1
|
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016; 68:357-418. [PMID: 26956245 PMCID: PMC4815360 DOI: 10.1124/pr.115.011833] [Citation(s) in RCA: 559] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists.
Collapse
|
Review |
9 |
559 |
2
|
Davenport AP. International Union of Pharmacology. XXIX. Update on endothelin receptor nomenclature. Pharmacol Rev 2002; 54:219-26. [PMID: 12037137 DOI: 10.1124/pr.54.2.219] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In mammals, the endothelin (ET) family comprises three endogenous isoforms, ET-1, ET-2, and ET-3. ET-1 is the principal isoform in the human cardiovascular system and remains the most potent and long-lasting constrictor of human vessels discovered. In humans, endothelins mediate their actions via only two receptor types that have been cloned and classified as the ET(A) and ET(B) receptors in the first NC-IUPHAR (International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification) report on nomenclature in 1994. This report was compiled before the discovery of the majority of endothelin receptor antagonists (particularly nonpeptides) currently used in the characterization of receptors and now updated in the present review. Endothelin receptors continue to be classified according to their rank order of potency for the three endogenous isoforms of endothelin. A selective ET(A) receptor agonist has not been discovered, but highly selective antagonists include peptides (BQ123, cyclo-[D-Asp-L-Pro-D-Val-L-Leu-D-Trp-]; FR139317, N- [(hexahydro-1-azepinyl)carbonyl]L-Leu(1-Me)D-Trp-3 (2-pyridyl)-D-Ala) and the generally more potent nonpeptides, such as PD156707, SB234551, L754142, A127722, and TBC11251. Sarafotoxin S6c, BQ3020 ([Ala(11,15)]Ac-ET-1((6-21))), and IRL1620 [Suc-(Glu(9), Ala(11,15))-ET-1((8-21))] are widely used synthetic ET(B) receptor agonists. A limited number of peptide (BQ788) and nonpeptide (A192621) ET(B) antagonists have also been developed. They are generally less potent than ET(A) antagonists and display lower selectivity (usually only 1 to 2 orders of magnitude) for the ET(B) receptor. Radioligands highly selective for either ET(A) ((125)I-PD151242, (125)I-PD164333, and (3)H-BQ123) or ET(B) receptors ((125)I-BQ3020 and (125)I-IRL1620) have further consolidated classification into only these two types, with no strong molecular or pharmacological evidence to support the existence of further receptors in mammals.
Collapse
|
Review |
23 |
186 |
3
|
Haynes WG, Strachan FE, Webb DJ. Endothelin ETA and ETB receptors cause vasoconstriction of human resistance and capacitance vessels in vivo. Circulation 1995; 92:357-63. [PMID: 7634449 DOI: 10.1161/01.cir.92.3.357] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The role of endothelin ETB receptors in mediating vasoconstriction in humans is unclear. As yet, there have been no in vivo studies in resistance vessels, and in vitro data have been contradictory. We therefore investigated the function of ETB receptors in vivo in human forearm resistance and hand capacitance vessels using endothelin-1 as a nonselective agonist at ETA and ETB receptors and endothelin-3 and sarafotoxin S6c as selective agonists at the ETB receptor. METHODS AND RESULTS A series of single-blind studies were performed, each in six healthy men. Brachial artery infusion of endothelin-1 and endothelin-3 caused slow-onset dose-dependent forearm vasoconstriction. Although endothelin-3 caused significantly less forearm vasoconstriction than endothelin-1 at low doses, vasoconstriction was similar to the two isopeptides at the highest dose (60 pmol/min). Endothelin-3 caused transient forearm vasodilatation at this dose, whereas endothelin-1 showed only a nonsignificant trend toward causing early vasodilatation. Intra-arterial sarafotoxin S6c caused a progressive reduction in forearm blood flow, although less than that to endothelin-1 (P = .04). Dorsal hand vein infusion of sarafotoxin S6c caused local venoconstriction that was also less than that to endothelin-1 (P = .002). CONCLUSIONS Selective ETB receptor agonists cause constriction of forearm resistance and hand capacitance vessels in vivo in humans, suggesting that both ETA and ETB receptors mediate vasoconstriction. Hence, antagonists at both ETA and ETB receptors, or inhibitors of the generation of endothelin-1, may be necessary to completely prevent vasoconstriction to endogenously generated endothelin-1.
Collapse
|
Clinical Trial |
30 |
181 |
4
|
Gallois C, Habib A, Tao J, Moulin S, Maclouf J, Mallat A, Lotersztajn S. Role of NF-kappaB in the antiproliferative effect of endothelin-1 and tumor necrosis factor-alpha in human hepatic stellate cells. Involvement of cyclooxygenase-2. J Biol Chem 1998; 273:23183-90. [PMID: 9722548 DOI: 10.1074/jbc.273.36.23183] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
During chronic liver diseases, hepatic stellate cells (HSC) acquire an activated myofibroblast-like phenotype and proliferate and synthesize fibrosis components. Endothelin-1 (ET-1), which inhibited the growth of human myofibroblastic HSC, increased the formation of two NF-kappaB DNA binding complexes; this effect was also observed with tumor necrosis factor-alpha (TNF-alpha). The complexes were identified as the p50/p50 and p50/p65 NF-kappaB dimers. Activation of NF-kappaB was associated with the degradation of the inhibitory protein IkappaB-alpha; no IkappaB-beta was detected. Activation of NF-kappaB and degradation of IkappaB-alpha were prevented by the NF-kappaB inhibitors sodium salicylate and MG-132. In addition to cyclooxygenase-1 (COX-1), COX-2 is also constitutively expressed in human HSC, and the use of dexamethasone and of SC-58125, a selective COX-2 inhibitor, revealed that COX-2 accounts for basal COX activity. Moreover, COX-2 mRNA and protein were up-regulated by ET-1 and TNF-alpha, whereas COX-1 was unaffected. Induction of COX-2 and stimulation of COX activity by ET-1 and TNF-alpha were prevented by sodium salicylate and MG-132, suggesting that activation of NF-kappaB by either factor is needed for stimulation of COX-2. Finally, SC-58125 and dexamethasone reduced the growth inhibitory effect of ET-1 and TNF-alpha, indicating that activation of COX-2 is required for inhibition of HSC proliferation. Taken together, our results suggest that NF-kappaB, by inducing COX-2 expression, may play an important role in the negative regulation of human myofibroblastic HSC proliferation.
Collapse
|
|
27 |
126 |
5
|
Abstract
The view of the endothelium as a passive barrier has gradually changed as a number of endothelium-derived substances have been discovered. Substances like nitric oxide, prostaglandins and endothelins have potent and important properties, involving not only the circulation as such but also the response to stimuli like inflammation and trauma. The endothelin system, discovered in 1988, has not only strong vasoconstrictor properties, but also immunomodulating, endocrinological and neurological effects exerted through at least two types of receptors. Septic shock, a condition with high mortality, is associated with vast cardiovascular changes, organ dysfunction with microcirculatory disturbances and dysoxia. In the experimental setting, endotoxaemia resembles these changes and is, as well as septic shock, accompanied by a pronounced increase in plasma endothelin levels. The pathophysiology in septic and endotoxin shock remains to be fully elucidated, but several studies indicate that endothelial dysfunction is one contributing mechanism. Activation of the endothelin system is associated with several pathological conditions complicating septic shock, such as acute respiratory distress syndrome, cardiac dysfunction, splanchnic hypoperfusion and disseminated intravascular coagulation. Through the development of both selective and nonselective endothelin receptor antagonists, the endothelin system has been the object of a large number of studies during the last decade. This review highlights systematically the findings of previous studies in the area. It provides strong indications that the endothelin system, apart from being a marker of vascular injury, is directly involved in the pathophysiology of septic and endotoxin shock. Interventions with endothelin receptor antagonists during septic and endotoxin shock have so far only been done in animal studies but the results are interesting and promising.
Collapse
|
Review |
25 |
119 |
6
|
Wu JJ, Chen JX, Rothman TP, Gershon MD. Inhibition of in vitro enteric neuronal development by endothelin-3: mediation by endothelin B receptors. Development 1999; 126:1161-73. [PMID: 10021336 DOI: 10.1242/dev.126.6.1161] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The terminal colon is aganglionic in mice lacking endothelin-3 or its receptor, endothelin B. To analyze the effects of endothelin-3/endothelin B on the differentiation of enteric neurons, E11-13 mouse gut was dissociated, and positive and negative immunoselection with antibodies to p75(NTR)were used to isolate neural crest- and non-crest-derived cells. mRNA encoding endothelin B was present in both the crest-and non-crest-derived cells, but that encoding preproendothelin-3 was detected only in the non-crest-derived population. The crest- and non-crest-derived cells were exposed in vitro to endothelin-3, IRL 1620 (an endothelin B agonist), and/or BQ 788 (an endothelin B antagonist). Neurons and glia developed only in cultures of crest-derived cells, and did so even when endothelin-3 was absent and BQ 788 was present. Endothelin-3 inhibited neuronal development, an effect that was mimicked by IRL 1620 and blocked by BQ 788. Endothelin-3 failed to stimulate the incorporation of [3H]thymidine or bromodeoxyuridine. Smooth muscle development in non-crest-derived cell cultures was promoted by endothelin-3 and inhibited by BQ 788. In contrast, transcription of laminin alpha1, a smooth muscle-derived promoter of neuronal development, was inhibited by endothelin-3, but promoted by BQ 788. Neurons did not develop in explants of the terminal bowel of E12 ls/ls (endothelin-3-deficient) mice, but could be induced to do so by endothelin-3 if a source of neural precursors was present. We suggest that endothelin-3/endothelin B normally prevents the premature differentiation of crest-derived precursors migrating to and within the fetal bowel, enabling the precursor population to persist long enough to finish colonizing the bowel.
Collapse
|
|
26 |
118 |
7
|
Stenman E, Malmsjö M, Uddman E, Gidö G, Wieloch T, Edvinsson L. Cerebral ischemia upregulates vascular endothelin ET(B) receptors in rat. Stroke 2002; 33:2311-6. [PMID: 12215604 DOI: 10.1161/01.str.0000028183.04277.32] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Elevated levels of endothelin-1 (ET-1) have been reported in cerebral ischemia. A role for ET may prove more important if the vascular receptors were changed. We addressed whether there is any change in ET receptor expression in cerebral ischemia. METHODS The right middle cerebral artery (MCA) was occluded in male Wistar rats for 2 hours with the intraluminal filament method. The basilar artery and both MCAs were removed after 46 hours of recirculation. The contractile responses to ET-1, a combined ET(A) and ET(B) receptor agonist, and sarafotoxin 6c (S6c), a selective ET(B) receptor agonist, were examined in vitro, and ET receptor mRNA was quantified by real-time polymerase chain reaction. RESULTS S6c, which had no contractile effect per se on fresh or sham-operated rat cerebral arteries, induced a marked contraction in the occluded MCA (E(max) [maximum contraction, calculated as percentage of the contractile capacity of 63.5 mmol/L K+]=68+/-68%; P<0.0001), while there was no difference in the responses to ET-1 after cerebral ischemia. Real-time polymerase chain reaction revealed a significant upregulation of both the ET(A) and ET(B) receptors (both P<0.05) in the occluded MCA compared with the nonoccluded MCA from the same rats. CONCLUSIONS Focal cerebral ischemia in rat induces increased transcription of both ET(A) and ET(B) receptors, which results in the appearance of a contractile response to the ET(B) receptor agonist S6c. These results suggest a role for ET receptors in the pathogenesis of a vascular component after cerebral ischemia.
Collapse
MESH Headings
- Animals
- Basilar Artery/drug effects
- Basilar Artery/physiopathology
- Brain Ischemia/etiology
- Brain Ischemia/physiopathology
- Disease Models, Animal
- Endothelin-1/pharmacology
- In Vitro Techniques
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/physiopathology
- Male
- Middle Cerebral Artery/drug effects
- Middle Cerebral Artery/physiopathology
- Peptide Elongation Factor 1/genetics
- Peptide Elongation Factor 1/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Endothelin A
- Receptor, Endothelin B
- Receptors, Endothelin/agonists
- Receptors, Endothelin/genetics
- Receptors, Endothelin/metabolism
- Up-Regulation
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
- Viper Venoms/pharmacology
Collapse
|
|
23 |
113 |
8
|
Love MP, Haynes WG, Gray GA, Webb DJ, McMurray JJ. Vasodilator effects of endothelin-converting enzyme inhibition and endothelin ETA receptor blockade in chronic heart failure patients treated with ACE inhibitors. Circulation 1996; 94:2131-7. [PMID: 8901663 DOI: 10.1161/01.cir.94.9.2131] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The importance of endothelin-1 in chronic heart failure (CHF) is unclear. We therefore investigated the effects of endothelin-converting enzyme (ECE) inhibition and endothelin ETA receptor blockade in CHF patients treated with ACE inhibitors. We also compared the function of ETA and ETB receptors in healthy subjects and patients with CHF. METHODS AND RESULTS Locally active doses of study drugs were infused into the nondominant brachial artery while forearm blood flow (FBF was measured by venous occlusion plethysmography. In CHF patients (n = 10), phosphoramidon (a combined ECE and neutral endopeptidase inhibitor) and BQ-123 (an ETA receptor antagonist) increased FBF by 52 +/- 10% (P = .0006) and 31 +/- 6% (P = .002), respectively, and thiorphan (a selective neutral endopeptidase inhibitor) reduced FBF by 15 +/- 5% (P = .0007). Forearm vasoconstriction to endothelin-1 (an ETA and ETB receptor agonist) was significantly blunted in CHF patients compared with control subjects (both n = 10; CHF versus control subjects, P < .001), whereas vasoconstriction to sarafotoxin S6c (an ETB receptor agonist) was significantly enhanced in CHF patients compared with control subjects (both n = 10; CHF versus control subjects. P < .05). CONCLUSIONS ECE inhibitors and ETA receptor antagonists may be useful as vasodilator agents in CHF patients already receiving treatment with an ACE inhibitor. Both ETA and ETB receptors can mediate agonist-induced vasoconstriction in healthy subjects and patients with CHF, but further studies are required to clarify the contribution of each receptor subtype in mediating the effects of endogenous endothelin-1.
Collapse
|
Clinical Trial |
29 |
111 |
9
|
Abstract
The possible involvement of endothelins in a variety of diseases has attracted the attention of many pharmacologists in search of a novel therapeutic approach. The rapid development of endothelin research has resulted in the molecular characterization and pharmacological recognition of ETA and ETB receptors, and in the development of compounds selective for these receptors. However, the characterization of receptors in various assays has shown that a number of effects are mediated by receptors that do not fit the present criteria for ETA or ETB receptors. In this article, Willem Bax and Pramod Saxena address endothelin receptors in general, and atypical receptors in particular.
Collapse
|
Review |
31 |
106 |
10
|
Piovezan AP, D'Orléans-Juste P, Souza GEP, Rae GA. Endothelin-1-induced ET(A) receptor-mediated nociception, hyperalgesia and oedema in the mouse hind-paw: modulation by simultaneous ET(B) receptor activation. Br J Pharmacol 2000; 129:961-8. [PMID: 10696096 PMCID: PMC1571931 DOI: 10.1038/sj.bjp.0703154] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endothelin-1 causes ET(A) receptor-mediated enhancement of capsaicin-induced nociception in mice. We have assessed if this hyperalgesic effect of endothelin-1 is also accompanied by other pro-inflammatory effects, namely nociception and oedema, and characterized the endothelin ET receptors involved. Intraplantar (i. pl.) hind-paw injection of endothelin-1 (0.3 - 30 pmol) induced graded nociceptive responses (accumulated licking time: vehicle, 20. 5+/-3.3 s; endothelin-1 at 30 pmol, 78.1+/-9.8 s), largely confined to the first 15 min. Endothelin-1 (1 - 10 pmol) potentiated ipsilateral capsaicin-induced (0.1 microgram, i.pl.; at 30 min) nociception (vehicle, 40.2+/-2.6 s; endothelin-1 at 10 pmol, 98.4+/-5.8 s, but 30 pmol was inactive), and caused oedema (increase in paw weight 5 min after capsaicin: vehicle, 46.3+/-2.3 mg; endothelin-1 at 30 pmol, 100.3+/-6.1 mg). Selective ET(B) receptor agonists sarafotoxin S6c (up to 30 pmol) and IRL 1620 (up to 100 pmol) were inactive, whereas endothelin-3 (up to 30 pmol) induced only modest oedema. ET(A) receptor antagonists BQ-123 (1 nmol, i.pl. ) or A-127722-5 (6 micromol kg(-1), i.v.) prevented all effects of endothelin-1 (10 pmol), but the ET(B) receptor antagonist BQ-788 (1 or 10 nmol, i.pl.) was ineffective. BQ-788 (10 nmol, i.pl.) unveiled hyperalgesic effects of 30 pmol endothelin-1 and endothelin-3. Sarafotoxin S6c (30 pmol, i.pl.) did not modify endothelin-1-induced (10 pmol) nociception or oedema, but abolished hyperalgesia. Thus, endothelin-1 triggers ET(A) receptor-mediated nociception, hyperalgesia and oedema in the mouse hind-paw. Simultaneous activation of ET(B) receptors by endothelin-1 or selective agonists can limit the hyperalgesic, but not the nociceptive or oedematogenic, effects of the peptide.
Collapse
|
research-article |
25 |
90 |
11
|
Rogers SD, Peters CM, Pomonis JD, Hagiwara H, Ghilardi JR, Mantyh PW. Endothelin B receptors are expressed by astrocytes and regulate astrocyte hypertrophy in the normal and injured CNS. Glia 2003; 41:180-90. [PMID: 12509808 DOI: 10.1002/glia.10173] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ability of mammalian central nervous system (CNS) neurons to survive and/or regenerate following injury is influenced by surrounding glial cells. To identify the factors that control glial cell function following CNS injury, we have focused on the endothelin B receptor (ET(B)R), which we show is expressed by the majority of astrocytes that are immunoreactive for glial acid fibrillary protein (GFAP) in both the normal and crushed rabbit optic nerve. Optic nerve crush induces a marked increase in ET(B)R and GFAP immunoreactivity (IR) without inducing a significant increase in the number of GFAP-IR astrocytes, suggesting that the crush-induced astrogliosis is due primarily to astrocyte hypertrophy. To define the role that endothelins play in driving this astrogliosis, artificial cerebrospinal fluid (CSF), ET-1 (an ET(A)R and ET(B)R agonist), or Bosentan (a mixed ET(A)R and ET(B)R antagonist) were infused via osmotic minipumps into noninjured and crushed optic nerves for 14 days. Infusion of ET-1 induced a hypertrophy of ET(B)R/GFAP-IR astrocytes in the normal optic nerve, with no additional hypertrophy in the crushed nerve, whereas infusion of Bosentan induced a significant decrease in the hypertrophy of ET(B)R/GFAP-IR astrocytes in the crushed but not in the normal optic nerve. These data suggest that pharmacological blockade of astrocyte ET(B)R receptors following CNS injury modulates glial scar formation and may provide a more permissive substrate for neuronal survival and regeneration.
Collapse
|
|
22 |
87 |
12
|
White TA, Kannan MS, Walseth TF. Intracellular calcium signaling through the cADPR pathway is agonist specific in porcine airway smooth muscle. FASEB J 2003; 17:482-4. [PMID: 12551848 DOI: 10.1096/fj.02-0622fje] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cyclic ADP-ribose (cADPR) induces intracellular Ca2+ ([Ca2+]i) release in airway smooth muscle, and the cADPR antagonist, 8-amino-cADPR, abolishes [Ca2+]i oscillations elicited by acetylcholine (ACh), suggesting that cADPR is involved during muscarinic receptor activation. Whether the cADPR signaling pathway is common to agonists acting through different G protein-coupled receptors is not known. Using digital video imaging of Fura2-AM loaded porcine airway smooth muscle cells, we examined the effects of the membrane-permeant cADPR antagonist, 8-bromo-cADPR (8Br-cADPR), on the [Ca2+]i responses to ACh, histamine and endothelin-1 (ET-1). In cells preincubated with 100 microM 8Br-cADPR, the [Ca2+]i responses to ACh and ET-1 were significantly attenuated, whereas responses to histamine were not, suggesting agonist specificity of cADPR signaling. The effects of 8Br-cADPR were concentration dependent. We further examined whether muscarinic receptor subtypes specifically couple to this pathway, because in porcine airway smooth muscle cells, ACh activates both M2 and M3 muscarinic receptors coupled to Gai and Gaq, respectively. Methoctramine, an M2-selective antagonist, attenuated the [Ca2+]i responses to Ach, and there was no further attenuation by 8Br-cADPR. In airway smooth muscle, the CD38/cADPR signaling pathway is involved in [Ca2+]i responses to contractile agonists in an agonist-specific manner.
Collapse
|
|
22 |
70 |
13
|
Thorin E, Clozel M. The cardiovascular physiology and pharmacology of endothelin-1. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 60:1-26. [PMID: 21081213 PMCID: PMC3693982 DOI: 10.1016/b978-0-12-385061-4.00001-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One year after the discovery in 1980 that the endothelium was obligatory for acetylcholine to relax isolated arteries, it was clearly shown that the endothelium could also promote contraction. In 1988, Dr Yanagisawa's group identified endothelin-1 (ET-1) as the first endothelium-derived contracting factor. The circulating levels of this short (21 amino acids) peptide were quickly determined in humans and it was reported that in most cardiovascular diseases, circulating levels of ET-1 were increased and ET-1 was then recognized as a likely mediator of pathological vasoconstriction in human. The discovery of two receptor subtypes in 1990, ET(A) and ET(B), permitted optimization of bosentan, which entered clinical development in 1993, and was offered to patients with pulmonary arterial hypertension in 2001. In this report, we discuss the physiological and pathophysiological role of endothelium-derived ET-1, the pharmacology of its two receptors, focusing on the regulation of the vascular tone and as much as possible in humans. The coronary bed will be used as a running example, but references to the pulmonary, cerebral, and renal circulation will also be made. Many of the cardiovascular complications associated with aging and cardiovascular risk factors are initially attributable, at least in part, to endothelial dysfunction, particularly dysregulation of the vascular function associated with an imbalance in the close interdependence of NO and ET-1, in which the implication of the ET(B) receptor may be central.
Collapse
|
Review |
15 |
69 |
14
|
Abstract
The endothelin system, consisting of three peptides, two peptidases and two G-protein coupled receptors, is widely expressed in the brain cell types and brain-derived tumor cell lines. The stimulation of endothelin receptors elicits a variety of short- and long-term changes at cellular level but the effects of the pharmacological modulation of the endothelin system in brain physiology and pathophysiology are, at the present time, poorly understood. Altered expression of endothelins (ETs) in reactive astrocytes has been observed in many pathological conditions of the human brain, such as infarcts, lacunae, traumatic conditions, Alzheimer's disease and inflammatory diseases of the brain. In addition, recent studies have shown that endothelin antagonists might inhibit growth and induce cell death in human melanoma cells in vitro and in vivo, and have emphasized a possible role of endothelin peptides as autocrine or paracrine factor in the proliferation and dissemination of tumor cell lines. Given the fact that brain cell and a variety of brain tumor cell lines express functional endothelin receptors, further studies are warranted to demonstrate a possible therapeutic role of endothelin agonists and antagonist in the pharmacological treatment of brain-related diseases and brain tumors.
Collapse
|
|
19 |
67 |
15
|
Goldie RG, Henry PJ, Knott PG, Self GJ, Luttmann MA, Hay DW. Endothelin-1 receptor density, distribution, and function in human isolated asthmatic airways. Am J Respir Crit Care Med 1995; 152:1653-8. [PMID: 7582310 DOI: 10.1164/ajrccm.152.5.7582310] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The potent bronchoconstrictor and mitogenic actions of the peptide endothelin-1 (ET-1) on airway smooth muscle may contribute significantly to the bronchial obstruction observed in asthma. However, the status of the receptor-effector systems that mediate these actions of ET-1 in asthmatic airways is currently unknown. Thus, we have used quantitative autoradiographic and isometric-tension recording techniques to evaluate the density, distribution, and function of the specific receptors that mediate the actions of ET-1 in both asthmatic and nonasthmatic airways. Here, we report that similar numbers of specific binding sites for [125I]-ET-1 exist in asthmatic and nonasthmatic airways, with the greatest densities located in airway smooth muscle in both tissue types. The ETB-receptor subtype constituted approximately 82% and 88% of these receptors for ET-1 in asthmatic and nonasthmatic human bronchial smooth muscle, respectively, and mediated contraction in response to this peptide. In addition, a component of ET-1-induced contraction appeared to be mediated by a non-ETB, BQ-123-resistant mechanism. Furthermore, a small population of ETA sites was identified that did not mediate contraction, but which may have a role in ET-1-induced prostanoid release and airway smooth-muscle proliferation. Interestingly, bronchial smooth muscle from asthmatic lung was significantly less sensitive to the contractile effects of ETB receptor activation, consistent with desensitization of this receptor subtype in response to the increased production and release of ET-1 that occurs in this disease.
Collapse
MESH Headings
- Adolescent
- Adult
- Asthma/metabolism
- Asthma/physiopathology
- Autoradiography
- Bronchi/chemistry
- Bronchi/drug effects
- Bronchi/physiopathology
- Carbachol/pharmacology
- Dose-Response Relationship, Drug
- Endothelins/pharmacology
- Female
- Humans
- In Vitro Techniques
- Male
- Muscle Contraction/drug effects
- Muscle, Smooth/chemistry
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiopathology
- Receptor, Endothelin A
- Receptor, Endothelin B
- Receptors, Endothelin/agonists
- Receptors, Endothelin/analysis
- Receptors, Endothelin/drug effects
- Receptors, Endothelin/physiology
- Regression Analysis
- Viper Venoms/pharmacology
Collapse
|
Comparative Study |
30 |
67 |
16
|
Cannan CR, Burnett JC, Lerman A. Enhanced coronary vasoconstriction to endothelin-B-receptor activation in experimental congestive heart failure. Circulation 1996; 93:646-51. [PMID: 8640990 DOI: 10.1161/01.cir.93.4.646] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Endothelin (ET), a coronary vasoconstrictor, mediates its activity through the specific receptors ET-A and ET-B, which may demonstrate different activity under pathophysiological conditions. Thoracic inferior vena cava constriction (TIVCC) is an experimental model of congestive heart failure that is characterized by a decrease in cardiac output and an increase in circulating ET concentrations. The present study was designed to test the hypothesis that experimental heart failure altered coronary vascular responsiveness to ET-A- and ET-B-receptor stimulation in vivo. METHODS AND RESULTS ET-1 was infused at a rate of 2 ng/kg per minute into the left circumflex coronary artery in normal dogs (n = 5) and in dogs subjected to TIVCC (TIVCC dogs, n = 6). Similarly, sarafotoxin, an ET-B-receptor agonist, was infused at the same dosage in normal (n = 5) and TIVCC (n = 6) dogs. Intracoronary infusion of ET-1 significantly decreased coronary blood flow and increased coronary vascular resistance in normal dogs; this effect was significantly attenuated in TIVCC compared with normal dogs. The percent changes in coronary blood flow and coronary vascular resistance in the TIVCC compared with the normal dogs was -11 +/- 8% versus -48 +/- 7% (P < .01) and 29 +/- 10% versus 105 +/- 23% (P < .01), respectively. There was no significant effect on coronary blood flow, coronary vascular resistance, or coronary artery diameter in normal dogs that received an intracoronary infusion of sarafotoxin. In contrast, the administration of intracoronary sarafotoxin in TIVCC compared with normal dogs resulted in significant percent changes in coronary blood flow and coronary vascular resistance (-31 +/- 4% versus -7 +/- 3% [P < .001] and 53 +/- 12% versus 12 +/- 8% [P < .02], respectively). CONCLUSIONS The present study demonstrates an attenuated coronary vasoconstrictor response to ET-1 with an enhanced vasoconstrictor response to sarafotoxin and suggests an alteration in coronary ET receptor sensitivity in experimental heart failure.
Collapse
|
|
29 |
67 |
17
|
Blomstrand F, Giaume C, Hansson E, Rönnbäck L. Distinct pharmacological properties of ET-1 and ET-3 on astroglial gap junctions and Ca(2+) signaling. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C616-27. [PMID: 10516091 DOI: 10.1152/ajpcell.1999.277.4.c616] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Astrocytes represent a major target for endothelins (ETs), a family of peptides that have potent and multiple effects on signal transduction pathways and can be released by several cell types in the brain. In the present study we have investigated the involvement of different ET receptor subtypes on intercellular dye diffusion, intracellular Ca(2+) homeostasis, and intercellular Ca(2+) signaling in cultured rat astrocytes from hippocampus and striatum. Depending on the ET concentration and the receptor involved, ET-1- and ET-3-induced intracellular Ca(2+) increases with different response patterns. Both ET-1 and ET-3 are powerful inhibitors of gap junctional permeability and intercellular Ca(2+) signaling. The nonselective ET receptor agonist sarafotoxin S6b and the ET(B) receptor-selective agonist IRL 1620 mimicked these inhibitions. The ET-3 effects were only marginally affected by an ET(A) receptor antagonist but completely blocked by an ET(B) receptor antagonist. However, the ET-1-induced inhibition of gap junctional dye transfer and intercellular Ca(2+) signaling was only marginally blocked by ET(A) or ET(B) receptor-selective antagonists but fully prevented when these antagonists were applied together. The ET-induced inhibition of gap junction permeability and intercellular Ca(2+) signaling indicates that important changes in the function of astroglial communication might occur when the level of ETs in the brain is increased.
Collapse
|
|
26 |
61 |
18
|
Black SM, Mata-Greenwood E, Dettman RW, Ovadia B, Fitzgerald RK, Reinhartz O, Thelitz S, Steinhorn RH, Gerrets R, Hendricks-Munoz K, Ross GA, Bekker JM, Johengen MJ, Fineman JR. Emergence of smooth muscle cell endothelin B-mediated vasoconstriction in lambs with experimental congenital heart disease and increased pulmonary blood flow. Circulation 2003; 108:1646-54. [PMID: 12963646 DOI: 10.1161/01.cir.0000087596.01416.2f] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Endothelin-1 (ET-1) has been implicated in the pathophysiology of pulmonary hypertension. In 1-month-old lambs with increased pulmonary blood flow, we have demonstrated early alterations in the ET-1 cascade. The objective of this study was to investigate the role of potential later alterations of the ET cascade in the pathophysiology of pulmonary hypertension secondary to increased pulmonary blood flow. METHODS AND RESULTS Eighteen fetal lambs underwent in utero placement of an aortopulmonary vascular graft (shunt) and were studied 8 weeks after spontaneous delivery. Compared with age-matched control lambs, lung tissue ET-1 levels were increased in shunt lambs (317.2+/-113.8 versus 209.8+/-61.8 pg/g, P<0.05). In shunt lambs (n=9), exogenous ET-1 induced potent pulmonary vasoconstriction, which was blocked by the ETA receptor antagonist PD 156707 (n=3). This pulmonary vasoconstriction was mimicked by exogenous Ala1,3,11,15 ET-1 (4 Ala ET-1), the ETB receptor agonist, and was blocked by the ETB receptor antagonist BQ 788 (n=3). However, in control lambs (n=7), ET-1 and 4 Ala ET-1 did not change pulmonary vascular tone. In contrast to 4-week-old shunt lambs, immunohistochemistry revealed the emergence of ETB receptors on smooth muscle cells in the vasculature of 8-week-old shunt lambs. CONCLUSIONS Over time, increased pulmonary blood flow and/or pressure results in the emergence of ETB-mediated vasoconstriction, which coincides with the emergence of ETB receptors on smooth muscle cells. These data suggest an important role for ETB receptors in the pathophysiology of pulmonary hypertension in this animal model of increased pulmonary blood flow.
Collapse
MESH Headings
- Animals
- Dioxoles/pharmacology
- Endothelin Receptor Antagonists
- Endothelin-1/metabolism
- Endothelin-1/pharmacology
- Endothelins/pharmacology
- Heart Defects, Congenital/complications
- Hemodynamics
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Lung/metabolism
- Muscle, Smooth, Vascular/chemistry
- Oligopeptides/pharmacology
- Piperidines/pharmacology
- Pulmonary Circulation
- Receptor, Endothelin A
- Receptor, Endothelin B
- Receptors, Endothelin/agonists
- Receptors, Endothelin/analysis
- Receptors, Endothelin/metabolism
- Receptors, Endothelin/physiology
- Sheep
- Vasoconstriction
Collapse
|
Comparative Study |
22 |
59 |
19
|
Cavarape A, Endlich N, Assaloni R, Bartoli E, Steinhausen M, Parekh N, Endlich K. Rho-kinase inhibition blunts renal vasoconstriction induced by distinct signaling pathways in vivo. J Am Soc Nephrol 2003; 14:37-45. [PMID: 12506136 DOI: 10.1097/01.asn.0000039568.93355.85] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In addition to intracellular calcium, which activates myosin light chain (MLC) kinase, MLC phosphorylation and hence contraction is importantly regulated by MLC phosphatase (MLCP). Recent evidence suggests that distinct signaling cascades of vasoactive hormones interact with the Rho/Rho kinase (ROK) pathway, affecting the activity of MLCP. The present study measured the impact of ROK inhibition on vascular F-actin distribution and on vasoconstriction induced by activation/inhibition of distinct signaling pathways in vivo in the microcirculation of the split hydronephrotic rat kidney. Local application of the ROK inhibitors Y-27632 or HA-1077 induced marked dilation of pre- and postglomerular vessels. Activation of phospholipase C with the endothelin ET B agonist IRL 1620, inhibition of soluble guanylyl cyclase with 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), or inhibition of adenylyl cyclase with the adenosine A1 agonist N6-cyclopentyladenosine (CPA) reduced glomerular blood flow (GBF) by about 50% through vasoconstriction at different vascular levels. ROK inhibition with Y-27632 or HA-1077, but not protein kinase C inhibition with Ro 31-8220, blunted ET B-induced vasoconstriction. Furthermore, the reduction of GBF and of vascular diameters in response to ODQ or CPA were abolished by pretreatment with Y-27632. ROK inhibitors prevented constriction of preglomerular vessels and of efferent arterioles with equal effectiveness. Confocal microscopy demonstrated that Y-27632 did not change F-actin content and distribution in renal vessels. The results suggest that ROK inhibition might be considered as a potent treatment of renal vasoconstriction, because it interferes with constriction induced by distinct signaling pathways in renal vessels without affecting F-actin structure.
Collapse
|
|
22 |
56 |
20
|
Henriksson M, Stenman E, Edvinsson L. Intracellular pathways involved in upregulation of vascular endothelin type B receptors in cerebral arteries of the rat. Stroke 2003; 34:1479-83. [PMID: 12750545 DOI: 10.1161/01.str.0000072984.79136.79] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Previous studies have shown that contractile endothelin type B (ETB) receptors are upregulated in cerebral arteries after experimental focal cerebral ischemia. The aim of this study was to examine the upregulation of contractile ETB receptors in cerebral arteries after organ culture and to elucidate the intracellular pathways involved. METHODS Rat middle cerebral arteries (MCAs) were incubated with or without inhibitors. The vessels were mounted in myographs, and the contractile responses to endothelin-1 (ET-1) (ETA and ETB receptor agonist) and sarafotoxin 6c (ETB receptor agonist) were measured. Levels of ETB receptor mRNA were measured with real-time polymerase chain reaction. RESULTS In fresh MCA, sarafotoxin 6c had no contractile effect. However, after organ culture, a strong concentration-dependent contraction was induced. ET-1 produced a strong contraction, in which the Emax was unaffected by organ culture but the EC50 was decreased with time. The sarafotoxin 6c-induced contraction after 24 hours of organ culture was attenuated by the transcriptional inhibitor actinomycin D and the translational inhibitor cycloheximide as well as the protein kinase C inhibitor Ro-31-8220. Real-time polymerase chain reaction revealed that the mRNA levels of the ETB receptor were increased after organ culture compared with fresh vessels. Actinomycin D and Ro-31-8220 diminished the enhanced mRNA levels considerably. CONCLUSIONS The results suggest that, in fresh MCA, the ETA receptor is the most prominent subtype, while after organ culture ETB receptors also contribute to the contraction. This upregulation is due to de novo transcription of receptors. Protein kinase C is involved in the upregulation as Ro-31-8220 attenuates the contraction and the mRNA increase.
Collapse
|
|
22 |
55 |
21
|
Chakraborty C, Barbin YP, Chakrabarti S, Chidiac P, Dixon SJ, Lala PK. Endothelin-1 promotes migration and induces elevation of [Ca2+]i and phosphorylation of MAP kinase of a human extravillous trophoblast cell line. Mol Cell Endocrinol 2003; 201:63-73. [PMID: 12706295 DOI: 10.1016/s0303-7207(02)00431-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A highly proliferative, migratory and invasive subpopulation of human placental trophoblasts, known as extravillous trophoblasts (EVT), invades the uterus and its vasculature, to establish an adequate exchange of key molecules between the maternal and fetal circulation. Our earlier studies provided evidence for a positive regulation of migration/invasion of EVT by an autocrine factor IGFII and a paracrine, decidua-derived factor IGFBP1. The present study examined the role played by endothelin (ET)-1, also produced at the fetal-maternal interface, and its receptor subtypes ET(A) and ET(B) in the regulation of human EVT cell functions. We utilized an in vitro propagated EVT cell line (HTR-8/SVneo) which exhibits the phenotypic and functional characteristics of EVT in situ. Reverse transcription-PCR with primers specific for prepro-ET-1, ET(A) and ET(B) cDNAs demonstrated the expression of all these genes in HTR-8/SVneo cells. While proliferation was not influenced, migration of these cells through porous Transwell membranes was stimulated by exogenous ET-1. ET-1 also induced biphasic elevation of cytosolic free Ca(2+) concentrations ([Ca(2+)](i)) consisting of an initial transient followed by a sustained plateau, as measured by spectrofluorimetry. The dependence of the Ca(2+) response on phospholipase C (PLC) was demonstrated by its abrogation in the presence of PLC inhibitor U73122. Furthermore, ET-1 treatment of EVT cells rapidly stimulated phosphorylation of MAP kinase (ERK1/2). By using ET receptor antagonists and agonists, it was shown that both ET(A) and ET(B) receptors were responsible for the effects of ET-1 on migration, [Ca(2+)](i) and MAPK phosphorylation. Thus, ET-1 may represent an autocrine/paracrine mediator of invasive trophoblast function.
Collapse
|
|
22 |
54 |
22
|
Kakoki M, Hirata Y, Hayakawa H, Tojo A, Nagata D, Suzuki E, Kimura K, Goto A, Kikuchi K, Nagano T, Omata M. Effects of hypertension, diabetes mellitus, and hypercholesterolemia on endothelin type B receptor-mediated nitric oxide release from rat kidney. Circulation 1999; 99:1242-8. [PMID: 10069794 DOI: 10.1161/01.cir.99.9.1242] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although endothelin-1 is a potent vasoconstrictor peptide, stimulation of endothelin type B receptor (ETBR) causes bidirectional changes in vascular tone, ie, vasodilation and vasoconstriction. Roles of ETBR in pathological conditions are largely unknown. METHODS AND RESULTS We studied the effect of BQ-3020, a highly selective ETBR agonist, on renal vascular resistance and nitric oxide (NO) release in the isolated, perfused kidney of rats with hypertension, diabetes mellitus, and hypercholesterolemia. Immunohistochemistry of endothelial NO synthase and ETBR was also examined. Infusion of BQ-3020 at concentrations of </=10(-10) mol/L reduced renal perfusion pressure in Dahl salt-resistant (R) rats but increased renal perfusion pressure in Dahl salt-sensitive (S) rats (10(-10) mol/L: -10.3+/-0. 6% versus 11.2+/-1.5%, R versus S; P<0.01). BQ-3020 caused a dose-dependent release of NO in both R and S rats, although the level of NO release in S rats was lower, as detected by chemiluminescence (10(-10) mol/L: 10.7+/-0.7 versus 3.1+/-0.4 fmol/min per gram of kidney, R versus S; P<0.01). Similar effects of BQ-3020 were observed in streptozotocin-induced diabetic rats and diet-induced hypercholesterolemic rats. Expression of endothelial NO synthase decreased in S rats but not in diabetic or hypercholesterolemic rats. In contrast, expression of ETBR in the endothelium was decreased in all 3 disease models compared with that in the vascular smooth muscle cell. CONCLUSIONS These results suggest that impaired NO release in response to stimulation of ETBR is due, at least in part, to a decrease in endothelial ETBR and may play a role in vascular dysfunction usually associated with arteriosclerosis-related diseases.
Collapse
|
|
26 |
53 |
23
|
McCulloch KM, Docherty C, MacLean MR. Endothelin receptors mediating contraction of rat and human pulmonary resistance arteries: effect of chronic hypoxia in the rat. Br J Pharmacol 1998; 123:1621-30. [PMID: 9605569 PMCID: PMC1565339 DOI: 10.1038/sj.bjp.0701785] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. We examined the endothelin (ET) receptors mediating contractions to ET-1, ET-3 and sarafotoxin S6c (SX6c) in rat pulmonary resistance arteries by use of peptide and non-peptide ET receptor antagonists. Changes induced by pulmonary hypertension were examined in the chronically hypoxic rat. The effect of the mixed ET(A)/ET(B) receptor antagonist SB 209670 on endothelin-mediated contraction was also examined in human pulmonary resistance arteries. 2. In rat vessels, the order of potency for the endothelin agonists was SX6c = ET-3 > ET-1 (pEC50 values in control rats: 9.12+/-0.10, 8.76+/-0.14 and 8.12+/-0.04, respectively). Maximum contractions induced by ET-3 and ET-1 were increased in vessels from chronically hypoxic rats. 3. The ET(A) receptor antagonist FR 139317 (1 microM) had no effect on the potency of ET-1 in any vessel studied but abolished the increased response to ET-1 in the chronically hypoxic vessels. The ET(A) receptor antagonist BMS 182874 (1 microM) increased the potency of ET-1 in control rat vessels without effecting potency in the pulmonary hypertensive rat vessels. 4. Bosentan (non-peptide mixed ET(A)/ET(B) receptor antagonist) increased the potency of ET-1 in control rat vessels but was without effect in the pulmonary hypertensive rat vessels. Bosentan (1 microM) inhibited responses to SX6c in control and chronically hypoxic rat vessels with pKb values of 5.84 and 6.11, respectively. The ET(B) receptor antagonist BQ-788 (1 microM) did not inhibit responses to ET-1 in any vessel tested but did inhibit responses to both SX6c and ET-3 (pKb values in control and chronically hypoxic rat vessels respectively: SX6c 7.15 and 7.22; ET-3: 6.68 and 6.89). BQ-788 (1 microM) added with BMS 182874 (10 microM) did not inhibit responses to ET-1 in control vessels but caused a significant inhibition of responses to ET-1 in chronically hypoxic preparations. 5. SB 209670 inhibited responses to ET-1 in both control and chronically hypoxic vessels with pKb values of 7.36 and 7.39, respectively. SB 209670 (0.1 and 1 microM) virtually abolished responses to ET-1 in the human pulmonary resistance artery. 6. In conclusion, in rat pulmonary resistance arteries, vasoconstrictions induced by ET-1, SX6c and ET-3 are mediated predominantly by activation of an ET(B)-like receptor. However, lack of effect of some antagonists on ET-1 induced vasoconstriction suggests that ET-1 stimulates an atypical ET(B) receptor. The increase in potency of ET-1 in the presence of some antagonists suggests the presence of an inhibitory ET(A)-like receptor. The influence of this is reduced, or absent, in the chronically hypoxic rats. Increased responses to ET-1 are observed in the chronically hypoxic rat and may be mediated by increased activation of ET(A) receptors. SB 209670 is unique in its potency against responses to ET-1 in both control and chronically hypoxic rats, as well as human, isolated pulmonary resistance arteries.
Collapse
|
research-article |
27 |
53 |
24
|
Abstract
1. In 1988, Yanagisawa et al. reported the presence of a potent peptide from the supernatant of porcine endothelial cells. This was later named endothelin-1 (ET-1) and was found to belong to a new family of vasoconstrictor peptides. There are at least three isoforms of endothelin: ET-1, endothelin-2 and endothelin-3. 2. ET-1 is produced from a larger precursor molecule by endothelin converting enzyme (ECE); there may be a number of ECE but the most physiologically relevant appears to be a membrane-bound neutral metalloprotease. The endothelin precursor is produced on demand and is regulated at the mRNA level. 3. Two subtypes of mammalian endothelin receptors have been cloned and sequenced: ETA receptors which mediate vasoconstriction and ETB receptors which mediate both vasoconstriction and vasodilatation. However, functional studies have indicated that other subtypes of endothelin receptors may exist. 4. ET-1 has a wide range of biological actions apart from its direct effects on vascular tone, including constriction of non-vascular smooth muscle, cardiac effects, mitogenesis and stimulation of the release of hormones such as atrial natriuretic peptide and prostacyclin. At low concentrations which have no direct vasoconstrictor action, ET-1 potentiates the effect of other vasoconstrictor agonists. 5. The precise role of ET-1 in health and disease is not well defined at present; however, there are indications that it may have a role in the pathogenesis of some cardiovascular disease states, including subarachnoid haemorrhage, renal ischaemia and certain types of hypertension.
Collapse
|
Review |
30 |
51 |
25
|
D'Orléans-Juste P, Claing A, Télémaque S, Maurice MC, Yano M, Gratton JP. Block of endothelin-1-induced release of thromboxane A2 from the guinea pig lung and nitric oxide from the rabbit kidney by a selective ETB receptor antagonist, BQ-788. Br J Pharmacol 1994; 113:1257-62. [PMID: 7889281 PMCID: PMC1510539 DOI: 10.1111/j.1476-5381.1994.tb17133.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. The present study characterizes the receptors responsible for endothelin-1-induced release of thromboxane A2 from the guinea pig lung and of endothelium-derived nitric oxide from the rabbit perfused kidney, by the use of the selective ETA receptor antagonist, BQ-123, and a novel selective ETB receptor antagonist, BQ-788. 2. In the guinea pig perfused lung, endothelin-1 (ET-1) (5 nM) induced a marked increase of thromboxane A2 which was reduced by 17 +/- 5.0, 70 +/- 1.0 and 93 +/- 1.2% by BQ-788 infused at concentrations of 1, 5 and 10 nM respectively. In contrast, BQ-123 (0.1 and 1.0 microM) had little or no effect on the ET-1-induced release of thromboxane A2. 3. In the same perfused model, the selective ETB agonist, IRL 1620 (50 nM), stimulated the release of thromboxane A2, but not prostacyclin. The eicosanoid-releasing properties of IRL 1620 were abolished by BQ-788 at 10 nM, yet were unaffected by BQ-123 (1 microM). 4. In the rabbit perfused kidney, BQ-788 (10 nM) potentiated the increase of perfusion pressure induced by endothelin-1 (1, 5 and 10 nM) by approximately 90%, but not that induced by angiotensin II (1 microM). Furthermore, the selective ETB receptor antagonist did not reduce the release of prostacyclin triggered by either peptide. 5. In another series of experiments, pretreatment of the perfused kidney with a nitric oxide synthase inhibitor, L-NAME (100 microM), potentiated the pressor responses to both endothelin-1 and angiotensin II. Under L-NAME treatment, BQ-788 did not further potentiate the pressor response to endothelin-1. 6 Our results illustrate the predominant role of ETB receptor activation in the release of thromboxane A2 and nitric oxide triggered by endothelin-l in the guinea pig perfused lung and rabbit kidney respectively.
Collapse
|
research-article |
31 |
49 |