1
|
Araus JL, Cairns JE. Field high-throughput phenotyping: the new crop breeding frontier. TRENDS IN PLANT SCIENCE 2014; 19:52-61. [PMID: 24139902 DOI: 10.1016/j.tplants.2013.09.008] [Citation(s) in RCA: 633] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 05/18/2023]
Abstract
Constraints in field phenotyping capability limit our ability to dissect the genetics of quantitative traits, particularly those related to yield and stress tolerance (e.g., yield potential as well as increased drought, heat tolerance, and nutrient efficiency, etc.). The development of effective field-based high-throughput phenotyping platforms (HTPPs) remains a bottleneck for future breeding advances. However, progress in sensors, aeronautics, and high-performance computing are paving the way. Here, we review recent advances in field HTPPs, which should combine at an affordable cost, high capacity for data recording, scoring and processing, and non-invasive remote sensing methods, together with automated environmental data collection. Laboratory analyses of key plant parts may complement direct phenotyping under field conditions. Improvements in user-friendly data management together with a more powerful interpretation of results should increase the use of field HTPPs, therefore increasing the efficiency of crop genetic improvement to meet the needs of future generations.
Collapse
|
Review |
11 |
633 |
2
|
Khan MK, Alghathbar K. Cryptanalysis and security improvements of 'two-factor user authentication in wireless sensor networks'. SENSORS 2010; 10:2450-9. [PMID: 22294935 PMCID: PMC3264488 DOI: 10.3390/s100302450] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/04/2010] [Accepted: 03/12/2010] [Indexed: 11/16/2022]
Abstract
User authentication in wireless sensor networks (WSN) is a critical security issue due to their unattended and hostile deployment in the field. Since sensor nodes are equipped with limited computing power, storage, and communication modules; authenticating remote users in such resource-constrained environments is a paramount security concern. Recently, M.L. Das proposed a two-factor user authentication scheme in WSNs and claimed that his scheme is secure against different kinds of attack. However, in this paper, we show that the M.L. Das-scheme has some critical security pitfalls and cannot be recommended for real applications. We point out that in his scheme: users cannot change/update their passwords, it does not provide mutual authentication between gateway node and sensor node, and is vulnerable to gateway node bypassing attack and privileged-insider attack. To overcome the inherent security weaknesses of the M.L. Das-scheme, we propose improvements and security patches that attempt to fix the susceptibilities of his scheme. The proposed security improvements can be incorporated in the M.L. Das-scheme for achieving a more secure and robust two-factor user authentication in WSNs.
Collapse
|
Journal Article |
15 |
288 |
3
|
Abstract
This paper introduces a mathematical model that incorporates the pertinent optical and physiological properties of skin reflections with the objective to increase our understanding of the algorithmic principles behind remote photoplethysmography (rPPG). The model is used to explain the different choices that were made in existing rPPG methods for pulse extraction. The understanding that comes from the model can be used to design robust or application-specific rPPG solutions. We illustrate this by designing an alternative rPPG method, where a projection plane orthogonal to the skin tone is used for pulse extraction. A large benchmark on the various discussed rPPG methods shows that their relative merits can indeed be understood from the proposed model.
Collapse
|
Journal Article |
9 |
242 |
4
|
Ma Z, Hu X, Huang L, Bi J, Liu Y. Estimating ground-level PM2.5 in China using satellite remote sensing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7436-44. [PMID: 24901806 DOI: 10.1021/es5009399] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Estimating ground-level PM2.5 from satellite-derived aerosol optical depth (AOD) using a spatial statistical model is a promising new method to evaluate the spatial and temporal characteristics of PM2.5 exposure in a large geographic region. However, studies outside North America have been limited due to the lack of ground PM2.5 measurements to calibrate the model. Taking advantage of the newly established national monitoring network, we developed a national-scale geographically weighted regression (GWR) model to estimate daily PM2.5 concentrations in China with fused satellite AOD as the primary predictor. The results showed that the meteorological and land use information can greatly improve model performance. The overall cross-validation (CV) R(2) is 0.64 and root mean squared prediction error (RMSE) is 32.98 μg/m(3). The mean prediction error (MPE) of the predicted annual PM2.5 is 8.28 μg/m(3). Our predicted annual PM2.5 concentrations indicated that over 96% of the Chinese population lives in areas that exceed the Chinese National Ambient Air Quality Standard (CNAAQS) Level 2 standard. Our results also confirmed satellite-derived AOD in conjunction with meteorological fields and land use information can be successfully applied to extend the ground PM2.5 monitoring network in China.
Collapse
|
|
11 |
223 |
5
|
Simblett S, Greer B, Matcham F, Curtis H, Polhemus A, Ferrão J, Gamble P, Wykes T. Barriers to and Facilitators of Engagement With Remote Measurement Technology for Managing Health: Systematic Review and Content Analysis of Findings. J Med Internet Res 2018; 20:e10480. [PMID: 30001997 PMCID: PMC6062692 DOI: 10.2196/10480] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Remote measurement technology refers to the use of mobile health technology to track and measure change in health status in real time as part of a person's everyday life. With accurate measurement, remote measurement technology offers the opportunity to augment health care by providing personalized, precise, and preemptive interventions that support insight into patterns of health-related behavior and self-management. However, for successful implementation, users need to be engaged in its use. OBJECTIVE Our objective was to systematically review the literature to update and extend the understanding of the key barriers to and facilitators of engagement with and use of remote measurement technology, to guide the development of future remote measurement technology resources. METHODS We conducted a systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines involving original studies dating back to the last systematic review published in 2014. We included studies if they met the following entry criteria: population (people using remote measurement technology approaches to aid management of health), intervention (remote measurement technology system), comparison group (no comparison group specified), outcomes (qualitative or quantitative evaluation of the barriers to and facilitators of engagement with this system), and study design (randomized controlled trials, feasibility studies, and observational studies). We searched 5 databases (MEDLINE, IEEE Xplore, EMBASE, Web of Science, and the Cochrane Library) for articles published from January 2014 to May 2017. Articles were independently screened by 2 researchers. We extracted study characteristics and conducted a content analysis to define emerging themes to synthesize findings. Formal quality assessments were performed to address risk of bias. RESULTS A total of 33 studies met inclusion criteria, employing quantitative, qualitative, or mixed-methods designs. Studies were conducted in 10 countries, included male and female participants, with ages ranging from 8 to 95 years, and included both active and passive remote monitoring systems for a diverse range of physical and mental health conditions. However, they were relatively short and had small sample sizes, and reporting of usage statistics was inconsistent. Acceptability of remote measurement technology according to the average percentage of time used (64%-86.5%) and dropout rates (0%-44%) was variable. The barriers and facilitators from the content analysis related to health status, perceived utility and value, motivation, convenience and accessibility, and usability. CONCLUSIONS The results of this review highlight gaps in the design of studies trialing remote measurement technology, including the use of quantitative assessment of usage and acceptability. Several processes that could facilitate engagement with this technology have been identified and may drive the development of more person-focused remote measurement technology. However, these factors need further testing through carefully designed experimental studies. TRIAL REGISTRATION International Prospective Register of Systematic Reviews (PROSPERO) CRD42017060644; https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=60644 (Archived by WebCite at http://www.webcitation.org/70K4mThTr).
Collapse
|
Systematic Review |
7 |
174 |
6
|
Park J, Jeong BG, Kim SI, Lee D, Kim J, Shin C, Lee CB, Otsuka T, Kyoung J, Kim S, Yang KY, Park YY, Lee J, Hwang I, Jang J, Song SH, Brongersma ML, Ha K, Hwang SW, Choo H, Choi BL. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. NATURE NANOTECHNOLOGY 2021; 16:69-76. [PMID: 33106642 DOI: 10.1038/s41565-020-00787-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 09/17/2020] [Indexed: 05/26/2023]
Abstract
Spatial light modulators are essential optical elements in applications that require the ability to regulate the amplitude, phase and polarization of light, such as digital holography, optical communications and biomedical imaging. With the push towards miniaturization of optical components, static metasurfaces are used as competent alternatives. These evolved to active metasurfaces in which light-wavefront manipulation can be done in a time-dependent fashion. The active metasurfaces reported so far, however, still show incomplete phase modulation (below 360°). Here we present an all-solid-state, electrically tunable and reflective metasurface array that can generate a specific phase or a continuous sweep between 0 and 360° at an estimated rate of 5.4 MHz while independently adjusting the amplitude. The metasurface features 550 individually addressable nanoresonators in a 250 × 250 μm2 area with no micromechanical elements or liquid crystals. A key feature of our design is the presence of two independent control parameters (top and bottom gate voltages) in each nanoresonator, which are used to adjust the real and imaginary parts of the reflection coefficient independently. To demonstrate this array's use in light detection and ranging, we performed a three-dimensional depth scan of an emulated street scene that consisted of a model car and a human figure up to a distance of 4.7 m.
Collapse
|
|
4 |
141 |
7
|
Zhang Y, Zhang L, Yang L, Vong CI, Chan KF, Wu WKK, Kwong TNY, Lo NWS, Ip M, Wong SH, Sung JJY, Chiu PWY, Zhang L. Real-time tracking of fluorescent magnetic spore-based microrobots for remote detection of C. diff toxins. SCIENCE ADVANCES 2019; 5:eaau9650. [PMID: 30746470 PMCID: PMC6357761 DOI: 10.1126/sciadv.aau9650] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/30/2018] [Indexed: 05/15/2023]
Abstract
A rapid, direct, and low-cost method for detecting bacterial toxins associated with common gastrointestinal diseases remains a great challenge despite numerous studies and clinical assays. Motion-based detection through tracking the emerging micro- and nanorobots has shown great potential in chemo- and biosensing due to accelerated "chemistry on the move". Here, we described the use of fluorescent magnetic spore-based microrobots (FMSMs) as a highly efficient mobile sensing platform for the detection of toxins secreted by Clostridium difficile (C. diff) that were present in patients' stool. These microrobots were synthesized rapidly and inexpensively by the direct deposition of magnetic nanoparticles and the subsequent encapsulation of sensing probes on the porous natural spores. Because of the cooperation effect of natural spore, magnetic Fe3O4 nanoparticles, and functionalized carbon nanodots, selective fluorescence detection of the prepared FMSMs is demonstrated in C. diff bacterial supernatant and even in actual clinical stool samples from infectious patients within tens of minutes, suggesting rapid response and good selectivity and sensitivity of FMSMs toward C. diff toxins.
Collapse
|
research-article |
6 |
135 |
8
|
Henderson SB, Brauer M, Macnab YC, Kennedy SM. Three measures of forest fire smoke exposure and their associations with respiratory and cardiovascular health outcomes in a population-based cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1266-71. [PMID: 21659039 PMCID: PMC3230386 DOI: 10.1289/ehp.1002288] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/09/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND During the summer of 2003 numerous fires burned in British Columbia, Canada. OBJECTIVES We examined the associations between respiratory and cardiovascular physician visits and hospital admissions, and three measures of smoke exposure over a 92-day study period (1 July to 30 September 2003). METHODS A population-based cohort of 281,711 residents was identified from administrative data. Spatially specific daily exposure estimates were assigned to each subject based on total measurements of particulate matter (PM) ≤ 10 μm in aerodynamic diameter (PM10) from six regulatory tapered element oscillating microbalance (TEOM) air quality monitors, smoke-related PM10 from a CALPUFF dispersion model run for the study, and a SMOKE exposure metric for plumes visible in satellite images. Logistic regression with repeated measures was used to estimate associations with each outcome. RESULTS The mean (± SD) exposure based on TEOM-measured PM10 was 29 ± 31 μg/m3, with an interquartile range of 14-31 μg/m3. Correlations between the TEOM, smoke, and CALPUFF metrics were moderate (0.37-0.76). Odds ratios (ORs) for a 30-μg/m3 increase in TEOM-based PM10 were 1.05 [95% confidence interval (CI), 1.03-1.06] for all respiratory physician visits, 1.16 (95% CI, 1.09-1.23) for asthma-specific visits, and 1.15 (95% CI, 1.00-1.29) for respiratory hospital admissions. Associations with cardiovascular outcomes were largely null. CONCLUSIONS Overall we found that increases in TEOM-measured PM10 were associated with increased odds of respiratory physician visits and hospital admissions, but not with cardiovascular health outcomes. Results indicating effects of fire smoke on respiratory outcomes are consistent with previous studies, as are the null results for cardiovascular outcomes. Some agreement between TEOM and the other metrics suggests that exposure assessment tools that are independent of air quality monitoring may be useful with further refinement.
Collapse
|
Evaluation Study |
14 |
132 |
9
|
Kloog I, Melly SJ, Ridgway WL, Coull BA, Schwartz J. Using new satellite based exposure methods to study the association between pregnancy PM₂.₅ exposure, premature birth and birth weight in Massachusetts. Environ Health 2012; 11:40. [PMID: 22709681 PMCID: PMC3464884 DOI: 10.1186/1476-069x-11-40] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 06/18/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Adverse birth outcomes such as low birth weight and premature birth have been previously linked with exposure to ambient air pollution. Most studies relied on a limited number of monitors in the region of interest, which can introduce exposure error or restrict the analysis to persons living near a monitor, which reduces sample size and generalizability and may create selection bias. METHODS We evaluated the relationship between premature birth and birth weight with exposure to ambient particulate matter (PM₂.₅) levels during pregnancy in Massachusetts for a 9-year period (2000-2008). Building on a novel method we developed for predicting daily PM₂.₅ at the spatial resolution of a 10x10 km grid across New-England, we estimated the average exposure during 30 and 90 days prior to birth as well as the full pregnancy period for each mother. We used linear and logistic mixed models to estimate the association between PM₂.₅ exposure and birth weight (among full term births) and PM₂.₅ exposure and preterm birth adjusting for infant sex, maternal age, maternal race, mean income, maternal education level, prenatal care, gestational age, maternal smoking, percent of open space near mothers residence, average traffic density and mothers health. RESULTS Birth weight was negatively associated with PM₂.₅ across all tested periods. For example, a 10 μg/m³ increase of PM₂.₅ exposure during the entire pregnancy was significantly associated with a decrease of 13.80 g [95% confidence interval (CI) = -21.10, -6.05] in birth weight after controlling for other factors, including traffic exposure. The odds ratio for a premature birth was 1.06 (95% confidence interval (CI) = 1.01-1.13) for each 10 μg/m3 increase of PM₂.₅ exposure during the entire pregnancy period. CONCLUSIONS The presented study suggests that exposure to PM₂.₅ during the last month of pregnancy contributes to risks for lower birth weight and preterm birth in infants.
Collapse
|
Evaluation Study |
13 |
129 |
10
|
Zhang D, Zhou G. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. SENSORS 2016; 16:s16081308. [PMID: 27548168 PMCID: PMC5017473 DOI: 10.3390/s16081308] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 11/21/2022]
Abstract
As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, such as SMOS and SMAP etc., resulting in many data products, they are almost low resolution and not applicable in small catchment or field scale. Estimations of SM from optical and thermal remote sensing have been studied for many years and significant progress has been made. In contrast to previous reviews, this paper presents a new, comprehensive and systematic review of using optical and thermal remote sensing for estimating SM. The physical basis and status of the estimation methods are analyzed and summarized in detail. The most important and latest advances in soil moisture estimation using temporal information have been shown in this paper. SM estimation from optical and thermal remote sensing mainly depends on the relationship between SM and the surface reflectance or vegetation index. The thermal infrared remote sensing methods uses the relationship between SM and the surface temperature or variations of surface temperature/vegetation index. These approaches often have complex derivation processes and many approximations. Therefore, combinations of optical and thermal infrared remotely sensed data can provide more valuable information for SM estimation. Moreover, the advantages and weaknesses of different approaches are compared and applicable conditions as well as key issues in current soil moisture estimation algorithms are discussed. Finally, key problems and suggested solutions are proposed for future research.
Collapse
|
Systematic Review |
9 |
129 |
11
|
Shi Y, Thomasson JA, Murray SC, Pugh NA, Rooney WL, Shafian S, Rajan N, Rouze G, Morgan CLS, Neely HL, Rana A, Bagavathiannan MV, Henrickson J, Bowden E, Valasek J, Olsenholler J, Bishop MP, Sheridan R, Putman EB, Popescu S, Burks T, Cope D, Ibrahim A, McCutchen BF, Baltensperger DD, Avant RV, Vidrine M, Yang C. Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research. PLoS One 2016; 11:e0159781. [PMID: 27472222 PMCID: PMC4966954 DOI: 10.1371/journal.pone.0159781] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/06/2016] [Indexed: 11/18/2022] Open
Abstract
Advances in automation and data science have led agriculturists to seek real-time, high-quality, high-volume crop data to accelerate crop improvement through breeding and to optimize agronomic practices. Breeders have recently gained massive data-collection capability in genome sequencing of plants. Faster phenotypic trait data collection and analysis relative to genetic data leads to faster and better selections in crop improvement. Furthermore, faster and higher-resolution crop data collection leads to greater capability for scientists and growers to improve precision-agriculture practices on increasingly larger farms; e.g., site-specific application of water and nutrients. Unmanned aerial vehicles (UAVs) have recently gained traction as agricultural data collection systems. Using UAVs for agricultural remote sensing is an innovative technology that differs from traditional remote sensing in more ways than strictly higher-resolution images; it provides many new and unique possibilities, as well as new and unique challenges. Herein we report on processes and lessons learned from year 1-the summer 2015 and winter 2016 growing seasons-of a large multidisciplinary project evaluating UAV images across a range of breeding and agronomic research trials on a large research farm. Included are team and project planning, UAV and sensor selection and integration, and data collection and analysis workflow. The study involved many crops and both breeding plots and agronomic fields. The project's goal was to develop methods for UAVs to collect high-quality, high-volume crop data with fast turnaround time to field scientists. The project included five teams: Administration, Flight Operations, Sensors, Data Management, and Field Research. Four case studies involving multiple crops in breeding and agronomic applications add practical descriptive detail. Lessons learned include critical information on sensors, air vehicles, and configuration parameters for both. As the first and most comprehensive project of its kind to date, these lessons are particularly salient to researchers embarking on agricultural research with UAVs.
Collapse
|
research-article |
9 |
125 |
12
|
Fingas M, Brown C. Review of oil spill remote sensing. MARINE POLLUTION BULLETIN 2014; 83:9-23. [PMID: 24759508 DOI: 10.1016/j.marpolbul.2014.03.059] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/23/2014] [Accepted: 03/29/2014] [Indexed: 06/03/2023]
Abstract
Remote-sensing for oil spills is reviewed. The use of visible techniques is ubiquitous, however it gives only the same results as visual monitoring. Oil has no particular spectral features that would allow for identification among the many possible background interferences. Cameras are only useful to provide documentation. In daytime oil absorbs light and remits this as thermal energy at temperatures 3-8K above ambient, this is detectable by infrared (IR) cameras. Laser fluorosensors are useful instruments because of their unique capability to identify oil on backgrounds that include water, soil, weeds, ice and snow. They are the only sensor that can positively discriminate oil on most backgrounds. Radar detects oil on water by the fact that oil will dampen water-surface capillary waves under low to moderate wave/wind conditions. Radar offers the only potential for large area searches, day/night and foul weather remote sensing.
Collapse
|
Review |
11 |
122 |
13
|
Wang K, Franklin SE, Guo X, Cattet M. Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists. SENSORS (BASEL, SWITZERLAND) 2010; 10:9647-67. [PMID: 22163432 PMCID: PMC3231003 DOI: 10.3390/s101109647] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 10/14/2010] [Accepted: 10/28/2010] [Indexed: 11/30/2022]
Abstract
Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).
Collapse
|
Review |
15 |
120 |
14
|
Yilmaz T, Foster R, Hao Y. Detecting vital signs with wearable wireless sensors. SENSORS 2010; 10:10837-62. [PMID: 22163501 PMCID: PMC3231103 DOI: 10.3390/s101210837] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 11/20/2010] [Accepted: 11/25/2010] [Indexed: 12/05/2022]
Abstract
The emergence of wireless technologies and advancements in on-body sensor design can enable change in the conventional health-care system, replacing it with wearable health-care systems, centred on the individual. Wearable monitoring systems can provide continuous physiological data, as well as better information regarding the general health of individuals. Thus, such vital-sign monitoring systems will reduce health-care costs by disease prevention and enhance the quality of life with disease management. In this paper, recent progress in non-invasive monitoring technologies for chronic disease management is reviewed. In particular, devices and techniques for monitoring blood pressure, blood glucose levels, cardiac activity and respiratory activity are discussed; in addition, on-body propagation issues for multiple sensors are presented.
Collapse
|
Review |
15 |
111 |
15
|
Albahri OS, Albahri AS, Mohammed KI, Zaidan AA, Zaidan BB, Hashim M, Salman OH. Systematic Review of Real-time Remote Health Monitoring System in Triage and Priority-Based Sensor Technology: Taxonomy, Open Challenges, Motivation and Recommendations. J Med Syst 2018; 42:80. [PMID: 29564649 DOI: 10.1007/s10916-018-0943-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/15/2018] [Indexed: 11/30/2022]
Abstract
The new and ground-breaking real-time remote monitoring in triage and priority-based sensor technology used in telemedicine have significantly bounded and dispersed communication components. To examine these technologies and provide researchers with a clear vision of this area, we must first be aware of the utilised approaches and existing limitations in this line of research. To this end, an extensive search was conducted to find articles dealing with (a) telemedicine, (b) triage, (c) priority and (d) sensor; (e) comprehensively review related applications and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were checked for articles on triage and priority-based sensor technology in telemedicine. The retrieved articles were filtered according to the type of telemedicine technology explored. A total of 150 articles were selected and classified into two categories. The first category includes reviews and surveys of triage and priority-based sensor technology in telemedicine. The second category includes articles on the three-tiered architecture of telemedicine. Tier 1 represents the users. Sensors acquire the vital signs of the users and send them to Tier 2, which is the personal gateway that uses local area network protocols or wireless body area network. Medical data are sent from Tier 2 to Tier 3, which is the healthcare provider in medical institutes. Then, the motivation for using triage and priority-based sensor technology in telemedicine, the issues related to the obstruction of its application and the development and utilisation of telemedicine are examined on the basis of the findings presented in the literature.
Collapse
|
Review |
7 |
108 |
16
|
Hwang J, Shin C, Yoe H. Study on an agricultural environment monitoring server system using Wireless Sensor Networks. SENSORS 2010; 10:11189-211. [PMID: 22163520 PMCID: PMC3231051 DOI: 10.3390/s101211189] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 11/18/2010] [Accepted: 12/07/2010] [Indexed: 11/20/2022]
Abstract
This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
102 |
17
|
Loncar-Turukalo T, Zdravevski E, Machado da Silva J, Chouvarda I, Trajkovik V. Literature on Wearable Technology for Connected Health: Scoping Review of Research Trends, Advances, and Barriers. J Med Internet Res 2019; 21:e14017. [PMID: 31489843 PMCID: PMC6818529 DOI: 10.2196/14017] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/09/2019] [Accepted: 06/19/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Wearable sensing and information and communication technologies are key enablers driving the transformation of health care delivery toward a new model of connected health (CH) care. The advances in wearable technologies in the last decade are evidenced in a plethora of original articles, patent documentation, and focused systematic reviews. Although technological innovations continuously respond to emerging challenges and technology availability further supports the evolution of CH solutions, the widespread adoption of wearables remains hindered. OBJECTIVE This study aimed to scope the scientific literature in the field of pervasive wearable health monitoring in the time interval from January 2010 to February 2019 with respect to four important pillars: technology, safety and security, prescriptive insight, and user-related concerns. The purpose of this study was multifold: identification of (1) trends and milestones that have driven research in wearable technology in the last decade, (2) concerns and barriers from technology and user perspective, and (3) trends in the research literature addressing these issues. METHODS This study followed the scoping review methodology to identify and process the available literature. As the scope surpasses the possibilities of manual search, we relied on the natural language processing tool kit to ensure an efficient and exhaustive search of the literature corpus in three large digital libraries: Institute of Electrical and Electronics Engineers, PubMed, and Springer. The search was based on the keywords and properties to be found in articles using the search engines of the digital libraries. RESULTS The annual number of publications in all segments of research on wearable technology shows an increasing trend from 2010 to February 2019. The technology-related topics dominated in the number of contributions, followed by research on information delivery, safety, and security, whereas user-related concerns were the topic least addressed. The literature corpus evidences milestones in sensor technology (miniaturization and placement), communication architectures and fifth generation (5G) cellular network technology, data analytics, and evolution of cloud and edge computing architectures. The research lag in battery technology makes energy efficiency a relevant consideration in the design of both sensors and network architectures with computational offloading. The most addressed user-related concerns were (technology) acceptance and privacy, whereas research gaps indicate that more efforts should be invested into formalizing clear use cases with timely and valuable feedback and prescriptive recommendations. CONCLUSIONS This study confirms that applications of wearable technology in the CH domain are becoming mature and established as a scientific domain. The current research should bring progress to sustainable delivery of valuable recommendations, enforcement of privacy by design, energy-efficient pervasive sensing, seamless monitoring, and low-latency 5G communications. To complement technology achievements, future work involving all stakeholders providing research evidence on improved care pathways and cost-effectiveness of the CH model is needed.
Collapse
|
Scoping Review |
6 |
97 |
18
|
Misra S, Sarkar S. Priority-based time-slot allocation in wireless body area networks during medical emergency situations: an evolutionary game-theoretic perspective. IEEE J Biomed Health Inform 2014; 19:541-8. [PMID: 24686307 DOI: 10.1109/jbhi.2014.2313374] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In critical medical emergency situations, wireless body area network (WBAN) equipped health monitoring systems treat data packets with critical information regarding patients' health in the same way as data packets bearing regular healthcare information. This snag results in a higher average waiting time for the local data processing units (LDPUs) transmitting data packets of higher importance. In this paper, we formulate an algorithm for Priority-based Allocation of Time Slots (PATS) that considers a fitness parameter characterizing the criticality of health data that a packet carries, energy consumption rate for a transmitting LDPU, and other crucial LDPU properties. Based on this fitness parameter, we design the constant model hawk-dove game that ensures prioritizing the LDPUs based on crucial properties. In comparison with the existing works on priority-based wireless transmission, we measure and take into consideration the urgency, seriousness, and criticality associated with an LDPU and, thus, allocate transmission time slots proportionately. We show that the number of transmitting LDPUs in medical emergency situations can be reduced by 25.97%, in comparison with the existing time-division-based techniques.
Collapse
|
Journal Article |
11 |
95 |
19
|
Matcham F, Barattieri di San Pietro C, Bulgari V, de Girolamo G, Dobson R, Eriksson H, Folarin AA, Haro JM, Kerz M, Lamers F, Li Q, Manyakov NV, Mohr DC, Myin-Germeys I, Narayan V, BWJH P, Ranjan Y, Rashid Z, Rintala A, Siddi S, Simblett SK, Wykes T, Hotopf M. Remote assessment of disease and relapse in major depressive disorder (RADAR-MDD): a multi-centre prospective cohort study protocol. BMC Psychiatry 2019; 19:72. [PMID: 30777041 PMCID: PMC6379954 DOI: 10.1186/s12888-019-2049-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/01/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND There is a growing body of literature highlighting the role that wearable and mobile remote measurement technology (RMT) can play in measuring symptoms of major depressive disorder (MDD). Outcomes assessment typically relies on self-report, which can be biased by dysfunctional perceptions and current symptom severity. Predictors of depressive relapse include disrupted sleep, reduced sociability, physical activity, changes in mood, prosody and cognitive function, which are all amenable to measurement via RMT. This study aims to: 1) determine the usability, feasibility and acceptability of RMT; 2) improve and refine clinical outcome measurement using RMT to identify current clinical state; 3) determine whether RMT can provide information predictive of depressive relapse and other critical outcomes. METHODS RADAR-MDD is a multi-site prospective cohort study, aiming to recruit 600 participants with a history of depressive disorder across three sites: London, Amsterdam and Barcelona. Participants will be asked to wear a wrist-worn activity tracker and download several apps onto their smartphones. These apps will be used to either collect data passively from existing smartphone sensors, or to deliver questionnaires, cognitive tasks, and speech assessments. The wearable device, smartphone sensors and questionnaires will collect data for up to 2-years about participants' sleep, physical activity, stress, mood, sociability, speech patterns, and cognitive function. The primary outcome of interest is MDD relapse, defined via the Inventory of Depressive Symptomatology- Self-Report questionnaire (IDS-SR) and the World Health Organisation's self-reported Composite International Diagnostic Interview (CIDI-SF). DISCUSSION This study aims to provide insight into the early predictors of major depressive relapse, measured unobtrusively via RMT. If found to be acceptable to patients and other key stakeholders and able to provide clinically useful information predictive of future deterioration, RMT has potential to change the way in which depression and other long-term conditions are measured and managed.
Collapse
|
Clinical Trial Protocol |
6 |
91 |
20
|
Peña JM, Torres-Sánchez J, de Castro AI, Kelly M, López-Granados F. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS One 2013; 8:e77151. [PMID: 24146963 PMCID: PMC3795646 DOI: 10.1371/journal.pone.0077151] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 09/01/2013] [Indexed: 11/19/2022] Open
Abstract
The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed coverage from the image analysis yielded satisfactory results. The relationship of estimated versus observed weed densities had a coefficient of determination of r(2)=0.89 and a root mean square error of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5% weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed operations. The OBIA procedure computes multiple data and statistics derived from the classification outputs, which permits calculation of herbicide requirements and estimation of the overall cost of weed management operations in advance.
Collapse
|
research-article |
12 |
90 |
21
|
Abstract
Current state-of-the-art remote photoplethysmography (rPPG) algorithms are capable of extracting a clean pulse signal in ambient light conditions using a regular color camera, even when subjects move significantly. In this study, we investigate the feasibility of rPPG in the (near)-infrared spectrum, which broadens the scope of applications for rPPG. Two camera setups are investigated: one setup consisting of three monochrome cameras with different optical filters, and one setup consisting of a single RGB camera with a visible light blocking filter. Simulation results predict the monochrome setup to be more motion robust, but this simulation neglects parallax. To verify this, a challenging benchmark dataset consisting of 30 videos is created with various motion scenarios and skin tones. Experiments show that both camera setups are capable of accurate pulse extraction in all motion scenarios, with an average SNR of +6.45 and +7.26 dB, respectively. The single camera setup proves to be superior in scenarios involving scaling, likely due to parallax of the multicamera setup. To further improve motion robustness of the RGB camera, dedicated LED illumination with two distinct wavelengths is proposed and verified. This paper demonstrates that accurate rPPG measurements in infrared are feasible, even with severe subject motion.
Collapse
|
Journal Article |
10 |
90 |
22
|
Fretwell PT, Staniland IJ, Forcada J. Whales from space: counting southern right whales by satellite. PLoS One 2014; 9:e88655. [PMID: 24533131 PMCID: PMC3922973 DOI: 10.1371/journal.pone.0088655] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/12/2014] [Indexed: 11/18/2022] Open
Abstract
We describe a method of identifying and counting whales using very high resolution satellite imagery through the example of southern right whales breeding in part of the Golfo Nuevo, Península Valdés in Argentina. Southern right whales have been extensively hunted over the last 300 years and although numbers have recovered from near extinction in the early 20th century, current populations are fragmented and are estimated at only a small fraction of pre-hunting total. Recent extreme right whale calf mortality events at Península Valdés, which constitutes the largest single population, have raised fresh concern for the future of the species. The WorldView2 satellite has a maximum 50 cm resolution and a water penetrating coastal band in the far-blue part of the spectrum that allows it to see deeper into the water column. Using an image covering 113 km2, we identified 55 probable whales and 23 other features that are possibly whales, with a further 13 objects that are only detected by the coastal band. Comparison of a number of classification techniques, to automatically detect whale-like objects, showed that a simple thresholding technique of the panchromatic and coastal band delivered the best results. This is the first successful study using satellite imagery to count whales; a pragmatic, transferable method using this rapidly advancing technology that has major implications for future surveys of cetacean populations.
Collapse
|
Journal Article |
11 |
88 |
23
|
Linke D, Link D, Lames M. Football-specific validity of TRACAB's optical video tracking systems. PLoS One 2020; 15:e0230179. [PMID: 32155220 PMCID: PMC7064167 DOI: 10.1371/journal.pone.0230179] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 02/24/2020] [Indexed: 11/19/2022] Open
Abstract
The present study aimed to validate and compare the football-specific measurement accuracy of two optical tracking systems engineered by TRACAB. The “Gen4” system consists of two multi-camera units (a stereo pair) in two locations either side of the halfway line, whereas the distributed “Gen5” system combines two stereo pairs on each side of the field as well as two monocular systems behind the goal areas. Data were collected from 20 male football players in two different exercises (a football sport-specific running course and small-sided games) in a professional football stadium. For evaluating the accuracy of the systems, measures were compared against simultaneously recorded measures of a reference system (VICON motion capture system). Statistical analysis uses RMSE for kinematic variables (position, speed and acceleration) and the difference in percentages for performance indicators (e.g. distance covered, peak speed) per run compared to the reference system. Frames in which players were obviously not tracked were excluded. Gen5 had marginally better accuracy (0.08 m RMSE) for position measurements than Gen4 (0.09 m RMSE) compared to the reference. Accuracy difference in instantaneous speed (Gen4: 0.09 m⋅s-1 RMSE; Gen5: 0.08 m⋅s-1 RMSE) and acceleration (Gen4: 0.26 m⋅s-2 RMSE; Gen5: 0.21 m⋅s-2 RMSE) measurements were significant, but also trivial in terms of the effect size. For total distance travelled, both Gen4 (0.42 ± 0.60%) and Gen5 (0.27 ± 0.35%) showed only trivial deviations compared to the reference. Gen4 showed moderate differences in the low-speed distance travelled category (-19.41 ± 13.24%) and small differences in the high-speed distance travelled category (8.94 ± 9.49%). Differences in peak speed, acceleration and deceleration were trivial (<0.5%) for both Gen4 and Gen5. These findings suggest that Gen5’s distributed camera architecture has minor benefits over Gen4’s single-view camera architecture in terms of accuracy. We assume that the main benefit of the Gen5 towards Gen4 lies in increased robustness of the tracking when it comes to optical overlapping of players. Since differences towards the reference system were very low, both TRACAB’s tracking systems can be considered as valid technologies for football-specific performance analyses in the settings tested as long as players are tracked correctly.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
87 |
24
|
Benharref A, Serhani MA. Novel cloud and SOA-based framework for e-health monitoring using wireless biosensors. IEEE J Biomed Health Inform 2014; 18:46-55. [PMID: 24403403 DOI: 10.1109/jbhi.2013.2262659] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Various and independent studies are showing that an exponential increase of chronic diseases (CDs) is exhausting governmental and private healthcare systems to an extent that some countries allocate half of their budget to healthcare systems. To benefit from the IT development, e-health monitoring and prevention approaches revealed to be among top promising solutions. In fact, well-implemented monitoring and prevention schemes have reported a decent reduction of CDs risk and have narrowed their effects, on both patients' health conditions and on government budget spent on healthcare. In this paper, we propose a framework to collect patients' data in real time, perform appropriate nonintrusive monitoring, and propose medical and/or life style engagements, whenever needed and appropriate. The framework, which relies on service-oriented architecture (SOA) and the Cloud, allows a seamless integration of different technologies, applications, and services. It also integrates mobile technologies to smoothly collect and communicate vital data from a patient's wearable biosensors while considering the mobile devices' limited capabilities and power drainage in addition to intermittent network disconnections. Then, data are stored in the Cloud and made available via SOA to allow easy access by physicians, paramedics, or any other authorized entity. A case study has been developed to evaluate the usability of the framework, and the preliminary results that have been analyzed are showing very promising results.
Collapse
|
Journal Article |
11 |
86 |
25
|
McDuff D, Gontarek S, Picard RW. Improvements in remote cardiopulmonary measurement using a five band digital camera. IEEE Trans Biomed Eng 2014; 61:2593-601. [PMID: 24835124 DOI: 10.1109/tbme.2014.2323695] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Remote measurement of the blood volume pulse via photoplethysmography (PPG) using digital cameras and ambient light has great potential for healthcare and affective computing. However, traditional RGB cameras have limited frequency resolution. We present results of PPG measurements from a novel five band camera and show that alternate frequency bands, in particular an orange band, allowed physiological measurements much more highly correlated with an FDA approved contact PPG sensor. In a study with participants (n = 10) at rest and under stress, correlations of over 0.92 (p 0.01) were obtained for heart rate, breathing rate, and heart rate variability measurements. In addition, the remotely measured heart rate variability spectrograms closely matched those from the contact approach. The best results were obtained using a combination of cyan, green, and orange (CGO) bands; incorporating red and blue channel observations did not improve performance. In short, RGB is not optimal for this problem: CGO is better. Incorporating alternative color channel sensors should not increase the cost of such cameras dramatically.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
84 |