1
|
Thomas CM, Hong T, van Pijkeren JP, Hemarajata P, Trinh DV, Hu W, Britton RA, Kalkum M, Versalovic J. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One 2012; 7:e31951. [PMID: 22384111 PMCID: PMC3285189 DOI: 10.1371/journal.pone.0031951] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/20/2012] [Indexed: 02/06/2023] Open
Abstract
Beneficial microbes and probiotic species, such as Lactobacillus reuteri, produce biologically active compounds that can modulate host mucosal immunity. Previously, immunomodulatory factors secreted by L. reuteri ATCC PTA 6475 were unknown. A combined metabolomics and bacterial genetics strategy was utilized to identify small compound(s) produced by L. reuteri that were TNF-inhibitory. Hydrophilic interaction liquid chromatography-high performance liquid chromatography (HILIC-HPLC) separation isolated TNF-inhibitory compounds, and HILIC-HPLC fraction composition was determined by NMR and mass spectrometry analyses. Histamine was identified and quantified in TNF-inhibitory HILIC-HPLC fractions. Histamine is produced from L-histidine via histidine decarboxylase by some fermentative bacteria including lactobacilli. Targeted mutagenesis of each gene present in the histidine decarboxylase gene cluster in L. reuteri 6475 demonstrated the involvement of histidine decarboxylase pyruvoyl type A (hdcA), histidine/histamine antiporter (hdcP), and hdcB in production of the TNF-inhibitory factor. The mechanism of TNF inhibition by L. reuteri-derived histamine was investigated using Toll-like receptor 2 (TLR2)-activated human monocytoid cells. Bacterial histamine suppressed TNF production via activation of the H2 receptor. Histamine from L. reuteri 6475 stimulated increased levels of cAMP, which inhibited downstream MEK/ERK MAPK signaling via protein kinase A (PKA) and resulted in suppression of TNF production by transcriptional regulation. In summary, a component of the gut microbiome, L. reuteri, is able to convert a dietary component, L-histidine, into an immunoregulatory signal, histamine, which suppresses pro-inflammatory TNF production. The identification of bacterial bioactive metabolites and their corresponding mechanisms of action with respect to immunomodulation may lead to improved anti-inflammatory strategies for chronic immune-mediated diseases.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
317 |
2
|
Abstract
In this article, we review the recent developments in the field of histamine research. Besides the description of pharmacological tools for the H1, H2 and H3 receptor, specific attention is paid to both the molecular aspects of the receptor proteins, including the recent cloning of the receptor genes, and their respective signal transduction mechanisms.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cloning, Molecular
- Gene Expression Regulation/genetics
- Histamine Agonists/pharmacology
- Histamine Antagonists/pharmacology
- Humans
- Ligands
- Molecular Sequence Data
- Receptors, Histamine/chemistry
- Receptors, Histamine/classification
- Receptors, Histamine/genetics
- Receptors, Histamine/metabolism
- Receptors, Histamine H1/chemistry
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/metabolism
- Receptors, Histamine H2/chemistry
- Receptors, Histamine H2/genetics
- Receptors, Histamine H2/metabolism
- Receptors, Histamine H3/chemistry
- Receptors, Histamine H3/genetics
- Receptors, Histamine H3/metabolism
- Signal Transduction/genetics
Collapse
|
Review |
30 |
257 |
3
|
Paesen GC, Adams PL, Harlos K, Nuttall PA, Stuart DI. Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure. Mol Cell 1999; 3:661-71. [PMID: 10360182 DOI: 10.1016/s1097-2765(00)80359-7] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High-affinity histamine-binding proteins (HBPs) were discovered in the saliva of Rhipicephalus appendiculatus ticks. Their ability to outcompete histamine receptors indicates that they suppress inflammation during blood feeding. The crystal structure of a histamine-bound HBP, determined at 1.25 A resolution, reveals a lipocalin fold novel in containing two binding sites for the same ligand. The sites are orthogonally arranged and highly rigid and form an internal surface of unusual polar character that complements the physicochemical properties of histamine. As soluble receptors of histamine, HBPs offer a new strategy for controlling histamine-based diseases.
Collapse
MESH Headings
- Animals
- Binding Sites/physiology
- Carrier Proteins/chemistry
- Cloning, Molecular
- Crystallography
- Cysteine Proteinase Inhibitors/chemistry
- Female
- Gene Expression/physiology
- Hemeproteins/chemistry
- Histamine/metabolism
- Histamine Antagonists/chemistry
- Insect Proteins/chemistry
- Insect Proteins/genetics
- Insect Proteins/metabolism
- Lipocalin 1
- Male
- Molecular Sequence Data
- Platelet Aggregation Inhibitors/chemistry
- Platelet Aggregation Inhibitors/metabolism
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/genetics
- RNA, Messenger/analysis
- Receptors, Histamine/chemistry
- Receptors, Histamine/genetics
- Receptors, Histamine/metabolism
- Receptors, Histamine H1/chemistry
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/metabolism
- Receptors, Histamine H2/chemistry
- Receptors, Histamine H2/genetics
- Receptors, Histamine H2/metabolism
- Receptors, Histamine H3/chemistry
- Receptors, Histamine H3/genetics
- Receptors, Histamine H3/metabolism
- Salivary Proteins and Peptides/chemistry
- Sequence Homology, Amino Acid
- Ticks
Collapse
|
|
26 |
229 |
4
|
Paesen GC, Adams PL, Nuttall PA, Stuart DL. Tick histamine-binding proteins: lipocalins with a second binding cavity. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1482:92-101. [PMID: 11058751 DOI: 10.1016/s0167-4838(00)00168-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tick histamine-binding proteins (HBPs) are lipocalins with two binding pockets. One of these binds histamine with a high affinity and is found at the position expected from other lipocalins, adjacent to the omega-loop at the open-end of the beta-barrel. A second binding cavity, which is a low-affinity site for histamine in one of the HBPs, is located at the end of the barrel that is closed off in other lipocalins. In order to create the second site, the 'closed-end' region has undergone a major reconstruction. Typical lipocalin characteristics, such as the 3(10) helix and a structural cluster of highly conserved residues, have been lost, while an alpha-helix now shields the cavity from the exterior. The prominence of acidic residues in the binding pockets is another distinctive characteristic of HBPs. Whereas most lipocalins have highly hydrophobic binding cavities designed to bind lipophilic compounds, HBPs have evolved to trap cationic, hydrophilic molecules.
Collapse
|
Review |
25 |
83 |
5
|
Traiffort E, Pollard H, Moreau J, Ruat M, Schwartz JC, Martinez-Mir MI, Palacios JM. Pharmacological Characterization and Autoradiographic Localization of Histamine H2Receptors in Human Brain Identified with [125I]Iodoaminopotentidine. J Neurochem 1992; 59:290-9. [PMID: 1351926 DOI: 10.1111/j.1471-4159.1992.tb08903.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
125I-Aminopotentidine (125I-APT), a reversible probe of high specific radioactivity and high affinity and selectivity for the H2 receptor, was used to characterize and localize this histamine receptor subtype in human brain samples obtained at autopsy. On membranes of human caudate nucleus, specific 125I-APT binding at equilibrium revealed a single component, with a dissociation constant of 0.3 nM and maximal capacity of about 100 fmol/mg of protein. At 0.2 nM, 125I-APT specific binding, as defined with tiotidine, an H2-receptor antagonist chemically unrelated to iodoaminopotentidine, represented 40-50% of the total. Specific 125I-APT binding was inhibited by a series of typical H2-receptor antagonists that displayed apparent dissociation constants closely similar to corresponding values at the reference biological system, i.e., guinea pig atrium. This indicates that the pharmacology of the H2 receptor is the same in the human brain as on this reference system. However, histamine was about 10-fold more potent in inhibiting 125I-APT binding to membranes of human brain than of guinea pig brain. 125I-APT binding was also inhibited by amitriptyline and mianserin, two antidepressant drugs, in micromolar concentrations corresponding to effective plasma concentrations of treated patients. The distribution of H2 receptors was established autoradiographically with 125I-APT on a series of coronal sections of human brain after assessing the pharmacological specificity of the labeling. The highest density of 125I-APT sites was found in the basal ganglia, various parts of the limbic system, e.g., hippocampus or amygdaloid complex, and the cerebral cortex. H2 receptors displayed a laminar distribution in cerebral cortex and hippocampal formation. A low density of sites was found in cerebellum as well as in hypothalamus, the brain area where all the perikarya and the largest number of axons of histaminergic neurons are found. The widespread distribution of H2 receptors in the human brain is consistent with the alleged modulatory role of histamine mediated by this subtype of receptor.
Collapse
|
|
33 |
68 |
6
|
Fukushima Y, Oka Y, Saitoh T, Katagiri H, Asano T, Matsuhashi N, Takata K, van Breda E, Yazaki Y, Sugano K. Structural and functional analysis of the canine histamine H2 receptor by site-directed mutagenesis: N-glycosylation is not vital for its action. Biochem J 1995; 310 ( Pt 2):553-8. [PMID: 7544576 PMCID: PMC1135930 DOI: 10.1042/bj3100553] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
G-protein-coupled receptors generally share a similar structure containing seven membrane-spanning domains and extracellular site(s) for N-glycosylation. The histamine H2 receptor is a member of the family of G-protein-coupled receptors, and has three extracellular potential sites for N-glycosylation (Asn-4, Asn-162 and Asn-168). To date, however, no information has been presented regarding N-glycosylation of the H2 receptor. To investigate the presence, location and functional roles of N-glycosylation of the H2 receptor, site-directed mutagenesis was performed to eliminate the potential site(s) for N-glycosylation singly and collectively. The wild-type and mutated H2 receptors were expressed stably in Chinese hamster ovary (CHO) cells or transiently in COS7 cells. Immunoblotting of the wild-type and mutated H2 receptors with an antiserum directed against the C-terminus of the H2 receptor showed that mutation at Asn-162, but not at Asn-168, resulted in a substantial decrease in the molecular mass. A mutation at Asn-4 led to a further decrease in the molecular mass. Tunicamycin treatment of the transfected cells yielded a sharp band with a molecular mass identical to that of the mutant devoid of all three potential sites for N-glycosylation. These findings indicate that the H2 receptor is N-glycosylated, and that N-glycosylation takes place mainly at two sites, Asn-4 and Asn-162. Neither the affinity for tiotidine nor that for histamine was affected by the mutagenesis. Immunocytochemistry and tiotidine binding showed that the mutated receptors were exclusively distributed on the cell surface in a fashion similar to that of the wild-type. In addition, the glycosylation-defective receptor was capable of activating adenylate cyclase and elevating the intracellular Ca2+ concentration in response to histamine in stable CHO cell lines. Thus N-glycosylation of the H2 receptor is not required for cell surface localization, ligand binding or functional coupling to G-protein(s).
Collapse
|
research-article |
30 |
51 |
7
|
Fukushima Y, Asano T, Saitoh T, Anai M, Funaki M, Ogihara T, Katagiri H, Matsuhashi N, Yazaki Y, Sugano K. Oligomer formation of histamine H2 receptors expressed in Sf9 and COS7 cells. FEBS Lett 1997; 409:283-6. [PMID: 9202162 DOI: 10.1016/s0014-5793(97)00531-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A histamine H2 receptor, which had been mutated at its glycosylation site and tagged at its N-terminus with an HA tag (HA-H2 receptor), was expressed in Sf9 cells and COS7 cells. Immunoprecipitation and immunoblotting of HA-H2 receptors with alphaHA antibody revealed four bands of 31.5 +/- 2.5 kDa, 59.0 +/- 6.0 kDa, 80.5 +/- 4.5 kDa and 120 kDa. These bands were also detected by immunoblot using anti-H2 receptor serum (C-terminus). In addition, H2 receptors without the HA-tag coimmunoprecipitated with HA-tagged H2 receptors devoid of the 51 C-terminal amino acids, via immunoprecipitation with alphaHA antibody, when the two receptors were coexpressed. These results suggest that H2 receptors are present as receptor oligomers and that the C-terminal portion is not involved in the formation of these oligomers.
Collapse
|
|
28 |
42 |
8
|
Fukushima Y, Asano T, Takata K, Funaki M, Ogihara T, Anai M, Tsukuda K, Saitoh T, Katagiri H, Aihara M, Matsuhashi N, Oka Y, Yazaki Y, Sugano K. Role of the C terminus in histamine H2 receptor signaling, desensitization, and agonist-induced internalization. J Biol Chem 1997; 272:19464-70. [PMID: 9235948 DOI: 10.1074/jbc.272.31.19464] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To evaluate the role of the histamine H2 receptor C terminus in signaling, desensitization, and agonist-induced internalization, canine H2 receptors with truncated C termini were generated. Wild-type (WT) and truncated receptors were tagged at their N termini with a hemagglutinin (HA) epitope and expressed in COS7 cells. Most of the C-terminal intracellular tail could be truncated (51 of 70 residues, termed T308 mutant) without loss of functions: cAMP production, tiotidine binding, and plasma membrane targeting. In fact, the T308 mutant produced more cAMP than the WT when cell-surface expression per cell was equivalent. Pretreatment of cells with 10(-5) M histamine desensitized cAMP productions via WT and T308 receptors to similar extents. Incubation of cells expressing WT receptors with 10(-5) M histamine reduced cell-surface anti-HA antibody binding by approximately 30% (by 30 min, t1/2 approximately 15 min), but did not affect the Bmax of tiotidine in membrane fractions, which represents total receptor amounts, suggesting that WT receptors were internalized from the cell surface. In contrast, no internalization was observed with T308 receptors following histamine treatment. A mutant with a deletion of the 30 C-terminal amino acids, termed T329, was functional but was as potent as the WT in terms of cAMP production. Apart from being desensitized by histamine, the internalization of the receptor was indistinguishable from that of the WT. Internalization was observed in the T320 but not in T313 mutant, narrowing the region involved in internalization to that between Glu314 and Asn320 (ETSLRSN). Of these seven residues, either Thr315, Ser316, or both, were replaced with Ala. Thr315 and Ser316 are conserved among species. The mutation at Thr315 (but not that at Ser316) abolished internalization. Taken together, these results demonstrate that Thr315 is involved in agonist-induced internalization. Furthermore, the finding that T308 receptors were desensitized in the absence of internalization suggests that internalization and desensitization are meditated by independent mechanisms.
Collapse
|
|
28 |
37 |
9
|
Malan SF, van Marle A, Menge WM, Zuliani V, Zuliana V, Hoffman M, Timmerman H, Leurs R. Fluorescent ligands for the histamine H2 receptor: synthesis and preliminary characterization. Bioorg Med Chem 2004; 12:6495-503. [PMID: 15556766 DOI: 10.1016/j.bmc.2004.09.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 09/10/2004] [Accepted: 09/14/2004] [Indexed: 12/01/2022]
Abstract
3-[3-(Piperidinomethyl)phenoxy]alkyl, N-cyano-N'-[omega-[3-(1-piperidinylmethyl)phenoxy]alkyl]guanidine and 2-(5-methyl-4-imidazolyl)methyl thioethyl derivatives containing fluorescent functionalities were synthesized and the histamine H2 receptor affinity was evaluated using the H2 antagonist [125I]-aminopotentidine. The compounds exhibited weak to potent H2 receptor affinity with pKi values ranging from <4 to 8.85. The highest H2 receptor affinity was observed for N-cyano-N'-[omega-[3-(1-piperidinylmethyl)phenoxy]alkyl]guanidines substituted with methylanthranilate (13), cyanoindolizine (6) and cyanoisoindole (11) moieties via an ethyl or propyl linker.
Collapse
|
|
21 |
30 |
10
|
Del Valle J, Gantz I. Novel insights into histamine H2 receptor biology. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:G987-96. [PMID: 9374694 DOI: 10.1152/ajpgi.1997.273.5.g987] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Histamine exerts multiple biological actions through one of three receptor subtypes (H1, H2, and H3). This review focuses on new developments regarding the structure and function of the H2 receptor. In addition to the important role this receptor plays in stimulating gastric acid secretion, recent studies have demonstrated that it is also involved in regulating gastrointestinal motility and intestinal secretion. The potential role of the H2 receptor in regulating cell growth and differentiation has also been added to the list of actions this biogenic amine may exert in both normal and transformed tissues. Molecular cloning of the gene indicates that it has the structural characteristics of a heptahelical G protein-linked receptor. Site-directed mutagenesis studies of this receptor reveal the presence of key amino acids within the third and fifth transmembrane domains that are critical for ligand recognition. Molecular approaches have also shed light on the structural components of the H2 receptor important in regulating desensitization and internalization. Although the H2 receptor was classically thought to couple to the adenylate cyclase pathway, recent work with the cloned receptor indicates that it can also activate the phosphoinositide signaling cascade through an independent G protein-dependent mechanism. The novel observation that histamine may stimulate c-fos gene expression lends further support to the possible role of this receptor in regulating cell growth and differentiation.
Collapse
|
Review |
28 |
28 |
11
|
Smit MJ, Roovers E, Timmerman H, van de Vrede Y, Alewijnse AE, Leurs R. Two distinct pathways for histamine H2 receptor down-regulation. H2 Leu124 --> Ala receptor mutant provides evidence for a cAMP-independent action of H2 agonists. J Biol Chem 1996; 271:7574-82. [PMID: 8631790 DOI: 10.1074/jbc.271.13.7574] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pretreatment of Chinese hamster ovary cells expressing the histamine H2 receptor (CHOrH2 cells) with histamine resulted in a time-dependent (t1/2 approximately 7 h) and dose-dependent (EC50=18 nM) H2 receptor down-regulation measured as [125I]iodoaminopotentidine binding (44+/-10% down-regulation). Pretreatment of CHOrH2 cells with cholera toxin or forskolin also led to H2 receptor down-regulation. Forskolin time-dependently (t1/2 approximately 7 h) and dose-dependently (EC50 = 0.3 microM) induced H2 receptor down-regulation. Both histamine and forskolin induced rapid down-regulation of H2 receptor mRNA levels, probably caused by mRNA destabilization. Recently, Moro et al. (Moro, O. Lameh, J., Hogger, P., and Sadée, W. (1993) J. Biol. Chem. 268, 22273-22276) showed that hydrophobic amino acids in a conserved G-protein-coupled receptor motif in the second intracellular loop are implicated in G-protein coupling. To uncouple the H2 receptor from the Gs-protein, we introduced the Leu124 --> Ala mutation in the second intracellular loop of the H2 receptor. The H2 Leu124 --> Ala mutant showed altered agonist-binding parameters, attenuated histamine-induced cAMP production, and was down-regulated by concentrations of histamine that did not give rise to cAMP production. Taken together, in CHOrH2 cells, H2 receptor down-regulation appears to be induced by two distinct pathways, a cAMP-dependent and cAMP-independent pathway.
Collapse
MESH Headings
- 1-Methyl-3-isobutylxanthine/pharmacology
- Amino Acid Sequence
- Animals
- Base Sequence
- CHO Cells
- Cholera Toxin/pharmacology
- Colforsin/pharmacology
- Cricetinae
- Cyclic AMP/metabolism
- DNA Primers
- Dose-Response Relationship, Drug
- Down-Regulation
- Gene Expression/drug effects
- Guanidines/metabolism
- Histamine/pharmacology
- Histamine Agonists/pharmacology
- Histamine H2 Antagonists/metabolism
- Iodine Radioisotopes
- Kinetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Point Mutation
- Polymerase Chain Reaction
- Protein Structure, Secondary
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Radioligand Assay
- Rats
- Receptors, Histamine H2/biosynthesis
- Receptors, Histamine H2/chemistry
- Receptors, Histamine H2/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Transfection
Collapse
|
|
29 |
19 |
12
|
Takahashi K, Tanaka S, Furuta K, Ichikawa A. Histamine H(2) receptor-mediated modulation of local cytokine expression in a mouse experimental tumor model. Biochem Biophys Res Commun 2002; 297:1205-10. [PMID: 12372415 DOI: 10.1016/s0006-291x(02)02360-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accumulating evidence indicates that histamine is involved in the modulation of cytokine expression patterns. We previously reported that daily treatment with the H(2) receptor antagonist, cimetidine, suppressed tumor growth through alteration of the local cytokine expression pattern. In this study, we used a mouse strain genetically lacking histidine decarboxylase (HDC), to evaluate the role of endogenous histamine synthesis on cytokine expression and tumor development. In the mutant mice, cimetidine had no effect on tumor growth, whereas an H(2) agonist, dimaprit, significantly enhanced tumor growth. When the HDC-deficient mice were implanted with mutant CT-26 cells stably expressing HDC, drastic suppression of tumor growth by cimetidine was observed, which was accompanied by augmentation of mRNA expression of LT-beta, TNF-alpha, and IFN-gamma in the tumor tissues. These results suggest that endogenous histamine synthesis in tumor tissues suppresses local tumor immunity via the H(2) receptors, resulting in tumor growth promotion.
Collapse
|
|
23 |
15 |
13
|
Abstract
The binding site in G protein-coupled cationic biogenic amine receptors is formed in the cleft of the seven transmembrane segments. Upon binding the ligand, the receptors are activated or inactivated through the conformational changes of the transmembrane segments. G protein-coupled receptors bind four functionally distinct ligands; inverse agonists, antagonists, partial agonists, and full agonists. Hence, putative structural models for biogenic amine receptors corresponding to the ligand function (inverse agonist-, antagonist-, partial agonist-, and full agonist-bound receptor models) were built by using photointermediate models in the rhodopsin photocascade (M. Ishiguro et al. ChemBioChem. 2004, 5, 298-310). The ligand-receptor recognition of each was examined by modeling receptor-ligand complexes with functional ligands. The complex models suggested that each functional ligand binds the corresponding receptor structure and that ligand-specific interactions contribute to stabilization of the corresponding receptor structure.
Collapse
MESH Headings
- Amino Acids/analysis
- Computational Biology
- Ligands
- Models, Molecular
- Protein Transport/physiology
- Receptor, Serotonin, 5-HT2A/chemistry
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptors, Adrenergic/chemistry
- Receptors, Adrenergic/metabolism
- Receptors, Biogenic Amine/agonists
- Receptors, Biogenic Amine/metabolism
- Receptors, Dopamine/chemistry
- Receptors, Dopamine/metabolism
- Receptors, Histamine H2/chemistry
- Receptors, Histamine H2/metabolism
- Receptors, Muscarinic/chemistry
- Receptors, Muscarinic/metabolism
Collapse
|
|
21 |
14 |
14
|
Nederkoorn PH, Vernooijs P, Donné-Op den Kelder GM, Baerends EJ, Timmerman H. A new model for the agonistic binding site on the histamine H2-receptor: the catalytic triad in serine proteases as a model for the binding site of histamine H2-receptor agonists. JOURNAL OF MOLECULAR GRAPHICS 1994; 12:242-56. [PMID: 7696215 DOI: 10.1016/0263-7855(94)80101-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The historical model for the agonistic binding site on the histamine H2-receptor is based on a postulated activation mechanism: it has been suggested that the histamine monocation binds to the histamine H2-receptor via the formation of three hydrogen bonds. The cationic ammonium group in the side chain and the -NH- group in the tau-position of the imidazole act as proton donors, whereas the =N- atom in the pi-position of the imidazole acts as a proton acceptor. Participation of the ammonium group in H-bonding with a presumed negative charge on the receptor leads to a decrease in positive charge, which is thought to induce a tautomeric change in the imidazole ring system from N tau-H to N pi-H. A consequence of this tautomeric shift is the donation of a proton from the receptor to the agonist on one side, while on the other side a proton is donated from the agonist to the receptor. The propose tautomeric shift has been suggested to trigger the H2-stimulating effect. However, this model for the constitution of the agonistic binding site and the accessory activation mechanism cannot explain the weak histamine H2-activity of beta-histine and the activity of several other recently synthesized H2-agonists. Based on a thorough literature study and with the aid of molecular electrostatic potentials (MEPs) we demonstrate that the sulphur atom present in histamine H2-agonists as dimaprit and 2-amino-5-(2-aminoethyl)thiazole does not function as a proton acceptor, which implicitly means that a tautomeric shift is not a prerequisite for H2-stimulation. As a consequence, the model for the agonistic binding site is adjusted, resulting in a strong resemblance to the nature and orientation of the amino acids constituting the catalytic triad in serine proteases. Within this concept, the N pi-H tautomer of histamine is the biologically active form, in contrast with the existing model in which the N tau-H tautomer is the active form.
Collapse
|
Review |
31 |
14 |
15
|
Hok L, Mavri J, Vianello R. The Effect of Deuteration on the H 2 Receptor Histamine Binding Profile: A Computational Insight into Modified Hydrogen Bonding Interactions. Molecules 2020; 25:molecules25246017. [PMID: 33353215 PMCID: PMC7766521 DOI: 10.3390/molecules25246017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023] Open
Abstract
We used a range of computational techniques to reveal an increased histamine affinity for its H2 receptor upon deuteration, which was interpreted through altered hydrogen bonding interactions within the receptor and the aqueous environment preceding the binding. Molecular docking identified the area between third and fifth transmembrane α-helices as the likely binding pocket for several histamine poses, with the most favorable binding energy of −7.4 kcal mol−1 closely matching the experimental value of −5.9 kcal mol−1. The subsequent molecular dynamics simulation and MM-GBSA analysis recognized Asp98 as the most dominant residue, accounting for 40% of the total binding energy, established through a persistent hydrogen bonding with the histamine −NH3+ group, the latter further held in place through the N–H∙∙∙O hydrogen bonding with Tyr250. Unlike earlier literature proposals, the important role of Thr190 is not evident in hydrogen bonds through its −OH group, but rather in the C–H∙∙∙π contacts with the imidazole ring, while its former moiety is constantly engaged in the hydrogen bonding with Asp186. Lastly, quantum-chemical calculations within the receptor cluster model and utilizing the empirical quantization of the ionizable X–H bonds (X = N, O, S), supported the deuteration-induced affinity increase, with the calculated difference in the binding free energy of −0.85 kcal mol−1, being in excellent agreement with an experimental value of −0.75 kcal mol−1, thus confirming the relevance of hydrogen bonding for the H2 receptor activation.
Collapse
|
Journal Article |
5 |
14 |
16
|
Smit MJ, Timmerman H, Blauw J, Beukers MW, Roovers E, Jacobs EH, Hoffmann M, Leurs R. The C terminal tail of the histamine H2 receptor contains positive and negative signals important for signal transduction and receptor down-regulation. J Neurochem 1996; 67:1791-800. [PMID: 8863482 DOI: 10.1046/j.1471-4159.1996.67051791.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To examine the role of the C terminal tail in H2 receptor regulation, three cDNAs, encoding truncated histamine H2 receptor mutants (H2T295, H2T307, and H2T341), were constructed and stably transfected in Chinese hamster ovary (CHO) cells. The amino acids before position 307 appear to be necessary for proper receptor transport or folding, as no detectable H2 receptor binding of the H2T295 was observed after transfection. Truncation of the C terminal tail by 51 amino acids (H2T307) did not affect the binding properties of H2 antagonists and histamine or histamine-induced signaling. Yet, removal of 17 amino acids generated a mutant receptor (H2T341), which was able to form a ternary complex but was unable to fully activate the Gs protein on histamine exposure. Agonist-induced but not the cyclic AMP-dependent H2 receptor down-regulation was more profound for the H2T307 receptor, indicating that different structural elements of the H2 receptor protein are involved in the cyclic AMP-dependent and independent pathways of H2 receptor down-regulation. Taken together, in this study we identified regions in the C terminal tail of the H2 receptor that act as positive and/or negative signals in H2 receptor signaling and down-regulation.
Collapse
|
|
29 |
13 |
17
|
Rodriguez-Pena MS, Timmerman H, Leurs R. Modulation of histamine H(2) receptor signalling by G-protein-coupled receptor kinase 2 and 3. Br J Pharmacol 2000; 131:1707-15. [PMID: 11139450 PMCID: PMC1572484 DOI: 10.1038/sj.bjp.0703676] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To evaluate the role of G-protein-coupled receptor kinases (GRK) in the desensitization of the histamine H(2) receptor, the H(2) receptor was transiently cotransfected with GRK2, 3, 5 or 6 in COS-7 cells and the cyclic AMP levels in response to histamine were studied. Coexpression of the H(2) receptor with GRK2 and 3 significantly decreased both the basal cyclic AMP levels and the cyclic AMP response to 100 microM histamine. Moreover, preincubation with 100 microM histamine desensitized the H(2) receptor response to 53+/-8%. Coexpression of GRK2 and 3 increased the H(2) receptor desensitization to 27+/-4% and 24+/-4% respectively. No effect on either cyclic AMP response or desensitization was found when GRK5, GRK6 or dominant negative mutants of GRK2 or 3 (GRK2K(220)R and GRK3K(220)R) were coexpressed. To study the role of the C-terminal tail in the GRK-mediated desensitization of the H(2) receptor, three truncations of C-tail were constructed: H(2)T295, H(2)T307 and H(2)T341. H(2)T307 and 341 H(2)T341 expressed and responded normally to 100 microM histamine. The interaction of the H(2) receptor with GRK2 and 3 was also not altered upon truncation of the C-terminal tail. These findings strongly suggest a role of GRK2 and 3 in the desensitization of the H(2) receptor. Furthermore, the finding that C-terminal truncations of the H(2) receptor did not abolish the effect of GRK2 and 3 suggests that the C-terminus is not involved in the GRK mediated desensitization of the histamine H(2) receptor.
Collapse
|
research-article |
25 |
13 |
18
|
Nederkoorn PH, van Gelder EM, Donné-Op den Kelder GM, Timmerman H. The agonistic binding site at the histamine H2 receptor. II. Theoretical investigations of histamine binding to receptor models of the seven alpha-helical transmembrane domain. J Comput Aided Mol Des 1996; 10:479-89. [PMID: 8951655 DOI: 10.1007/bf00124477] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the first part (pp. 461-478 in this issue) of this study regarding the histamine H2 receptor agonistic binding site, the best possible interactions of histamine with an alpha-helical oligopeptide, mimicking a part of the fifth transmembrane alpha-helical domain (TM5) of the histamine H2 receptor, were considered. It was established that histamine can only bind via two H-bonds with a pure alpha-helical TM5, when the binding site consists of Tyr182/Asp186 and not of the Asp186/Thr190 couple. In this second part, two particular three-dimensional models of G-protein-coupled receptors previously reported in the literature are compared in relation to agonist binding at the histamine H2 receptor. The differences between these two receptor models are discussed in relation to the general benefits and limitations of such receptor models. Also the pros and cons of simplifying receptor models to a relatively easy-to-deal-with oligopeptide for mimicking agonistic binding to an agonistic binding site are addressed. Within complete receptor models, the simultaneous interaction of histamine with both TM3 and TM5 can be analysed. The earlier suggested three-point interaction of histamine with the histamine H2 receptor can be explored. Our results demonstrate that a three-point interaction cannot be established for the Asp98/ Asp186/Thr190 binding site in either of the investigated receptor models, whereas histamine can form three H-bonds in case the agonistic binding site is constituted by the Asp98/Tyr182/Asp186 triplet. Furthermore, this latter triplet is seen to be able to accommodate a series of substituted histamine analogues with known histamine H2 agonistic activity as well.
Collapse
|
Comparative Study |
29 |
12 |
19
|
Nederkoorn PH, van Lenthe JH, van der Goot H, Donné-Op den Kelder GM, Timmerman H. The agonistic binding site at the histamine H2 receptor. I. Theoretical investigations of histamine binding to an oligopeptide mimicking a part of the fifth transmembrane alpha-helix. J Comput Aided Mol Des 1996; 10:461-78. [PMID: 8951654 DOI: 10.1007/bf00124476] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mutation studies on the histamine H2 receptor were reported by Gantz et al. [J. Biol. Chem., 267 (1992) 20840], which indicate that both the mutation of the fifth transmembrane Asp186 (to Ala186) alone or in combination with Thr190 (to Ala190) maintained, albeit partially, the cAMP response to histamine. Recently, we have shown that histamine binds to the histamine H2 receptor as a monocation in its proximal tautomeric form, and, moreover, we suggested that a proton is donated from the receptor towards the tele-position of the agonist, thereby triggering the biological effect [Nederkoorn et al., J. Mol. Graph., 12 (1994) 242; Eriks et al., Mol. Pharmacol., 44 (1993) 886]. These findings result in a close resemblance with the catalytic triad (consisting of Ser, His and Asp) found in serine proteases. Thr190 resembles a triad's serine residue closely, and could also act as a proton donor. However, the mutation of Thr190 to Ala190-the latter is unable to function as a proton donor-does not completely abolish the agonistic cAMP response. At the fifth transmembrane alpha-helix of the histamine H2 receptor near the extracellular surface, another amino acid is present, i.e. Tyr182, which could act as a proton donor. Furthermore, Tyr182 lies within the proximity of Asp186, so an alternative couple of amino acids, Tyr182 and Asp186, could constitute the histamine binding site at the fifth alpha-helix instead of the (mutated) couple Asp186 and Thr190. In the first part of our present study, this hypothesis is investigated with the aid of an oligopeptide with an alpha-helical backbone, which represents a part of the fifth transmembrane helix. Both molecular mechanics and ab initio data lead to the conclusion that the Tyr182/Asp186 couple is most likely to act as the binding site for the imidazole ring present in histamine.
Collapse
|
|
29 |
11 |
20
|
Mazurek AP, Karpińska G. Theoretical studies on molecular determinants for recognition at H3 histamine receptors. Z NATURFORSCH C 1994; 49:471-5. [PMID: 7945672 DOI: 10.1515/znc-1994-7-813] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The determinants for recognition at H3 histamine receptors are considered. Findings based on quantum-chemical calculations suggest that H3 histamine receptor is less hydrophilic than the H2. The form most likely to be recognized by the H3 receptor is an intramolecularly hydrogen-bonded form of alpha-methylhistamine. Receptor environment and hydration effects of active form of histamine analogs are of crucial importance.
Collapse
|
Comparative Study |
31 |
9 |
21
|
Wang LD, Gantz I, Butler K, Hoeltzel M, Del Valle J. Histamine H2 receptor mediated dual signaling: mapping of structural requirements using beta2 adrenergic chimeric receptors. Biochem Biophys Res Commun 2000; 276:539-45. [PMID: 11027510 DOI: 10.1006/bbrc.2000.3507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we demonstrated that the histamine H2 receptor can activate both the adenylate cyclase and phosphoinositide/protein kinase (PKC) signaling pathways. Although dual coupling occurs via separate GTP-dependent mechanisms the structural components of the H2 receptor directing differential signaling have not been established. We explored this question by attempting to confer to the beta2-adrenergic receptor (betaAR), which is known to stimulate cAMP formation, the ability to activate PKC through the construction of beta2/H2 chimeric receptors. Intracytoplasmic domains of the human beta2 adrenergic receptor were substituted with the corresponding sequences of the human H2 receptor and stably expressed in HEK-293 cells. Binding of [(3)H]-CGP to chimeric wild type beta2 receptors was comparable. Substitution of the second intracellular loop (2i) of the betaAR led to a significant decrease in coupling to adenylate cyclase while leading to a 139.5 +/- 9.4% control increase in epinephrine mediated PKC activation. Introduction of the H2 receptor 3i also led to a decrease in betaAR mediated cAMP generation but provided the latter with the ability to stimulate PKC (182.2 +/- 8% of control). Concomitant expression of both 2i and 3i led to a substantial increase in epinephrine mediated PKC activation (201.8 +/- 10.5% of control). Addition of the carboxyl terminal tail did not facilitate stimulation of PKC. In summary, the third intracellular loop of the H2 receptor plays an essential role in activating PKC with maximal efficiency conferred by the second intracellular domain.
Collapse
|
|
25 |
6 |
22
|
Abstract
A pH-dependent model of agonist action for the histamine H2 receptor was developed by taking into account the different ionic states of the amino acid residues that constitute the agonist-binding pocket of the receptor. The model offers the possibility of examining diverse mechanistic pathways to yield the active form of the receptor according to the molecular structure of the ligand. The rationale is valid for either tautomeric or non-tautomeric agonists and provides new insight into the mechanism of receptor activation. The subsequent application of the operational model of agonism allows one to derive agonist concentration- effect relationships that may prove useful for both the simulation of agonist profiles under different physiological conditions and the estimation of the pharmacologic parameters of efficacy and potency. General principles involved in the formulation are expected to be valid for other G-protein-coupled receptors.
Collapse
|
|
26 |
6 |
23
|
Saxena M, Bhunia SS, Saxena AK. Molecular modelling studies on 2-substituted octahydropyrazinopyridoindoles for histamine H2 receptor antagonism. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:739-755. [PMID: 26461804 DOI: 10.1080/1062936x.2015.1088572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 08/26/2015] [Indexed: 06/05/2023]
Abstract
The human histamine H2 receptor (hH2HR) is a G-protein coupled receptor protein with seven transmembrane (TM)-spanning helices primarily involved in regulation of gastric acid secretion. Antagonists targeting hH2HR are useful in the treatment of hyperacidic conditions such as peptic ulcers, gastresophageal reflux disease and gastrointestinal bleeding. We have previously reported the antagonism of 2-substituted pyrazinopyridoindoles at the human histamine H1 receptor and mode of binding of these compounds at the hH1HR using in silico methods. Interestingly, some of the compounds in the series also showed promising activity towards hH2HR that prompted us to investigate the mode of binding of these compounds at hH2HR. In the absence of the crystal structure of hH2HR a homology model has been constructed using multiple sequence alignment, using the X-ray crystal structures of Turkey β1-adrenergic receptor (tβ1AR), Human histamine H1 receptor (hH1HR), Human β2-adrenergic receptor (hβ2AR) and Human D3 dopamine receptor (hD3R). The important residues for binding were depicted in TMIII, TMV, TMVI and TMVII by the homology modelled hH2HR for 2-substituted pyrazinopyridoindoles. A comparative study for deducing the selectivity regarding the binding towards hH1HR and hH2HR has been carried out, which may be useful in designing of selective hH1HR/hH2HR antagonists in these classes of compounds.
Collapse
|
|
10 |
5 |
24
|
Haaksma EE, Donné-Op den Kelder GM, Vernooijs P, Timmerman H. A theoretical study concerning the mode of interaction of the histamine H2-agonist dimaprit. JOURNAL OF MOLECULAR GRAPHICS 1992; 10:79-87. [PMID: 1386250 DOI: 10.1016/0263-7855(92)80060-q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A theoretical study was performed to elucidate the mode of interaction of the histamine H2-agonist dimaprit with the histamine H2-receptor. For this purpose receptor mapping techniques, including ab initio energy calculations, geometry optimizations and molecular electrostatic potential calculations (MEPs), have been used. The characteristics of dimaprit were compared to those of histamine for which the points of interaction with the H2-receptor are known, as well as its bioactive conformation. In this comparative study two possible models for the interaction of dimaprit with the H2-receptor were considered. In one model the two nitrogen atoms of the isothiourea moiety of dimaprit play an essential role in the recognition of the ligand by the receptor and have the same function as the nitrogen atoms of the imidazole ring of histamine; in the second model this role is fulfilled by a sulphur and a nitrogen atom of the same isothiourea moiety. The comparison to histamine was based on geometrical resemblance as well as on similarity in MEPs. Also the conformational energy of dimaprit in the two interaction models was considered. Results of the investigations reveal that the isothiourea moiety of dimaprit most probably interacts with the histamine H2-receptor through the sulphur and nitrogen atom, the first atom acting as a proton acceptor and the second one as a proton donor. Subsequently, three analogues of dimaprit, namely SK&F 91487, SK&F 91488 and SK&F 92054, were studied. It was possible to explain their pharmacological behavior within the proposed model.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
33 |
4 |
25
|
Topiol S, Sabio M. The computational design of test compounds with potentially specific biological activity: histamine-H2 agonists derived from 5-HT/H2 antagonists. J Comput Aided Mol Des 1991; 5:263-72. [PMID: 1919620 DOI: 10.1007/bf00124342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The previously proposed models for the recognition and activation of 5-HT and histamine-H2 receptors, which were employed to explain the antagonist activity of LSD at both of these receptors, as well as the selective antagonism for H2 receptors by SKF-10856 and 9,10-dihydro-LSD, are used herein to design a compound to test the H2-receptor model. The design strategy attempts to construct a compound with potentially selective H2 agonism. The design scheme maintains features which were previously used to explain selective recognition of SKF-10856 and 9,10-dihydro-LSD as well as reintroduces the chemical features proposed to be responsible for H2 activation. The existence of the H2 recognition and activation features in the proposed compound is verified, in a previously proposed model, by computational studies of the molecular electrostatic potentials and shifts in the tautomeric preference.
Collapse
|
|
34 |
4 |