1
|
Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999; 285:727-9. [PMID: 10426993 DOI: 10.1126/science.285.5428.727] [Citation(s) in RCA: 2281] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stress-inducible MICA, a distant homolog of major histocompatibility complex (MHC) class I, functions as an antigen for gammadelta T cells and is frequently expressed in epithelial tumors. A receptor for MICA was detected on most gammadelta T cells, CD8+ alphabeta T cells, and natural killer (NK) cells and was identified as NKG2D. Effector cells from all these subsets could be stimulated by ligation of NKG2D. Engagement of NKG2D activated cytolytic responses of gammadelta T cells and NK cells against transfectants and epithelial tumor cells expressing MICA. These results define an activating immunoreceptor-MHC ligand interaction that may promote antitumor NK and T cell responses.
Collapse
MESH Headings
- Cytotoxicity, Immunologic
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Jurkat Cells
- Killer Cells, Natural/immunology
- Ligands
- Lymphocyte Activation
- Lymphocyte Subsets/immunology
- Membrane Proteins/metabolism
- NK Cell Lectin-Like Receptor Subfamily K
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Natural Killer Cell
- Signal Transduction
- T-Lymphocytes/immunology
- Transfection
- Tumor Cells, Cultured
Collapse
|
Comment |
26 |
2281 |
2
|
Abstract
The integrated processing of signals transduced by activating and inhibitory cell surface receptors regulates NK cell effector functions. Here, I review the structure, function, and ligand specificity of the receptors responsible for NK cell recognition.
Collapse
|
Review |
20 |
2144 |
3
|
Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 2001; 19:197-223. [PMID: 11244035 DOI: 10.1146/annurev.immunol.19.1.197] [Citation(s) in RCA: 1348] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural killer cells can discriminate between normal cells and cells that do not express adequate amounts of major histocompatibility complex (MHC) class I molecules. The discovery, both in mouse and in human, of MHC-specific inhibitory receptors clarified the molecular basis of this important NK cell function. However, the triggering receptors responsible for positive NK cell stimulation remained elusive until recently. Some of these receptors have now been identified in humans, thus shedding some light on the molecular mechanisms involved in NK cell activation during the process of natural cytotoxicity. Three novel, NK-specific, triggering surface molecules (NKp46, NKp30, and NKp44) have been identified. They represent the first members of a novel emerging group of receptors collectively termed natural cytotoxicity receptors (NCR). Monoclonal antibodies (mAbs) to NCR block to differing extents the NK-mediated lysis of various tumors. Moreover, lysis of certain tumors can be virtually abrogated by the simultaneous masking of the three NCRs. There is a coordinated surface expression of the three NCRs, their surface density varying in different individuals and also in the NK cells isolated from a given individual. A direct correlation exists between the surface density of NCR and the ability of NK cells to kill various tumors. NKp46 is the only NCR involved in human NK-mediated killing of murine target cells. Accordingly, a homologue of NKp46 has been detected in mouse. Molecular cloning of NCR revealed novel members of the Ig superfamily displaying a low degree of similarity to each other and to known human molecules. NCRs are coupled to different signal transducing adaptor proteins, including CD3 zeta, Fc epsilon RI gamma, and KARAP/DAP12. Another triggering NK receptor is NKG2D. It appears to play either a complementary or a synergistic role with NCRs. Thus, the triggering of NK cells in the process of tumor cell lysis may often depend on the concerted action of NCR and NKG2D. In some instances, however, it may uniquely depend upon the activity of NCR or NKG2D only. Strict NKG2D-dependency can be appreciated using clones that, in spite of their NCR(dull) phenotype, efficiently lyse certain epithelial tumors or leukemic cell lines. Other triggering surface molecules including 2B4 and the novel NKp80 appear to function as coreceptors rather than as true receptors. Indeed, they can induce natural cytotoxicity only when co-engaged with a triggering receptor. While an altered expression or function of NCR or NKG2D is being explored as a possible cause of immunological disorders, 2B4 dysfunction has already been associated with a severe form of immunodeficiency. Indeed, in patients with the X-linked lymphoproliferative disease, the inability to control Epstein-Barr virus infections may be consequent to a major dysfunction of 2B4 that exerts inhibitory instead of activating functions.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD
- Carrier Proteins/immunology
- Cloning, Molecular
- Cytotoxicity, Immunologic/immunology
- Epstein-Barr Virus Infections/immunology
- Histocompatibility Antigens Class I/immunology
- Humans
- Intracellular Signaling Peptides and Proteins
- Killer Cells, Natural/immunology
- Lectins, C-Type
- Lymphoproliferative Disorders/immunology
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/immunology
- Mice
- Multigene Family
- Natural Cytotoxicity Triggering Receptor 1
- Natural Cytotoxicity Triggering Receptor 2
- Natural Cytotoxicity Triggering Receptor 3
- Neoplasms/immunology
- Neoplasms, Experimental/immunology
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/immunology
- Receptors, Natural Killer Cell
- Signal Transduction
- Signaling Lymphocytic Activation Molecule Associated Protein
- Signaling Lymphocytic Activation Molecule Family
Collapse
|
Review |
24 |
1348 |
4
|
Abstract
Natural killer (NK) cells circulate through the blood, lymphatics and tissues, on patrol for the presence of transformed or pathogen-infected cells. As almost all NK cell receptors bind to host-encoded ligands, signals are constantly being transmitted into NK cells, whether they interact with normal or abnormal cells. The sophisticated repertoire of activating and inhibitory receptors that has evolved to regulate NK cell activity ensures that NK cells protect hosts against pathogens, yet prevents deleterious NK cell-driven autoimmune responses. Here I highlight recent advances in our understanding of the structural properties and signaling pathways of the inhibitory and activating NK cell receptors, with a particular focus on the ITAM-dependent activating receptors, the NKG2D-DAP10 receptor complexes and the CD244 receptor system.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
1252 |
5
|
Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 2002; 296:1323-6. [PMID: 11950999 DOI: 10.1126/science.1070884] [Citation(s) in RCA: 953] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Natural killer (NK) cells express inhibitory receptors for major histocompatibility complex (MHC) class I antigens, preventing attack against healthy cells. Mouse cytomegalovirus (MCMV) encodes an MHC-like protein (m157) that binds to an inhibitory NK cell receptor in certain MCMV-susceptible mice. In MCMV-resistant mice, this viral protein engages a related activating receptor (Ly49H) and confers host protection. These activating and inhibitory receptors are highly homologous, suggesting the possibility that one evolved from the other in response to selective pressure imposed by the pathogen.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antigens, Ly/chemistry
- Antigens, Ly/genetics
- Antigens, Ly/immunology
- Antigens, Ly/metabolism
- Cell Line
- Coculture Techniques
- Disease Susceptibility
- Evolution, Molecular
- Herpesviridae Infections/immunology
- Histocompatibility Antigens Class I/immunology
- Hybridomas
- Immunity, Innate
- Interferon-gamma/biosynthesis
- Killer Cells, Natural/immunology
- Lectins, C-Type
- Ligands
- Lymphocyte Activation
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Muromegalovirus/genetics
- Muromegalovirus/immunology
- Muromegalovirus/metabolism
- NK Cell Lectin-Like Receptor Subfamily A
- Protein Binding
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, NK Cell Lectin-Like
- Recombinant Fusion Proteins/metabolism
- Transfection
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
Collapse
|
|
23 |
953 |
6
|
Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S. Macrophage receptors and immune recognition. Annu Rev Immunol 2005; 23:901-44. [PMID: 15771589 DOI: 10.1146/annurev.immunol.23.021704.115816] [Citation(s) in RCA: 944] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrophages express a broad range of plasma membrane receptors that mediate their interactions with natural and altered-self components of the host as well as a range of microorganisms. Recognition is followed by surface changes, uptake, signaling, and altered gene expression, contributing to homeostasis, host defense, innate effector mechanisms, and the induction of acquired immunity. This review covers recent studies of selected families of structurally defined molecules, studies that have improved understanding of ligand discrimination in the absence of opsonins and differential responses by macrophages and related myeloid cells.
Collapse
|
Review |
20 |
944 |
7
|
Abstract
With the detailed description and analysis of several inhibitory receptor systems on lymphoid and myeloid cells, a central paradigm has emerged in which the pairing of activation and inhibition is necessary to initiate, amplify, and then terminate immune responses. In some cases, the activating and inhibitory receptors recognize similar ligands, and the net outcome is determined by the relative strength of these opposing signals. The importance of this modulation is demonstrated by the sometimes fatal autoimmune disorders observed in mice with targeted disruption of inhibitory receptors. The significance of these receptors is further evidenced by the conservation of immunoreceptor tyrosine-based inhibitory motifs during their evolution.
Collapse
MESH Headings
- Abatacept
- Animals
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation/immunology
- Autoimmune Diseases/immunology
- B-Lymphocytes/immunology
- Blood Cells/immunology
- CTLA-4 Antigen
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunity, Cellular
- Immunoconjugates
- Killer Cells, Natural/immunology
- Lymphocyte Activation
- Phagocytes/immunology
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
Collapse
|
Review |
25 |
938 |
8
|
Krieger M, Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem 1994; 63:601-37. [PMID: 7979249 DOI: 10.1146/annurev.bi.63.070194.003125] [Citation(s) in RCA: 909] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
Review |
31 |
909 |
9
|
Seong SY, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 2004; 4:469-78. [PMID: 15173835 DOI: 10.1038/nri1372] [Citation(s) in RCA: 906] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
Journal Article |
21 |
906 |
10
|
Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 2001; 411:321-5. [PMID: 11357136 DOI: 10.1038/35077108] [Citation(s) in RCA: 843] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Wnt glycoproteins have been implicated in diverse processes during embryonic patterning in metazoa. They signal through frizzled-type seven-transmembrane-domain receptors to stabilize beta-catenin. Wnt signalling is antagonized by the extracellular Wnt inhibitor dickkopf1 (dkk1), which is a member of a multigene family. dkk1 was initially identified as a head inducer in Xenopus embryos but the mechanism by which it blocks Wnt signalling is unknown. LDL-receptor-related protein 6 (LRP6) is required during Wnt/beta-catenin signalling in Drosophila, Xenopus and mouse, possibly acting as a co-receptor for Wnt. Here we show that LRP6 (ref. 7) is a specific, high-affinity receptor for Dkk1 and Dkk2. Dkk1 blocks LRP6-mediated Wnt/beta-catenin signalling by interacting with domains that are distinct from those required for Wnt/Frizzled interaction. dkk1 and LRP6 interact antagonistically during embryonic head induction in Xenopus where LRP6 promotes the posteriorizing role of Wnt/beta-catenin signalling. Thus, DKKs inhibit Wnt co-receptor function, exemplifying the modulation of LRP signalling by antagonists.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Binding Sites
- Cell Line
- Chemokines
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Embryonic Induction
- Head/embryology
- Humans
- Intercellular Signaling Peptides and Proteins
- Low Density Lipoprotein Receptor-Related Protein-1
- Low Density Lipoprotein Receptor-Related Protein-6
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- Proteins/antagonists & inhibitors
- Proteins/chemistry
- Proteins/genetics
- Proteins/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, LDL/antagonists & inhibitors
- Receptors, LDL/chemistry
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Recombinant Fusion Proteins/antagonists & inhibitors
- Recombinant Fusion Proteins/metabolism
- Sequence Deletion/genetics
- Signal Transduction
- Substrate Specificity
- Trans-Activators
- Wnt Proteins
- Xenopus Proteins
- Xenopus laevis/embryology
- Zebrafish Proteins
- beta Catenin
Collapse
|
Research Support, Non-U.S. Gov't |
24 |
843 |
11
|
Abstract
The alpha-helical coiled coil is one of the principal subunit oligomerization motifs in proteins. Its most characteristic feature is a heptad repeat pattern of primarily apolar residues that constitute the oligomer interface. Despite its simplicity, it is a highly versatile folding motif: coiled-coil-containing proteins exhibit a broad range of different functions related to the specific 'design' of their coiled-coil domains. The architecture of a particular coiled-coil domain determines its oligomerization state, rigidity and ability to function as a molecular recognition system. Much progress has been made towards understanding the factors that determine coiled-coil formation and stability. Here we discuss this highly versatile protein folding and oligomerization motif with regard to its structural architecture and how this is related to its biological functions.
Collapse
|
Review |
24 |
804 |
12
|
Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, Phillips JH. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 1999; 285:730-2. [PMID: 10426994 DOI: 10.1126/science.285.5428.730] [Citation(s) in RCA: 766] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many immune receptors are composed of separate ligand-binding and signal-transducing subunits. In natural killer (NK) and T cells, DAP10 was identified as a cell surface adaptor protein in an activating receptor complex with NKG2D, a receptor for the stress-inducible and tumor-associated major histocompatibility complex molecule MICA. Within the DAP10 cytoplasmic domain, an Src homology 2 (SH2) domain-binding site was capable of recruiting the p85 subunit of the phosphatidylinositol 3-kinase (PI 3-kinase), providing for NKG2D-dependent signal transduction. Thus, NKG2D-DAP10 receptor complexes may activate NK and T cell responses against MICA-bearing tumors.
Collapse
|
Comment |
26 |
766 |
13
|
Abstract
Protein-carbohydrate interactions serve multiple functions in the immune system. Many animal lectins (sugar-binding proteins) mediate both pathogen recognition and cell-cell interactions using structurally related Ca(2+)-dependent carbohydrate-recognition domains (C-type CRDs). Pathogen recognition by soluble collections such as serum mannose-binding protein and pulmonary surfactant proteins, and also the macrophage cell-surface mannose receptor, is effected by binding of terminal monosaccharide residues characteristic of bacterial and fungal cell surfaces. The broad selectivity of the monosaccharide-binding site and the geometrical arrangement of multiple CRDs in the intact lectins explains the ability of the proteins to mediate discrimination between self and non-self. In contrast, the much narrower binding specificity of selectin cell adhesion molecules results from an extended binding site within a single CRD. Other proteins, particularly receptors on the surface of natural killer cells, contain C-type lectin-like domains (CTLDs) that are evolutionarily divergent from the C-type lectins and which would be predicted to function through different mechanisms.
Collapse
|
Review |
27 |
763 |
14
|
Abstract
KIR genes have evolved in primates to generate a diverse family of receptors with unique structures that enable them to recognize MHC-class I molecules with locus and allele-specificity. Their combinatorial expression creates a repertoire of NK cells that surveys the expression of almost every MHC molecule independently, thus antagonizing the spread of pathogens and tumors that subvert innate and adaptive defense by selectively downregulating certain MHC class I molecules. The genes encoding KIR that recognize classical MHC molecules have diversified rapidly in human and primates; this contrasts with conservation of immunoglobulin- and lectin-like receptors for nonclassical MHC molecules. As a result of the variable KIR-gene content in the genome and the polymorphism of the HLA system, dissimilar numbers and qualities of KIR:HLA pairs function in different humans. This diversity likely contributes variability to the function of NK cells and T-lymphocytes by modulating innate and adaptive immune responses to specific challenges.
Collapse
|
Comparative Study |
23 |
742 |
15
|
Häcker H, Redecke V, Blagoev B, Kratchmarova I, Hsu LC, Wang GG, Kamps MP, Raz E, Wagner H, Häcker G, Mann M, Karin M. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 2005; 439:204-7. [PMID: 16306937 DOI: 10.1038/nature04369] [Citation(s) in RCA: 717] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 10/24/2005] [Indexed: 11/08/2022]
Abstract
Toll-like receptors (TLRs) are activated by pathogen-associated molecular patterns to induce innate immune responses and production of pro-inflammatory cytokines, interferons and anti-inflammatory cytokines. TLRs activate downstream effectors through adaptors that contain Toll/interleukin-1 receptor (TIR) domains, but the mechanisms accounting for diversification of TLR effector functions are unclear. To dissect biochemically TLR signalling, we established a system for isolating signalling complexes assembled by dimerized adaptors. Using MyD88 as a prototypical adaptor, we identified TNF receptor-associated factor 3 (TRAF3) as a new component of TIR signalling complexes that is recruited along with TRAF6. Using myeloid cells from TRAF3- and TRAF6-deficient mice, we show that TRAF3 is essential for the induction of type I interferons (IFN) and the anti-inflammatory cytokine interleukin-10 (IL-10), but is dispensable for expression of pro-inflammatory cytokines. In fact, TRAF3-deficient cells overproduce pro-inflammatory cytokines owing to defective IL-10 production. Despite their structural similarity, the functions of TRAF3 and TRAF6 are largely distinct. TRAF3 is also recruited to the adaptor TRIF (Toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta) and is required for marshalling the protein kinase TBK1 (also called NAK) into TIR signalling complexes, thereby explaining its unique role in activation of the IFN response.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Vesicular Transport/metabolism
- Animals
- Antigens, Differentiation/chemistry
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Cell Line
- Dimerization
- Gene Expression Regulation
- Immunity, Innate
- Interferons/biosynthesis
- Interleukin-10/biosynthesis
- Mice
- Myeloid Cells/metabolism
- Myeloid Differentiation Factor 88
- Protein Serine-Threonine Kinases/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- Substrate Specificity
- TNF Receptor-Associated Factor 3/metabolism
- TNF Receptor-Associated Factor 6/deficiency
- TNF Receptor-Associated Factor 6/genetics
- TNF Receptor-Associated Factor 6/metabolism
- Toll-Like Receptors/metabolism
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
717 |
16
|
Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, Tear G. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 1998; 92:205-15. [PMID: 9458045 DOI: 10.1016/s0092-8674(00)80915-0] [Citation(s) in RCA: 697] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The robo gene in Drosophila was identified in a large-scale mutant screen for genes that control the decision by axons to cross the CNS midline. In robo mutants, too many axons cross and recross the midline. Here we show that robo encodes an axon guidance receptor that defines a novel subfamily of immunoglobulin superfamily proteins that is highly conserved from fruit flies to mammals. For those axons that never cross the midline, Robo is expressed on their growth cones from the outset; for the majority of axons that do cross the midline, Robo is expressed at high levels on their growth cones only after they cross the midline. Transgenic rescue experiments reveal that Robo can function in a cell-autonomous fashion. Robo appears to function as the gatekeeper controlling midline crossing.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Axons/physiology
- Central Nervous System/embryology
- Chromosome Walking
- Cloning, Molecular
- Conserved Sequence/genetics
- Drosophila/embryology
- Drosophila/genetics
- Gene Expression Regulation, Developmental
- Genes, Insect/genetics
- Immunoglobulins/genetics
- Molecular Sequence Data
- Nerve Tissue Proteins
- Polymorphism, Restriction Fragment Length
- RNA, Messenger/analysis
- Rats
- Receptors, Immunologic/analysis
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Roundabout Proteins
Collapse
|
|
27 |
697 |
17
|
Lanier LL, Corliss BC, Wu J, Leong C, Phillips JH. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 1998; 391:703-7. [PMID: 9490415 DOI: 10.1038/35642] [Citation(s) in RCA: 669] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells express cell-surface receptors of the immunoglobulin and C-type lectin superfamilies that recognize major histocompatibility complex (MHC) class I peptides and inhibit NK-cell-mediated cytotoxicity. These inhibitory receptors possess ITIM sequences (for immunoreceptor tyrosine-based inhibitory motifs) in their cytoplasmic domains that recruit SH2-domain-containing protein tyrosine phosphatases, resulting in inactivation of NK cells. Certain isoforms of these NK-cell receptors lack ITIM sequences and it has been proposed that these 'non-inhibitory' receptors may activate, rather than inhibit, NK cells. Here we show that DAP12, a disulphide-bonded homodimer containing an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain, non-covalently associates with membrane glycoproteins of the killer-cell inhibitory receptor (KIR) family without an ITIM in their cytoplasmic domain. Crosslinking of KIR-DAP12 complexes results in cellular activation, as demonstrated by tyrosine phosphorylation of cellular proteins and upregulation of early-activation antigens. Phosphorylated DAP12 peptides bind ZAP-70 and Syk protein tyrosine kinases, suggesting that the activation pathway is similar to that of the T- and B-cell antigen receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- B-Lymphocytes/metabolism
- Base Sequence
- Binding Sites
- Cell Line
- Cell Membrane/metabolism
- Chromosomes, Human, Pair 19
- Consensus Sequence
- Cross-Linking Reagents
- Cytoplasm/metabolism
- DNA, Complementary
- Humans
- Jurkat Cells
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation
- Mice
- Molecular Sequence Data
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, KIR
- T-Lymphocytes/metabolism
- Transfection
- Tyrosine/metabolism
- ZAP-70 Protein-Tyrosine Kinase
Collapse
|
|
27 |
669 |
18
|
Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK, Hurchla MA, Zimmerman N, Sim J, Zang X, Murphy TL, Russell JH, Allison JP, Murphy KM. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 2003; 4:670-9. [PMID: 12796776 DOI: 10.1038/ni944] [Citation(s) in RCA: 655] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Accepted: 05/13/2003] [Indexed: 12/30/2022]
Abstract
During activation, T cells express receptors for receiving positive and negative costimulatory signals. Here we identify the B and T lymphocyte attenuator (BTLA), an immunoglobulin domain-containing glycoprotein with two immunoreceptor tyrosine-based inhibitory motifs. BTLA is not expressed by naive T cells, but it is induced during activation and remains expressed on T helper type 1 (T(H)1) but not T(H)2 cells. Crosslinking BTLA with antigen receptors induces its tyrosine phosphorylation and association with the Src homology domain 2 (SH2)-containing protein tyrosine phosphatases SHP-1 and SHP-2, and attenuates production of interleukin 2 (IL-2). BTLA-deficient T cells show increased proliferation, and BTLA-deficient mice have increased specific antibody responses and enhanced sensitivity to experimental autoimmune encephalomyelitis. B7x, a peripheral homolog of B7, is a ligand of BTLA. Thus, BTLA is a third inhibitory receptor on T lymphocytes with similarities to cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1).
Collapse
MESH Headings
- Abatacept
- Amino Acid Sequence
- Animals
- Antigens, CD
- Antigens, Differentiation/physiology
- Antigens, Surface
- Apoptosis Regulatory Proteins
- B7-1 Antigen/physiology
- CTLA-4 Antigen
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Immunoconjugates
- Interleukin-2/biosynthesis
- Intracellular Signaling Peptides and Proteins
- Lymphocyte Activation
- Mice
- Molecular Sequence Data
- Phosphorylation
- Programmed Cell Death 1 Receptor
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/physiology
- Proteins/physiology
- RNA, Messenger/analysis
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- T-Lymphocytes/immunology
Collapse
|
|
22 |
655 |
19
|
Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T, Taniguchi T, Takayanagi H, Takai T. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004; 428:758-63. [PMID: 15085135 DOI: 10.1038/nature02444] [Citation(s) in RCA: 633] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 02/23/2004] [Indexed: 11/09/2022]
Abstract
Costimulatory signals are required for activation of immune cells, but it is not known whether they contribute to other biological systems. The development and homeostasis of the skeletal system depend on the balance between bone formation and resorption. Receptor activator of NF-kappaB ligand (RANKL) regulates the differentiation of bone-resorbing cells, osteoclasts, in the presence of macrophage-colony stimulating factor (M-CSF). But it remains unclear how RANKL activates the calcium signals that lead to induction of nuclear factor of activated T cells c1, a key transcription factor for osteoclastogenesis. Here we show that mice lacking immunoreceptor tyrosine-based activation motif (ITAM)-harbouring adaptors, Fc receptor common gamma subunit (FcRgamma) and DNAX-activating protein (DAP)12, exhibit severe osteopetrosis owing to impaired osteoclast differentiation. In osteoclast precursor cells, FcRgamma and DAP12 associate with multiple immunoreceptors and activate calcium signalling through phospholipase Cgamma. Thus, ITAM-dependent costimulatory signals activated by multiple immunoreceptors are essential for the maintenance of bone homeostasis. These results reveal that RANKL and M-CSF are not sufficient to activate the signals required for osteoclastogenesis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/chemistry
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Amino Acid Motifs
- Animals
- Bone Resorption
- Bone and Bones/drug effects
- Bone and Bones/physiology
- Calcium Signaling/drug effects
- Carrier Proteins/metabolism
- Cell Differentiation/drug effects
- Cells, Cultured
- Gene Deletion
- Homeostasis/drug effects
- Macrophage Colony-Stimulating Factor/pharmacology
- Membrane Glycoproteins/metabolism
- Mice
- Osteoclasts/cytology
- Osteoclasts/drug effects
- Osteoclasts/physiology
- Osteogenesis/physiology
- RANK Ligand
- Receptor Activator of Nuclear Factor-kappa B
- Receptors, Cell Surface/metabolism
- Receptors, IgG/chemistry
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
633 |
20
|
Colonna M, Samaridis J. Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science 1995; 268:405-8. [PMID: 7716543 DOI: 10.1126/science.7716543] [Citation(s) in RCA: 579] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cytotoxicity by natural killer (NK) cells is inhibited by major histocompatibility complex (MHC) class I molecules on target cells. This inhibition may be mediated by NK receptors with different MHC specificities. A family of four NK-specific complementary DNAs (cDNAs), designated NKATs (NK-associated transcripts), was identified that encoded related transmembrane proteins, characterized by an extracellular region with two or three immunoglobulin-superfamily domains and by a cytoplasmic domain with an unusual antigen receptor activation motif (ARAM). The distribution of these cDNAs was clonotypic and correlated with NK cell inhibition by particular class I alleles. Thus, NKAT cDNAs may encode receptors for class I molecules on NK cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Ly
- Base Sequence
- Blotting, Southern
- Cell Line
- Cloning, Molecular
- DNA, Complementary/genetics
- HLA-B Antigens/immunology
- HLA-C Antigens/immunology
- Humans
- Killer Cells, Natural/immunology
- Lectins, C-Type
- Membrane Glycoproteins/chemistry
- Molecular Sequence Data
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, KIR
- Receptors, KIR2DL1
- Receptors, KIR3DS1
- Receptors, NK Cell Lectin-Like
- Sequence Alignment
Collapse
|
|
30 |
579 |
21
|
Raymond CS, Shamu CE, Shen MM, Seifert KJ, Hirsch B, Hodgkin J, Zarkower D. Evidence for evolutionary conservation of sex-determining genes. Nature 1998; 391:691-5. [PMID: 9490411 DOI: 10.1038/35618] [Citation(s) in RCA: 546] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most metazoans occur as two sexes. Surprisingly, molecular analyses have hitherto indicated that sex-determining mechanisms differ completely between phyla. Here we present evidence to the contrary. We have isolated the male sexual regulatory gene mab-3 from the nematode Caenorhabditis elegans and found that it is related to the Drosophila melanogaster sexual regulatory gene doublesex (dsx)2. Both genes encode proteins with a DNA-binding motif that we have named the 'DM domain'. Both genes control sex-specific neuroblast differentiation and yolk protein gene transcription; dsx controls other sexually dimorphic features as well. The form of DSX that is found in males can direct male-specific neuroblast differentiation in C. elegans. This structural and functional similarity between phyla suggests a common evolutionary origin of at least some aspects of sexual regulation. We have identified a human gene, DMT1, that encodes a protein with a DM domain and find that DMT1 is expressed only in testis. DMT1 maps to the distal short arm of chromosome 9, a location implicated in human XY sex reversal. Proteins with DM domains may therefore also regulate sexual development in mammals.
Collapse
|
|
27 |
546 |
22
|
Davis S, Aldrich TH, Stahl N, Pan L, Taga T, Kishimoto T, Ip NY, Yancopoulos GD. LIFR beta and gp130 as heterodimerizing signal transducers of the tripartite CNTF receptor. Science 1993; 260:1805-8. [PMID: 8390097 DOI: 10.1126/science.8390097] [Citation(s) in RCA: 543] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ciliary neurotrophic factor (CNTF) receptor complex is shown here to include the CNTF binding protein (CNTFR alpha) as well as the components of the leukemia inhibitory factor (LIF) receptor, LIFR beta (the LIF binding protein) and gp130 [the signal transducer of interleukin-6 (IL-6)]. Thus, the conversion of a bipartite LIF receptor into a tripartite CNTF receptor apparently occurs by the addition of the specificity-conferring element CNTFR alpha. Both CNTF and LIF trigger the association of initially separate receptor components, which in turn results in tyrosine phosphorylation of receptor subunits. Unlike the IL-6 receptor complex in which homodimerization of gp130 appears to be critical for signal initiation, signaling by the CNTF and LIF receptor complexes depends on the heterodimerization of gp130 with LIFR beta. Ligand-induced dimerization of signal-transducing receptor components, also seen with receptor tyrosine kinases, may provide a general mechanism for the transmission of a signal across the cell membrane.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Cell Line
- Cytokine Receptor gp130
- Growth Inhibitors/pharmacology
- Interleukin-6/pharmacology
- Leukemia Inhibitory Factor
- Lymphokines/pharmacology
- Macromolecular Substances
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/metabolism
- Models, Biological
- Nerve Growth Factors
- Nerve Tissue Proteins/pharmacology
- Phosphorylation
- Receptor, Ciliary Neurotrophic Factor
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Receptors, Cytokine
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/metabolism
- Receptors, Interleukin-6
- Receptors, OSM-LIF
- Signal Transduction
- Tumor Cells, Cultured
- Tyrosine/metabolism
Collapse
|
|
32 |
543 |
23
|
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that are involved in the early defenses against foreign cells, as well as autologous cells undergoing various forms of stress, such as microbial infection or tumor transformation. NK cell activation is controlled by a dynamic balance between complementary and antagonistic pathways that are initiated upon interaction with potential target cells. NK cells express an array of activating cell surface receptors that can trigger cytolytic programs, as well as cytokine or chemokine secretion. Some of these activating cell surface receptors initiate protein tyrosine kinase (PTK)-dependent pathways through noncovalent associations with transmembrane signaling adaptors that harbor intracytoplasmic ITAMs (immunoreceptor tyrosine-based activation motifs). Additional cell surface receptors that are not directly coupled to ITAMs also participate in NK cell activation. These include NKG2D, which is noncovalently associated to the DAP10 transmembrane signaling adaptor, as well as integrins and cytokine receptors. NK cells also express cell surface inhibitory receptors that antagonize activating pathways through protein tyrosine phosphatases (PTPs). These inhibitory cell surface receptors are characterized by intracytoplasmic ITIMs (immunoreceptor tyrosine-based inhibition motifs). The tyrosine-phosphorylation status of several signaling components that are substrates for both PTKs and PTPs is thus key to the propagation of the NK cell effector pathways. Understanding the integration of these multiple signals is central to the understanding and manipulation of NK cell effector signaling pathways.
Collapse
|
Journal Article |
21 |
532 |
24
|
Stein E, Tessier-Lavigne M. RETRACTED: Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 2001; 291:1928-38. [PMID: 11239147 DOI: 10.1126/science.1058445] [Citation(s) in RCA: 522] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Axonal growth cones that cross the nervous system midline change their responsiveness to midline guidance cues: They become repelled by the repellent Slit and simultaneously lose responsiveness to the attractant netrin. These mutually reinforcing changes help to expel growth cones from the midline by making a once-attractive environment appear repulsive. Here, we provide evidence that these two changes are causally linked: In the growth cones of embryonic Xenopus spinal axons, activation of the Slit receptor Roundabout (Robo) silences the attractive effect of netrin-1, but not its growth-stimulatory effect, through direct binding of the cytoplasmic domain of Robo to that of the netrin receptor DCC. Biologically, this hierarchical silencing mechanism helps to prevent a tug-of-war between attractive and repulsive signals in the growth cone that might cause confusion. Molecularly, silencing is enabled by a modular and interlocking design of the cytoplasmic domains of these potentially antagonistic receptors that predetermines the outcome of their simultaneous activation.
Collapse
|
Retracted Publication |
24 |
522 |
25
|
Jiang Z, Georgel P, Du X, Shamel L, Sovath S, Mudd S, Huber M, Kalis C, Keck S, Galanos C, Freudenberg M, Beutler B. CD14 is required for MyD88-independent LPS signaling. Nat Immunol 2005; 6:565-70. [PMID: 15895089 DOI: 10.1038/ni1207] [Citation(s) in RCA: 509] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 04/20/2005] [Indexed: 11/08/2022]
Abstract
The recessive mutation 'Heedless' (hdl) was detected in third-generation N-ethyl-N-nitrosourea-mutated mice that showed defective responses to microbial inducers. Macrophages from Heedless homozygotes signaled by the MyD88-dependent pathway in response to rough lipopolysaccharide (LPS) and lipid A, but not in response to smooth LPS. In addition, the Heedless mutation prevented TRAM-TRIF-dependent signaling in response to all LPS chemotypes. Heedless also abolished macrophage responses to vesicular stomatitis virus and substantially inhibited responses to specific ligands for the Toll-like receptor 2 (TLR2)-TLR6 heterodimer. The Heedless phenotype was positionally ascribed to a premature stop codon in Cd14. Our data suggest that the TLR4-MD-2 complex distinguishes LPS chemotypes, but CD14 nullifies this distinction. Thus, the TLR4-MD-2 complex receptor can function in two separate modes: one in which full signaling occurs and one limited to MyD88-dependent signaling.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Antigens, Ly/chemistry
- Antigens, Ly/metabolism
- In Vitro Techniques
- Interferon Type I/biosynthesis
- Lipopolysaccharide Receptors/genetics
- Lipopolysaccharide Receptors/metabolism
- Lipopolysaccharides/toxicity
- Lymphocyte Antigen 96
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Multiprotein Complexes
- Mutation
- Myeloid Differentiation Factor 88
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- Toll-Like Receptor 4
- Vesicular stomatitis Indiana virus/pathogenicity
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
509 |