacterial pathogens and that MCP-1 and other CCR2 ligands are effectors of those functions.
Collapse
|
research-article |
28 |
517 |
17
|
Abstract
Chemokines play well established roles as attractants of naïve and effector T cells. New studies indicate that chemokines also have roles in regulating T cell differentiation. Blocking Gi protein-coupled receptor signaling by pertussis toxin as well as deficiencies in G alpha 12, chemokine receptor 2 (CCR2), CCR5, chemokine ligand 2 (CCL2, also known as monocyte chemoattractant protein 1, or MCP-1), CCL3 (macrophage inflammatory protein 1 alpha, or MIP-1 alpha) and CCL5 (RANTES) have all been found to have effects on the magnitude and cytokine polarity of the T cell response. Here we focus on findings in the CCL2-CCR2 and CCL3-CCR5 ligand-receptor systems. The roles of these molecules in regulating T cell fate include possible indirect effects on antigen-presenting cells and direct effects on differentiating T cells. Models to account for the action of chemokines and G protein-coupled receptor signals in regulating T cell differentiation are discussed.
Collapse
|
Review |
24 |
517 |
18
|
Abbadie C, Lindia JA, Cumiskey AM, Peterson LB, Mudgett JS, Bayne EK, DeMartino JA, MacIntyre DE, Forrest MJ. Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci U S A 2003; 100:7947-52. [PMID: 12808141 PMCID: PMC164693 DOI: 10.1073/pnas.1331358100] [Citation(s) in RCA: 485] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mice lacking the chemokine receptor chemotactic cytokine receptor 2 (CCR2) have a marked attenuation of monocyte recruitment in response to various inflammatory stimuli and a reduction of inflammatory lesions in models of demyelinating disease. In the present study, we compared nociceptive responses in inflammatory and neuropathic models of pain in CCR2 knockout and wild-type mice. In acute pain tests, responses were equivalent in CCR2 knockout and wild-type mice. In models of inflammatory pain, CCR2 knockout mice showed a 70% reduction in phase 2 of the intraplantar formalin-evoked pain response but only a modest (20-30%) and nonsignificant reduction of mechanical allodynia after intraplantar Freund's adjuvant (CFA). In a model of neuropathic pain, the development of mechanical allodynia was totally abrogated in CCR2 knockout mice. CFA administration induced marked up-regulation of CCR2 mRNA in the skin and a moderate increase in the sciatic nerve and dorsal root ganglia (DRG). In response to nerve ligation, persistent and marked up-regulation of CCR2 mRNA was evident in the nerve and DRG. Disruption of Schwann cells in response to nerve lesion resulted in infiltration of CCR2-positive monocytes/macrophages not only to the neuroma but also to the DRG. Chronic pain also resulted in the appearance of activated CCR2-positive microglia in the spinal cord. Collectively, these data suggest that the recruitment and activation of macrophages and microglia peripherally and in neural tissue may contribute to both inflammatory and neuropathic pain states. Accordingly, blockade of the CCR2 receptor may provide a novel therapeutic modality for the treatment of chronic pain.
Collapse
|
research-article |
22 |
485 |
19
|
Izikson L, Klein RS, Charo IF, Weiner HL, Luster AD. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J Exp Med 2000; 192:1075-80. [PMID: 11015448 PMCID: PMC2193310 DOI: 10.1084/jem.192.7.1075] [Citation(s) in RCA: 460] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2000] [Accepted: 07/31/2000] [Indexed: 11/04/2022] Open
Abstract
Monocyte recruitment to the central nervous system (CNS) is a necessary step in the development of pathologic inflammatory lesions in experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. Monocyte chemoattractant protein (MCP)-1, a potent agonist for directed monocyte migration, has been implicated in the pathogenesis of EAE. Here we report that deficiency in CC chemokine receptor (CCR)2, the receptor for MCP-1, confers resistance to EAE induced with a peptide derived from myelin oligodendrocyte glycoprotein peptide 35-55 (MOGp35-55). CCR2(-/)- mice immunized with MOGp35-55 failed to develop mononuclear cell inflammatory infiltrates in the CNS and failed to increase CNS levels of the chemokines RANTES (regulated on activation, normal T cell expressed and secreted), MCP-1, and interferon (IFN)-inducible protein 10 (IP-10) as well the chemokine receptors CCR1, CCR2, and CCR5. Additionally, T cells from CCR2(-/)- immunized mice showed decreased antigen-induced proliferation and production of IFN-gamma compared with wild-type immunized controls, suggesting that CCR2 enhances the T helper cell type 1 immune response in EAE. These data indicate that CCR2 plays a necessary and nonredundant role in the pathogenesis of EAE.
Collapse
MESH Headings
- Animals
- Central Nervous System/immunology
- Central Nervous System/pathology
- Chemokine CCL2/biosynthesis
- Chemokine CCL5/biosynthesis
- Chemokine CXCL10
- Chemokines, CXC/biosynthesis
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Immunity, Innate/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin Proteins
- Myelin-Associated Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein
- Receptors, CCR2
- Receptors, CCR5/biosynthesis
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
- T-Lymphocytes/immunology
Collapse
|
research-article |
25 |
460 |
20
|
Ambati J, Anand A, Fernandez S, Sakurai E, Lynn BC, Kuziel WA, Rollins BJ, Ambati BK. An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 2003; 9:1390-7. [PMID: 14566334 DOI: 10.1038/nm950] [Citation(s) in RCA: 440] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 09/23/2003] [Indexed: 12/19/2022]
Abstract
The study and treatment of age-related macular degeneration (AMD), a leading cause of blindness, has been hampered by a lack of animal models. Here we report that mice deficient either in monocyte chemoattractant protein-1 (Ccl-2; also known as MCP-1) or its cognate C-C chemokine receptor-2 (Ccr-2) develop cardinal features of AMD, including accumulation of lipofuscin in and drusen beneath the retinal pigmented epithelium (RPE), photoreceptor atrophy and choroidal neovascularization (CNV). Complement and IgG deposition in RPE and choroid accompanies senescence in this model, as in human AMD. RPE or choroidal endothelial production of Ccl-2 induced by complement C5a and IgG may mediate choroidal macrophage infiltration into aged wild-type choroids. Wild-type choroidal macrophages degrade C5 and IgG in eye sections of Ccl2(-/-) or Ccr2(-/-) mice. Impaired macrophage recruitment may allow accumulation of C5a and IgG, which induces vascular endothelial growth factor (VEGF) production by RPE, possibly mediating development of CNV. These models implicate macrophage dysfunction in AMD pathogenesis and may be useful as a platform for validating therapies.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
440 |
21
|
Wetzler C, Kämpfer H, Stallmeyer B, Pfeilschifter J, Frank S. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. J Invest Dermatol 2000; 115:245-53. [PMID: 10951242 DOI: 10.1046/j.1523-1747.2000.00029.x] [Citation(s) in RCA: 431] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chemokines are seen as the stimuli that largely control leukocyte migration. To assess whether the severely impaired process of cutaneous repair observed in genetically diabetic db/db mice is associated with a dysregulated infiltration of immune cells, we determined the expressional kinetics for the murine growth-regulated oncogene/melanoma growth stimulatory activity homolog macrophage inflammatory protein-2, and the macrophage chemoattractant protein-1, respectively. Wound repair in db/db mice was characterized by a sustained inflammatory response and a prolonged expression of macrophage inflammatory protein-2 and macrophage chemoattractant protein-1. Immuno-histochemistry revealed that keratinocytes at the wound margins expressed macrophage chemoattractant protein-1, whereas macrophage inflammatory protein-2 immunopositive signals were observed only in keratinocytes of hair follicles located adjacent to the wound site. Inactivation studies using neutralizing antibodies against macrophage chemoattractant protein-1 or macrophage inflammatory protein-2 indicated that sustained expression of these chemokines participated in a prolonged presence of neutrophils and macrophages at the wound site during diabetic repair. Furthermore, our data provide evidence that late infiltration (day 13 after injury) of neutrophils and macrophages into wounds in db/db mice was associated with a simultaneous downregulation of mRNA for receptors specific for macrophage inflammatory protein-2 and macrophage chemoattractant protein-1 in these animals.
Collapse
|
|
25 |
431 |
22
|
Abstract
Obesity induces an inflammation state that is implicated in many clinically important complications, including insulin resistance, diabetes, atherosclerosis and non-alcoholic fatty liver disease. Although the cause and the molecular participants in this process remain incompletely defined, adipose tissue has a central role. Obesity-induced production of pro-inflammatory molecules, typified by TNF-alpha was recognized more than a dozen years ago, and since then more than two dozen other pro-inflammatory molecules induced by obesity have been identified. More recently a critical role for immune cells, specifically mononuclear phagocytes, in generating the obesity-induced inflammation has been identified. Defining the molecular and cellular components of obesity-induced inflammation offers the potential of identifying therapeutic targets that can ameliorate the complications associated with obesity.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
415 |
23
|
Fife BT, Huffnagle GB, Kuziel WA, Karpus WJ. CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J Exp Med 2000; 192:899-905. [PMID: 10993920 PMCID: PMC2193286 DOI: 10.1084/jem.192.6.899] [Citation(s) in RCA: 405] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/1999] [Accepted: 08/04/2000] [Indexed: 11/15/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) T lymphocyte-mediated disease of the central nervous system (CNS) characterized by mononuclear cell infiltration, demyelination, and paralysis. We previously demonstrated a role for chemokines in acute and relapsing EAE pathogenesis. Presently, we investigated the role of CC chemokine receptor 2 (CCR2) in acute EAE. CCR2(-/-) mice did not develop clinical EAE or CNS histopathology, and showed a significant reduction in T cell- and CNS-infiltrating CD45(high)F4/80(+) monocyte subpopulations. Peripheral lymphocytes from CCR2(-/-) mice produced comparable levels of interferon-gamma (IFN-gamma) and interleukin (IL)-2 in response to antigen-specific restimulation when compared with control mice. Adoptively transferred myelin oligodendrocyte glycoprotein 35-55-specific T cells lacking expression of CCR2 were able to induce EAE, whereas CCR2(-/-) recipients of wild-type T cells failed to develop disease. These results suggest that CCR2 expression on host-derived mononuclear cells is critical for disease induction.
Collapse
|
research-article |
25 |
405 |
24
|
Gharaee-Kermani M, Denholm EM, Phan SH. Costimulation of fibroblast collagen and transforming growth factor beta1 gene expression by monocyte chemoattractant protein-1 via specific receptors. J Biol Chem 1996; 271:17779-84. [PMID: 8663511 DOI: 10.1074/jbc.271.30.17779] [Citation(s) in RCA: 355] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recent studies indicate potential roles of monocyte chemotactic protein-1 (MCP-1) in recruitment of monocytes to sites of inflammation. However, their increased expression does not always correlate with monocyte influx, suggesting other possible biological activities for this member of the C-C chemokine family. In view of its potential role in regulating extracellular matrix expression in fibrotic disorders, the effects of MCP-1 on lung fibroblast collagen expression were evaluated. Isolated rat lung fibroblasts were treated with increasing doses of MCP-1 for variable periods of time and examined for effects on collagen synthesis and expression of procollagen alpha1(I) mRNA expression. The results show that MCP-1 was able to stimulate collagen expression in these cells in a dose-dependent manner but required over 24 h for significant elevation to occur. In view of this delayed time course, the possibility of mediation via endogenous transforming growth factor beta (TGFbeta) was tested by the ability of anti-TGFbeta antibody to inhibit this MCP-1 stimulation of collagen expression. Significant but incomplete inhibition by this antibody was observed. Pretreatment of the cells with antisense but not by sense or missense TGFbeta1 oligodeoxyribonucleotides caused essentially complete inhibition of this MCP-1 stimulatory effect. Furthermore, MCP-1 treatment was found to also stimulate TGFbeta secretion and mRNA expression, which was also abolished by pretreatment with antisense TGFbeta1 oligodeoxyribonucleotides. The kinetics of TGFbeta expression indicates that significant increase preceded that for collagen expression. Binding studies using 125I-labeled MCP-1 indicated the presence of specific and saturable binding sites with a dissociation constant consistent with the dose response curves for stimulation of fibroblast collagen synthesis and TGFbeta activity by MCP-1. These results taken together suggest that MCP-1 stimulates fibroblast collagen expression via specific receptors and endogenous up-regulation of TGFbeta expression. The latter then results in autocrine and/or juxtacrine stimulation of collagen gene expression.
Collapse
|
|
29 |
355 |
25
|
Mack M, Cihak J, Simonis C, Luckow B, Proudfoot AE, Plachý J, Brühl H, Frink M, Anders HJ, Vielhauer V, Pfirstinger J, Stangassinger M, Schlöndorff D. Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4697-704. [PMID: 11254730 DOI: 10.4049/jimmunol.166.7.4697] [Citation(s) in RCA: 355] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chemokine receptors CCR2 and CCR5 play important roles in the recruitment of monocytes/macrophages and T cells. To better understand the role of both receptors in murine models of inflammatory diseases and to recognize potential problems when correlating these data to humans, we have generated mAbs against murine CCR2 and CCR5. In mice CCR2 is homogeneously expressed on monocytes and on 2--15% of T cells, closely resembling the expression pattern in humans. In contrast to humans, murine NK cells are highly CCR5 positive. In addition, CCR5 is expressed on 3--10% of CD4 and 10--40% of CD8-positive T cells and is weakly detectable on monocytes. Using a model of immune complex nephritis, we examined the effects of inflammation on chemokine receptor expression and found a 10-fold enrichment of CCR5(+) and CCR2(+) T cells in the inflamed kidneys. The activity of various chemokines and the antagonistic properties of the mAbs were measured by ligand-induced internalization of CCR2 and CCR5 on primary leukocytes. The Ab MC-21 (anti-CCR2) reduced the activity of murine monocyte chemotactic protein 1 by 95%, whereas the Ab MC-68 (anti-CCR5) blocked over 99% of the macrophage-inflammatory protein 1alpha and RANTES activity. MC-21 and MC-68 efficiently blocked the ligand binding to CCR2 and CCR5 with an IC(50) of 0.09 and 0.6--1.0 microg/ml, respectively. In good correlation to these in vitro data, MC-21 almost completely prevented the influx of monocytes in thioglycollate-induced peritonitis. Therefore, both Abs appear as useful reagents to further study the role of CCR2 and CCR5 in murine disease models.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/metabolism
- Antibodies, Blocking/pharmacology
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/metabolism
- Antibody Specificity
- Apoferritins/toxicity
- Binding, Competitive/immunology
- CCR5 Receptor Antagonists
- CHO Cells
- Cricetinae
- Down-Regulation/immunology
- Glomerulonephritis/chemically induced
- Glomerulonephritis/immunology
- Glomerulonephritis/prevention & control
- Injections, Intraperitoneal
- Leukocytes/metabolism
- Mice
- Mice, Inbred BALB C
- Peritonitis/chemically induced
- Peritonitis/immunology
- Peritonitis/prevention & control
- Rats
- Rats, Wistar
- Receptors, CCR2
- Receptors, CCR5/biosynthesis
- Receptors, CCR5/immunology
- Receptors, CCR5/metabolism
- Receptors, Chemokine/antagonists & inhibitors
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/immunology
- Receptors, Chemokine/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thioglycolates/toxicity
Collapse
|
|
24 |
355 |