1
|
Abstract
Cranial radiation therapy causes a progressive decline in cognitive function that is linked to impaired neurogenesis. Chronic inflammation accompanies radiation injury, suggesting that inflammatory processes may contribute to neural stem cell dysfunction. Here, we show that neuroinflammation alone inhibits neurogenesis and that inflammatory blockade with indomethacin, a common nonsteroidal anti-inflammatory drug, restores neurogenesis after endotoxin-induced inflammation and augments neurogenesis after cranial irradiation.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
1829 |
2
|
Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O'Brien S, Keiper EA, Johnson AG, Martin J, Goldstein BJ, Shi Y. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003; 108:2460-6. [PMID: 14581396 DOI: 10.1161/01.cir.0000099542.57313.c5] [Citation(s) in RCA: 1436] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inflammatory mediators that originate in vascular and extravascular tissues promote coronary lesion formation. Adipose tissue may function as an endocrine organ that contributes to an inflammatory burden in patients at risk of cardiovascular complications. In this study, we sought to compare expression of inflammatory mediators in epicardial and subcutaneous adipose stores in patients with critical CAD. METHODS AND RESULTS Paired samples of epicardial and subcutaneous adipose tissues were harvested at the outset of elective CABG surgery (n=42; age 65+/-10 years). Local expression of chemokine (monocyte chemotactic protein [MCP]-1) and inflammatory cytokines (interleukin [IL]-1beta, IL-6, and tumor necrosis factor [TNF]-alpha) was analyzed by TaqMan real-time reverse transcription-polymerase chain reaction (mRNA) and by ELISA (protein release over 3 hours). Significantly higher levels of IL-1beta, IL-6, MCP-1, and TNF-alpha mRNA and protein were observed in epicardial adipose stores. Proinflammatory properties of epicardial adipose tissue were noted irrespective of clinical variables (diabetes, body mass index, and chronic use of statins or ACE inhibitors/angiotensin II receptor blockers) or plasma concentrations of circulating biomarkers. In a subset of samples (n=11), global gene expression was explored by DNA microarray hybridization and confirmed the presence of a broad inflammatory reaction in epicardial adipose tissue in patients with coronary artery disease. The above findings were paralleled by the presence of inflammatory cell infiltrates in epicardial adipose stores. CONCLUSIONS Epicardial adipose tissue is a source of several inflammatory mediators in high-risk cardiac patients. Plasma inflammatory biomarkers may not adequately reflect local tissue inflammation. Current therapies do not appear to eliminate local inflammatory signals in epicardial adipose tissue.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
1436 |
3
|
Abstract
Interleukin (IL)-6 is produced at the site of inflammation and plays a key role in the acute phase response as defined by a variety of clinical and biological features such as the production of acute phase proteins. IL-6 in combination with its soluble receptor sIL-6Rα, dictates the transition from acute to chonic inflammation by changing the nature of leucocyte infiltrate (from polymorphonuclear neutrophils to monocyte/macrophages). In addition, IL-6 exerts stimulatory effects on T- and B-cells, thus favoring chronic inflammatory responses. Strategies targeting IL-6 and IL-6 signaling led to effective prevention and treatment of models of rheumatoid arthritis and other chronic inflammatory diseases.
Collapse
|
Review |
19 |
986 |
4
|
Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 2000; 19:2548-56. [PMID: 10851053 DOI: 10.1038/sj.onc.1203551] [Citation(s) in RCA: 944] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Members of the IL-6 cytokine family are involved in a variety of biological responses, including the immune response, inflammation, hematopoiesis, and oncogenesis by regulating cell growth, survival, and differentiation. These cytokines use gp130 as a common receptor subunit. The binding of ligand to gp130 activates the JAK/STAT signal transduction pathway, where STAT3 plays a central role in transmitting the signals from the membrane to the nucleus. STAT3 is essential for gp130-mediated cell survival and G1 to S cell-cycle-transition signals. Both c-myc and pim have been identified as target genes of STAT3 and together can compensate for STAT3 in cell survival and cell-cycle transition. STAT3 is also required for gp130-mediated maintenance of the pluripotential state of proliferating embryonic stem cells and for the gp130-induced macrophage differentiation of M1 cells. Furthermore, STAT3 regulates cell movement, such as leukocyte, epidermal cell, and keratinocyte migration. STAT3 also appears to regulate B cell differentiation into antibody-forming plasma cells. Since the IL-6/gp130/STAT3 signaling pathway is involved in both B cell growth and differentiation into plasma cells it is likely to play a central role in the generation of plasma cell neoplasias. Oncogene (2000).
Collapse
|
Review |
25 |
944 |
5
|
Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, Slotta-Huspenina J, Bader FG, Greten FR, Hermeking H. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest 2014; 124:1853-67. [PMID: 24642471 DOI: 10.1172/jci73531] [Citation(s) in RCA: 616] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/09/2014] [Indexed: 12/20/2022] Open
Abstract
Members of the miR-34 family are induced by the tumor suppressor p53 and are known to inhibit epithelial-to-mesenchymal transition (EMT) and therefore presumably suppress the early phases of metastasis. Here, we determined that exposure of human colorectal cancer (CRC) cells to the cytokine IL-6 activates the oncogenic STAT3 transcription factor, which directly represses the MIR34A gene via a conserved STAT3-binding site in the first intron. Repression of MIR34A was required for IL-6-induced EMT and invasion. Furthermore, we identified the IL-6 receptor (IL-6R), which mediates IL-6-dependent STAT3 activation, as a conserved, direct miR-34a target. The resulting IL-6R/STAT3/miR-34a feedback loop was present in primary colorectal tumors as well as CRC, breast, and prostate cancer cell lines and associated with a mesenchymal phenotype. An active IL-6R/STAT3/miR-34a loop was necessary for EMT, invasion, and metastasis of CRC cell lines and was associated with nodal and distant metastasis in CRC patient samples. p53 activation in CRC cells interfered with IL-6-induced invasion and migration via miR-34a-dependent downregulation of IL6R expression. In Mir34a-deficient mice, colitis-associated intestinal tumors displayed upregulation of p-STAT3, IL-6R, and SNAIL and progressed to invasive carcinomas, which was not observed in WT animals. Collectively, our data indicate that p53-dependent expression of miR-34a suppresses tumor progression by inhibiting a IL-6R/STAT3/miR-34a feedback loop.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
616 |
6
|
Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A, Burg J, Strand S, Kiesslich R, Huber S, Ito H, Nishimoto N, Yoshizaki K, Kishimoto T, Galle PR, Blessing M, Rose-John S, Neurath MF. TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 2004; 21:491-501. [PMID: 15485627 DOI: 10.1016/j.immuni.2004.07.020] [Citation(s) in RCA: 588] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 07/09/2004] [Accepted: 07/28/2004] [Indexed: 11/22/2022]
Abstract
Alterations of TGF-beta signaling have been described in colorectal cancer, although the molecular consequences are largely unknown. By using transgenic mice overexpressing TGF-beta or a dominant-negative TGF-betaRII, we demonstrate that TGF-beta signaling in tumor infiltrating T lymphocytes controls the growth of dysplastic epithelial cells in experimental colorectal cancer, as determined by histology and a novel system for high-resolution chromoendoscopy. At the molecular level, TGF-beta signaling in T cells regulated STAT-3 activation in tumor cells via IL-6. IL-6 signaling required tumor cell-derived soluble IL-6R rather than membrane bound IL-6R and suppression of such TGF-beta-dependent IL-6 trans-signaling prevented tumor progression in vivo. Taken together, our data provide novel insights into TGF-beta signaling in colorectal cancer and suggest novel therapeutic approaches for colorectal cancer based on inhibition of TGF-beta-dependent IL-6 trans-signaling.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- DNA-Binding Proteins/immunology
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Disease Progression
- Endoscopy, Digestive System
- Enzyme-Linked Immunosorbent Assay
- Humans
- Immunohistochemistry
- Interleukin-6/immunology
- Interleukin-6/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Protein Serine-Threonine Kinases
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Interleukin-6/immunology
- Receptors, Interleukin-6/metabolism
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/immunology
- Receptors, Transforming Growth Factor beta/metabolism
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- STAT3 Transcription Factor
- Signal Transduction/physiology
- T-Lymphocytes/immunology
- Trans-Activators/immunology
- Trans-Activators/metabolism
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/immunology
- Transforming Growth Factor beta/metabolism
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
588 |
7
|
Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol 2003; 24:25-9. [PMID: 12495721 DOI: 10.1016/s1471-4906(02)00013-3] [Citation(s) in RCA: 555] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The origin of the Toll-like family of receptors pre-dates the evolutionary split between the plant and animal kingdoms. These receptors are remarkably conserved across the taxonomic kingdoms and have fundamental roles in triggering immune responses. How they trigger such responses, and how these mechanisms arose in evolution, is a topic of extensive debate. We postulate a surveillance model: these receptors "keep watch" for both endogenous and exogenous molecules that indicate tissue inquiry, infection and remodeling. Furthermore, we suggest that the first Toll-like family receptors that arose in evolution might have acted in both development and immunity by recognizing the degradation of endogenous macromolecules.
Collapse
|
|
22 |
555 |
8
|
Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol 2014; 26:54-74. [PMID: 24552665 DOI: 10.1016/j.smim.2014.01.001] [Citation(s) in RCA: 526] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/06/2014] [Indexed: 11/17/2022]
Abstract
Inflammatory responses play pivotal roles in cancer development, including tumor initiation, promotion, progression, and metastasis. Cytokines are now recognized as important mediators linking inflammation and cancer, and are therefore potential therapeutic and preventive targets as well as prognostic factors. The interleukin (IL)-6 family of cytokines, especially IL-6 and IL-11, is highly up-regulated in many cancers and considered as one of the most important cytokine families during tumorigenesis and metastasis. This review discusses molecular mechanisms linking the IL-6 cytokine family to solid malignancies and their treatment.
Collapse
|
Review |
11 |
526 |
9
|
Jostock T, Müllberg J, Ozbek S, Atreya R, Blinn G, Voltz N, Fischer M, Neurath MF, Rose-John S. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:160-7. [PMID: 11121117 DOI: 10.1046/j.1432-1327.2001.01867.x] [Citation(s) in RCA: 514] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Signal transduction in response to interleukin-6 (IL-6) requires binding of the cytokine to its receptor (IL-6R) and subsequent homodimerization of the signal transducer gp130. The complex of IL-6 and soluble IL-6R (sIL-6R) triggers dimerization of gp130 and induces responses on cells that do not express membrane bound IL-6R. Naturally occurring soluble gp130 (sgp130) can be found in a ternary complex with IL-6 and sIL-6R. We created recombinant sgp130 proteins that showed binding to IL-6 in complex with sIL-6R and inhibited IL-6/sIL-6R induced proliferation of BAF/3 cells expressing gp130. Surprisingly, sgp130 proteins did not affect IL-6 stimulated proliferation of BAF/3 cells expressing gp130 and membrane bound IL-6R, indicating that sgp130 did not interfere with IL-6 bound to IL-6R on the cell surface. Additionally, sgp130 partially inhibited proliferation induced by leukemia inhibitory factor (LIF) and oncostatin M (OSM) albeit at higher concentrations. Recombinant sgp130 protein could be used to block the anti-apoptotic effect of sIL-6R on lamina propria cells from Crohn disease patients. We conclude that sgp130 is the natural inhibitor of IL-6 responses dependent on sIL-6R. Furthermore, recombinant sgp130 is expected to be a valuable therapeutic tool to specifically block disease states in which sIL-6R transsignaling responses exist, e.g. in morbus Crohn disease.
Collapse
MESH Headings
- Acute-Phase Reaction
- Animals
- Antigens, CD/genetics
- Antigens, CD/isolation & purification
- Antigens, CD/metabolism
- Antigens, CD/pharmacology
- Apoptosis
- Cell Division/drug effects
- Cells, Cultured
- Crohn Disease/pathology
- Cytokine Receptor gp130
- Humans
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/isolation & purification
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/pharmacology
- Mice
- Protein Synthesis Inhibitors/pharmacology
- Receptors, Interleukin-6/antagonists & inhibitors
- Receptors, Interleukin-6/metabolism
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Signal Transduction
- Solubility
- Transfection
- Tumor Cells, Cultured
Collapse
|
|
24 |
514 |
10
|
Boulanger MJ, Chow DC, Brevnova EE, Garcia KC. Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/gp130 complex. Science 2003; 300:2101-4. [PMID: 12829785 DOI: 10.1126/science.1083901] [Citation(s) in RCA: 504] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interleukin-6 (IL-6) is an immunoregulatory cytokine that activates a cell-surface signaling assembly composed of IL-6, the IL-6 alpha-receptor (IL-6Ralpha), and the shared signaling receptor gp130. The 3.65 angstrom-resolution structure of the extracellular signaling complex reveals a hexameric, interlocking assembly mediated by a total of 10 symmetry-related, thermodynamically coupled interfaces. Assembly of the hexameric complex occurs sequentially: IL-6 is first engaged by IL-6Ralpha and then presented to gp130in the proper geometry to facilitate a cooperative transition into the high-affinity, signaling-competent hexamer. The quaternary structures of other IL-6/IL-12 family signaling complexes are likely constructed by means of a similar topological blueprint.
Collapse
|
|
22 |
504 |
11
|
Rose-John S, Scheller J, Elson G, Jones SA. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol 2006; 80:227-36. [PMID: 16707558 DOI: 10.1189/jlb.1105674] [Citation(s) in RCA: 492] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytokine receptors, which exist in membrane-bound and soluble forms, bind their ligands with comparable affinity. Although most soluble receptors are antagonists and compete with their membrane-associated counterparts for the ligands, certain soluble receptors are agonists. In these cases, complexes of ligand and soluble receptor bind on target cells to second receptor subunits and initiate intracellular signaling. The soluble receptors of the interleukin (IL)-6 family of cytokines (sIL-6R, sIL-11R, soluble ciliary neurotrophic factor receptor) are agonists capable of transmitting signals through interaction with the universal signal-transducing receptor for all IL-6 family cytokines, gp130. In vivo, the IL-6/sIL-6R complex stimulates several types of cells, which are unresponsive to IL-6 alone, as they do not express the membrane IL-6R. We have named this process trans-signaling. The generation of soluble cytokine receptors occurs via two distinct mechanisms-limited proteolysis and translation-from differentially spliced mRNA. We have demonstrated that a soluble form of the IL-6 family signaling receptor subunit gp130, which is generated by differential splicing, is the natural inhibitor of IL-6 trans-signaling responses. We have shown that in many chronic inflammatory diseases, including chronic inflammatory bowel disease, peritonitis, rheumatoid arthritis, asthma, as well as colon cancer, IL-6 trans-signaling is critically involved in the maintenance of a disease state, by promoting transition from acute to chronic inflammation. Moreover, in all these models, the course of the disease can be disrupted by specifically interfering with IL-6 trans-signaling using the soluble gp130 protein. The pathophysiological mechanisms by which the IL-6/sIL-6R complex regulates the inflammatory state are discussed.
Collapse
|
Review |
19 |
492 |
12
|
Jones SA, Horiuchi S, Topley N, Yamamoto N, Fuller GM. The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FASEB J 2001; 15:43-58. [PMID: 11149892 DOI: 10.1096/fj.99-1003rev] [Citation(s) in RCA: 480] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interleukin 6 (IL-6) performs a prominent role during disease and has been described as both a pro- and anti-inflammatory cytokine. A key feature in the regulation of IL-6 responses has been the identification of a soluble interleukin 6 receptor (sIL-6R), which forms a ligand-receptor complex with IL-6 that is capable of stimulating a variety of cellular responses including proliferation, differentiation and activation of inflammatory processes. Elevated sIL-6R levels have been documented in numerous clinical conditions indicating that its production is coordinated as part of a disease response. Thus, sIL-6R has the potential to regulate both local and systemic IL-6-mediated events. This review will outline the central role of sIL-6R in the coordination of IL-6 responses. Details relating to the mechanisms of sIL-6R production will be provided, while the potential significance of sIL-6R during the development of clinical conditions will be emphasized. We want to convey, therefore, that when thinking about the inflammatory capability of IL-6, it is essential to consider not only the action of IL-6 itself, but also the effect sIL-6R may have on cellular processes.
Collapse
|
Review |
24 |
480 |
13
|
Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S, Gritsko T, Turkson J, Kay H, Semenza GL, Cheng JQ, Jove R, Yu H. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 2005; 24:5552-60. [PMID: 16007214 DOI: 10.1038/sj.onc.1208719] [Citation(s) in RCA: 472] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vascular endothelial growth factor (VEGF) upregulation is induced by many receptor and intracellular oncogenic proteins commonly activated in cancer, rendering molecular targeting of VEGF expression a complex challenge. While VEGF inducers abound, only two major transcription activators have been identified for its promoter: hypoxia inducible factor-1 (HIF-1) and signal transducer and activator of transcription (Stat3). Both HIF-1 expression and Stat3 activity are upregulated in diverse cancers. Here, we provide evidence that Stat3 is required for both basal and growth signal-induced expression of HIF-1. Moreover, induction of VEGF by diverse oncogenic growth stimuli, including IL-6R, c-Src, Her2/Neu, is attenuated in cells without Stat3 signaling. We further demonstrate that Stat3 regulates expression of Akt, which is required for growth signal-induced HIF-1 upregulation. Targeting Stat3 with a small-molecule inhibitor blocks HIF-1 and VEGF expression in vitro and inhibits tumor growth and angiogenesis in vivo. Furthermore, tumor cells' in vivo angiogenic capacity induced by IL-6R, which simultaneously activates Jak/STAT and PI3K/Akt pathways, is abrogated when Stat3 is inhibited. Activation of Stat3 signaling by various growth signaling is prevalent in diverse cancers. Results presented here demonstrate that Stat3 is an effective target for inhibiting tumor VEGF expression and angiogenesis.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
472 |
14
|
Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D, Taccioli C, Zanesi N, Alder H, Hagan JP, Munker R, Volinia S, Boccadoro M, Garzon R, Palumbo A, Aqeilan RI, Croce CM. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci U S A 2008; 105:12885-90. [PMID: 18728182 PMCID: PMC2529070 DOI: 10.1073/pnas.0806202105] [Citation(s) in RCA: 456] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Indexed: 12/16/2022] Open
Abstract
Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106b approximately 25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17 approximately 92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17 approximately 92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b approximately 25 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
456 |
15
|
Rincon M, Irvin CG. Role of IL-6 in asthma and other inflammatory pulmonary diseases. Int J Biol Sci 2012; 8:1281-90. [PMID: 23136556 PMCID: PMC3491451 DOI: 10.7150/ijbs.4874] [Citation(s) in RCA: 439] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 08/14/2012] [Indexed: 12/21/2022] Open
Abstract
The incidence and severity of chronic lung diseases is growing and affects between 100 and 150 million people worldwide and is associated with a significant rate of mortality. Unfortunately, the initial cause that triggers most chronic lung diseases remains unknown and current available therapies only ameliorate, but do not cure the disease. Thus, there is a need for identification of new targets and development of novel therapies especially for those most severely affected. IL-6, like other inflammatory cytokines, has been shown to be elevated in different lung diseases, but it was considered a byproduct of ongoing inflammation in the lung. However, recent studies support a dissociation of IL-6 from inflammation in the lung and suggest that this cytokine plays an active role in pathogenesis of asthma and, in all likelihood, COPD. IL-6 may therefore be a germane target for treatment of these and other chronic lung disease. Here, we provide an overview of the studies in mouse models and human patients that provide support for the involvement of IL-6 in lung diseases.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
439 |
16
|
Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey Smith G. Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am J Clin Nutr 2016; 103:965-78. [PMID: 26961927 PMCID: PMC4807699 DOI: 10.3945/ajcn.115.118216] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/02/2016] [Indexed: 01/14/2023] Open
Abstract
Mendelian randomization (MR) is an increasingly important tool for appraising causality in observational epidemiology. The technique exploits the principle that genotypes are not generally susceptible to reverse causation bias and confounding, reflecting their fixed nature and Mendel’s first and second laws of inheritance. The approach is, however, subject to important limitations and assumptions that, if unaddressed or compounded by poor study design, can lead to erroneous conclusions. Nevertheless, the advent of 2-sample approaches (in which exposure and outcome are measured in separate samples) and the increasing availability of open-access data from large consortia of genome-wide association studies and population biobanks mean that the approach is likely to become routine practice in evidence synthesis and causal inference research. In this article we provide an overview of the design, analysis, and interpretation of MR studies, with a special emphasis on assumptions and limitations. We also consider different analytic strategies for strengthening causal inference. Although impossible to prove causality with any single approach, MR is a highly cost-effective strategy for prioritizing intervention targets for disease prevention and for strengthening the evidence base for public health policy.
Collapse
|
research-article |
9 |
428 |
17
|
Abstract
In the late 1960s, the essential role played by T cells in antibody production was reported. This led to our hypothesis that certain molecules would have to be released from T cells to effect the stimulation of B cells. This hypothesis was shown to be true. There were certain factors present in the culture supernatant of T cells that induced proliferation and differentiation of B cells. The factor that induced B cells to produce immunoglobulins was initially named B cell stimulatory factor-2. The cDNA encoding the human B cell stimulatory factor-2 was cloned in 1986. At the same time, IFN-β2 and a 26 kDa protein in the fibroblasts were independently cloned and found to be identical to B cell stimulatory factor-2. Later, a hybridoma/plasmacytoma growth factor and a hepatocyte stimulating factor were also proven to be the same molecule as B cell stimulatory factor-2. Various names were used for this single molecule because of its multiple biological activities, but these have all been unified and the molecule is now known as IL-6. Since the discovery of IL-6, rapid progress has been made in our understanding of IL-6 activities, the IL-6 receptor system and the IL-6 signal transduction mechanism. More importantly, it has been shown to be involved in a number of diseases such as rheumatoid arthritis and Castleman's disease. When taking into account all the accumulated basic research on the various aspects of this molecule, it appeared that blocking the activity of IL-6 was a feasible, new therapeutic approach for chronic inflammatory diseases.
Collapse
|
Review |
19 |
372 |
18
|
Abstract
IL (interleukin)-6 is a pivotal cytokine of innate immunity, which enacts a broad set of physiological functions traditionally associated with host defense, immune cell regulation, proliferation, and differentiation. Following recognition of innate immune pathways leading from the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome to IL-1 to IL-6 and on to the hepatically derived clinical biomarker CRP (C-reactive protein), an expanding literature has led to understanding of the proatherogenic role for IL-6 in cardiovascular disease and thus the potential for IL-6 inhibition as a novel method for vascular protection. In this review, we provide an overview of the mechanisms by which IL-6 signaling occurs and how that impacts upon pharmacological inhibition; describe murine models of IL-6 and atherogenesis; summarize human epidemiological data outlining the utility of IL-6 as a biomarker of vascular risk; outline genetic data suggesting a causal role for IL-6 in systemic atherothrombosis and aneurysm formation; and then detail the potential role of IL-6 inhibition in stable coronary disease, acute coronary syndromes, heart failure, and the atherothrombotic complications associated with chronic kidney disease and end-stage renal failure. Finally, we review anti-inflammatory and antithrombotic findings for ziltivekimab, a novel IL-6 ligand inhibitor being developed specifically for use in atherosclerotic disease and poised to be tested formally in a large-scale cardiovascular outcomes trial focused on individuals with chronic kidney disease and elevated levels of CRP, a population at high residual atherothrombotic risk, high residual inflammatory risk, and considerable unmet clinical need.
Collapse
MESH Headings
- Aneurysm/etiology
- Animals
- Antibodies, Monoclonal, Humanized/therapeutic use
- Atherosclerosis/etiology
- Atherosclerosis/metabolism
- C-Reactive Protein/metabolism
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/therapy
- Cell Differentiation
- Cell Proliferation
- Disease Models, Animal
- Humans
- Immunity, Cellular
- Immunity, Innate
- Inflammasomes
- Inflammation/complications
- Interleukin-1beta/antagonists & inhibitors
- Interleukin-1beta/metabolism
- Interleukin-6/antagonists & inhibitors
- Interleukin-6/genetics
- Interleukin-6/immunology
- Interleukin-6/metabolism
- Mice
- Myocardial Ischemia/therapy
- NLR Family, Pyrin Domain-Containing 3 Protein
- Receptors, Interleukin-6/antagonists & inhibitors
- Receptors, Interleukin-6/metabolism
- Renal Dialysis
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/therapy
- Thrombosis/etiology
Collapse
|
Journal Article |
4 |
348 |
19
|
Rothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1218-27. [PMID: 27016501 DOI: 10.1016/j.bbamcr.2016.03.018] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/21/2022]
Abstract
The cytokine interleukin-6 (IL-6) plays a critical role in the pathogenesis of inflammatory disorders and in the physiological homeostasis of neural tissue. Profound neuropathological changes, such as multiple sclerosis (MS), Parkinson's and Alzheimer's disease are associated with increased IL-6 expression in brain. Increased nocturnal concentrations of serum IL-6 are found in patients with impaired sleep whereas IL-6-deficient mice spend more time in rapid eye movement sleep associated with dreaming. IL-6 is crucial in the differentiation of oligodendrocytes, regeneration of peripheral nerves and acts as a neurotrophic factor. It exerts its cellular effects through two distinct pathways which include the anti-inflammatory pathway involving the membrane-bound IL-6 receptor (IL-6R) expressed on selective cells, including microglia, in a process known as classical signaling that is also critical for bacterial defense. In classical signaling binding of IL-6 to the membrane-bound IL-6R activates the β-receptor glycoprotein 130 (gp130) and subsequent down-stream signaling. The alternative, rather pro-inflammatory pathway, shown to mediate neurodegeneration in mice, termed trans-signaling, depends on a soluble form of the IL-6R that is capable of binding IL-6 to stimulate a response on distal cells that express gp130. A naturally occurring soluble form of gp130 (sgp130) has been identified that can specifically bind and neutralize the IL-6R/IL-6 complex. Thus, trans-signaling is blocked but classical signaling is completely unaffected. A modified, recombinant dimerized version of sgp130 (sgp130Fc) has successfully been used to block inflammatory processes in mice and may also be used in the clarification of IL-6 trans-signaling in neurological diseases.
Collapse
|
Review |
9 |
339 |
20
|
Hong DS, Angelo LS, Kurzrock R. Interleukin-6 and its receptor in cancer: implications for translational therapeutics. Cancer 2007; 110:1911-28. [PMID: 17849470 DOI: 10.1002/cncr.22999] [Citation(s) in RCA: 313] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin-6 (IL-6) plays a major role in the response to injury or infection and is involved in the immune response, inflammation, and hematopoiesis. Its deregulation impacts numerous disease states, including many types of cancer. Consequently, modulating IL-6 may be an innovative therapeutic strategy in several diseases. A review of relevant published literature regarding IL-6 and its receptor was performed. In addition, a review of the relevance of this cytokine system to human illness, particularly in cancer, was undertaken. IL-6 is a pleiotropic cytokine that is involved in the physiology of virtually every organ system. Aberrant expression of this cytokine has been implicated in diverse human illnesses, most notably inflammatory and autoimmune disorders, coronary artery and neurologic disease, gestational problems, and neoplasms. In cancer, high levels of circulating IL-6 are observed in almost every type of tumor studied and predict a poor outcome. Furthermore, elevated IL-6 levels are associated strongly with several of the striking phenotypic features of cancer. Several molecules have been developed recently that target the biologic function of IL-6. Early results in the clinic suggest that this strategy may have a significant salutary impact on diverse tumors. The field of cytokine research has yielded a deep understanding of the fundamental role of IL-6 and its receptor in health and disease. Therapeutic targeting of IL-6 and its receptor in cancer has strong biologic rationale, and there is preliminary evidence suggesting that targeting of the IL-6 system may be beneficial in the treatment of cancer.
Collapse
|
Review |
18 |
313 |
21
|
Matthews V, Schuster B, Schütze S, Bussmeyer I, Ludwig A, Hundhausen C, Sadowski T, Saftig P, Hartmann D, Kallen KJ, Rose-John S. Cellular cholesterol depletion triggers shedding of the human interleukin-6 receptor by ADAM10 and ADAM17 (TACE). J Biol Chem 2003; 278:38829-39. [PMID: 12832423 DOI: 10.1074/jbc.m210584200] [Citation(s) in RCA: 301] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Interleukin-6 (IL-6) activates cells by binding to the membrane-bound IL-6 receptor (IL-6R) and subsequent formation of a glycoprotein 130 homodimer. Cells that express glycoprotein 130, but not the IL-6R, can be activated by IL-6 and the soluble IL-6R which is generated by shedding from the cell surface or by alternative splicing. Here we show that cholesterol depletion of cells with methyl-beta-cyclodextrin increases IL-6R shedding independent of protein kinase C activation and thus differs from phorbol ester-induced shedding. Contrary to cholesterol depletion, cholesterol enrichment did not increase IL-6R shedding. Shedding of the IL-6R because of cholesterol depletion is highly dependent on the metalloproteinase ADAM17 (tumor necrosis factor-alpha-converting enzyme), and the related ADAM10, which is identified here for the first time as an enzyme involved in constitutive and induced shedding of the human IL-6R. When combined with protein kinase C inhibition by staurosporine or rottlerin, breakdown of plasma membrane sphingomyelin or enrichment of the plasma membrane with ceramide also increased IL-6R shedding. The effect of cholesterol depletion was confirmed in human THP-1 and Hep3B cells and in primary human peripheral blood monocytes, which naturally express the IL-6R. For decades, high cholesterol levels have been considered harmful. This study indicates that low cholesterol levels may play a role in shedding of the membrane-bound IL-6R and thereby in the immunopathogenesis of human diseases.
Collapse
|
|
22 |
301 |
22
|
Abstract
Intravenous (IV) and subcutaneous (SC) tocilizumab (RoActemra®), an IL-6 receptor antagonist, are approved (± methotrexate) in numerous countries throughout the world, for the treatment of adults with moderate to severe active rheumatoid arthritis (RA). Extensive clinical experience has firmly established the short- and long-term efficacy and safety of tocilizumab [monotherapy or in combination with conventional synthetic DMARDs (csDMARDs)] in adults with early-stage and longer-duration established RA. In the clinical trial and real-world settings, tocilizumab monotherapy or combination therapy provided rapid and sustained improvements in clinical and radiographic outcomes and health-related quality of life. The safety profile of tocilizumab is consistent over time and, in general, is consistent with that of other immunomodulatory agents. This narrative review, written from an EU perspective, summarizes the clinical use of IV and SC tocilizumab in RA. Given its low risk of immunogenicity, the flexibility of IV and SC administration and the convenience of the once-weekly, self-administered, SC regimen, tocilizumab provides an effective treatment for severe, active and progressive RA in adults not previously treated with methotrexate and an effective biologic first- or subsequent-line treatment for moderate to severe active RA in adults who have either responded inadequately to or were intolerant of previous therapy with ≥ 1 csDMARD or TNF inhibitor.
Collapse
|
Review |
8 |
287 |
23
|
Abstract
The physiological function of interleukin-6 (IL-6) within the central nervous system (CNS) is complex; IL-6 exerts neurotrophic and neuroprotective effects, and yet can also function as a mediator of inflammation, demyelination, and astrogliosis, depending on the cellular context. In the normal brain, IL-6 levels remain low. However, elevated expression occurs in injury, infection, stroke, and inflammation. Given the diverse biological functions of IL-6 and its expression in numerous CNS conditions, it is critical to understand its regulation in the brain in order to control its expression and ultimately its effects. Accumulating data demonstrate that the predominant CNS source of IL-6 is the activated astrocyte. Furthermore, a wide range of factors have been demonstrated to be involved in IL-6 regulation by astrocytes. In this review, we summarize information concerning IL-6 regulation in astrocytes, focusing on the role of proinflammatory factors, neurotransmitters, and second messengers.
Collapse
|
Review |
26 |
286 |
24
|
Economides AN, Carpenter LR, Rudge JS, Wong V, Koehler-Stec EM, Hartnett C, Pyles EA, Xu X, Daly TJ, Young MR, Fandl JP, Lee F, Carver S, McNay J, Bailey K, Ramakanth S, Hutabarat R, Huang TT, Radziejewski C, Yancopoulos GD, Stahl N. Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nat Med 2003; 9:47-52. [PMID: 12483208 DOI: 10.1038/nm811] [Citation(s) in RCA: 272] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Accepted: 11/26/2002] [Indexed: 02/06/2023]
Abstract
Cytokines can initiate and perpetuate human diseases, and are among the best-validated of therapeutic targets. Cytokines can be blocked by the use of soluble receptors; however, the use of this approach for cytokines such as interleukin (IL)-1, IL-4, IL-6 and IL-13 that use multi-component receptor systems is limited because monomeric soluble receptors generally exhibit low affinity or function as agonists. We describe here a generally applicable method to create very high-affinity blockers called 'cytokine traps' consisting of fusions between the constant region of IgG and the extracellular domains of two distinct cytokine receptor components involved in binding the cytokine. Traps potently block cytokines in vitro and in vivo and represent a substantial advance in creating novel therapeutic candidates for cytokine-driven diseases.
Collapse
|
|
22 |
272 |
25
|
Chalaris A, Rabe B, Paliga K, Lange H, Laskay T, Fielding CA, Jones SA, Rose-John S, Scheller J. Apoptosis is a natural stimulus of IL6R shedding and contributes to the proinflammatory trans-signaling function of neutrophils. Blood 2007; 110:1748-55. [PMID: 17567983 DOI: 10.1182/blood-2007-01-067918] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Interleukin 6 (IL6) trans-signaling has emerged as a prominent regulator of immune responses during both innate and acquired immunity. Regulation of IL6 trans-signaling is reliant upon the release of soluble IL6 receptor (sIL6R), which binds IL6 to create an agonistic IL6/sIL6R complex capable of activating cell types that would not normally respond to IL6 itself. Here we show that intrinsic and extrinsic apoptotic stimulation by DNA damage, cytokine deprivation, and Fas stimulation promotes shedding of sIL6R. Apoptosis-induced shedding of the IL6R was caspase dependent but PKC independent, with inhibition of ADAM17 preventing IL6R shedding. Such insight is relevant to the control of acute inflammation, where transition from the initial neutrophil infiltration to a more sustained population of mononuclear cells is essential for the resolution of the inflammatory process. This transitional event is governed by IL6 trans-signaling. This study demonstrates that IL6R is shed from apoptotic human neutrophils. In vivo studies in a murine inflammation model showed that neutrophil depletion resulted in reduced local sIL6R levels and a concomitant decrease in mononuclear cells, suggesting that apoptosis-induced IL6R shedding from neutrophils promotes IL6 trans-signaling and regulates the attraction of monocytic cells involved in the clearance of apoptotic neutrophils.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
268 |