1
|
Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, Deng HW. Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 2008; 23:17-29. [PMID: 17784844 PMCID: PMC2663586 DOI: 10.1359/jbmr.070813] [Citation(s) in RCA: 375] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It was previously believed that obesity and osteoporosis were two unrelated diseases, but recent studies have shown that both diseases share several common genetic and environmental factors. Body fat mass, a component of body weight, is one of the most important indices of obesity, and a substantial body of evidence indicates that fat mass may have beneficial effects on bone. Contrasting studies, however, suggest that excessive fat mass may not protect against osteoporosis or osteoporotic fracture. Differences in experimental design, sample structure, and even the selection of covariates may account for some of these inconsistent or contradictory results. Despite the lack of a clear consensus regarding the impact of effects of fat on bone, a number of mechanistic explanations have been proposed to support the observed epidemiologic and physiologic associations between fat and bone. The common precursor stem cell that leads to the differentiation of both adipocytes and osteoblasts, as well the secretion of adipocyte-derived hormones that affect bone development, may partially explain these associations. Based on our current state of knowledge, it is unclear whether fat has beneficial effects on bone. We anticipate that this will be an active and fruitful focus of research in the coming years.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
375 |
2
|
Jamaluddin MS, Weakley SM, Yao Q, Chen C. Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol 2012; 165:622-32. [PMID: 21545576 PMCID: PMC3315035 DOI: 10.1111/j.1476-5381.2011.01369.x] [Citation(s) in RCA: 343] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/02/2011] [Accepted: 03/04/2011] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Resistin, originally described as an adipocyte-specific hormone, has been suggested to be an important link between obesity, insulin resistance and diabetes. Although its expression was initially defined in adipocytes, significant levels of resistin expression in humans are mainly found in mononuclear leukocytes, macrophages, spleen and bone marrow cells. Increasing evidence indicates that resistin plays important regulatory roles apart from its role in insulin resistance and diabetes in a variety of biological processes: atherosclerosis and cardiovascular disease (CVD), non-alcoholic fatty liver disease, autoimmune disease, malignancy, asthma, inflammatory bowel disease and chronic kidney disease. As CVD accounts for a significant amount of morbidity and mortality in patients with diabetes and without diabetes, it is important to understand the role that adipokines such as resistin play in the cardiovascular system. Evidence suggests that resistin is involved in pathological processes leading to CVD including inflammation, endothelial dysfunction, thrombosis, angiogenesis and smooth muscle cell dysfunction. The modes of action and signalling pathways whereby resistin interacts with its target cells are beginning to be understood. In this review, the current knowledge about the functions and pathophysiological implications of resistin in CVD development is summarized; clinical translations, therapeutic considerations and future directions in the field of resistin research are discussed. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
343 |
3
|
Koerner A, Kratzsch J, Kiess W. Adipocytokines: leptin--the classical, resistin--the controversical, adiponectin--the promising, and more to come. Best Pract Res Clin Endocrinol Metab 2005; 19:525-46. [PMID: 16311215 DOI: 10.1016/j.beem.2005.07.008] [Citation(s) in RCA: 308] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the growing prevalence of obesity, scientific interest in the biology of adipose tissue has been extended to the secretory products of adipocytes, since they are increasingly shown to affect several aspects in the pathogenesis of obesity-related diseases. The cloning of the ob gene is consistent with this concept and suggests that body fat content in adult rodents is regulated by a negative feedback loop centred in the hypothalamus. In recent years, a number of additional signalling molecules secreted by adipose tissue have been discovered, commonly referred to as 'adipocytokines'. Among these, adiponectin is perhaps the most interesting and promising compound for the clinician since it has profound protective actions in the pathogenesis of diabetes and cardiovascular disease. Adiponectin is low in obese subjects and, in particular, insulin-resistant patients. In contrast, resistin seems to be of greater relevance in relation to the immune stress response than in the regulation of glucose homeostasis. However, inflammatory processes have recently been connected with the development of atherosclerosis. Finally, little is known regarding the clinical relevance of visfatin. Recent research has revealed many functions of adipocytokines extending far beyond metabolism, such as immunity, cancer and bone formation. This report aims to review some of the recent topics of adipocytokine research that may be of particular importance.
Collapse
|
Review |
20 |
308 |
4
|
Abstract
Adipose tissue is a highly active organ. In addition to storing calories as triglycerides, it also secretes a large variety of proteins, including cytokines, chemokines and hormone-like factors, such as leptin, adiponectin and resistin. Intriguingly, many, if not most, of these adipose-derived proteins have dual actions; cytokines have both immunomodulatory functions and act as systemic or auto-/paracrine regulators of metabolism, while proteins such as leptin and adiponectin are regulators of both metabolism and inflammation. The production of pro-atherogenic chemokines by adipose tissue is of particular interest since their local secretion, e.g. by perivascular adipose depots, may provide a novel mechanistic link between obesity and the associated vascular complications.
Collapse
|
Review |
20 |
222 |
5
|
Mitchell M, Armstrong DT, Robker RL, Norman RJ. Adipokines: implications for female fertility and obesity. Reproduction 2006; 130:583-97. [PMID: 16264089 DOI: 10.1530/rep.1.00521] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is associated with a diverse set of metabolic disorders, and has reproductive consequences that are complex and not well understood. The adipose tissue-produced leptin has dominated the literature with regards to female fertility complications, but it is pertinent to explore the likely role of other adipokines--adiponectin and resistin--as our understanding of their biological functions emerge. Leptin influences the developing embryo, the functioning of the ovary and the endometrium, interacts with the release and activity of gonadotrophins and the hormones that control their synthesis. In this review such biological actions and potential roles of the adipokines leptin, adiponectin and resistin are explored in relation to female fertility and the complexity of the obese metabolic state.
Collapse
|
Review |
19 |
179 |
6
|
Axelsson J, Bergsten A, Qureshi AR, Heimbürger O, Bárány P, Lönnqvist F, Lindholm B, Nordfors L, Alvestrand A, Stenvinkel P. Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance. Kidney Int 2006; 69:596-604. [PMID: 16395259 DOI: 10.1038/sj.ki.5000089] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study, we explore the role of decreased renal function and a genetic polymorphism on the recently discovered protein resistin, apparently able to inhibit hepatic insulin action in mice. We also investigate possible links with inflammation and the insulin resistance present in patients with chronic kidney disease (CKD). This is a post hoc, cross-sectional study comparing 239 prevalent CKD patients with varying degrees of renal function impairment with an age- and gender-matched randomly selected control group of 25 individuals. Glomerular filtration rate (GFR) was estimated by the mean of urea and creatinine clearance (24-h urine samples) (n=204) or by iohexol clearance (n=60). Plasma analysis of blood lipids, insulin, glucose, inflammatory markers (high-sensitivity C-reactive protein, interleukin-6, tumor necrosis factor-alpha, vascular cellular adhesion molecule, intercellular adhesion molecule) and resistin (kit from LINCO Research, St Charles, MS) was performed using commercially available assays or routine methods. Insulin resistance was estimated by quantitative insulin-sensitivity check index (QUICKI) and homeostasis model assessment for insulin resistance (HOMA-IR) and body composition by dual-energy X-ray absorptiometry. Genotyping of a C/G promoter single nucleotide polymorphism (n=168) at position -180 of the resistin gene was performed by PyroSequencing. Serum levels of resistin were markedly elevated in the CKD patients with both advanced (39.9+/-1.3 ng/ml) and mild to moderate (23.2+/-1.0 ng/ml) renal function impairment, as compared to controls (8.5+/-0.7 ng/ml; P<0.001). In a multiple linear regression model in patients (adjusted r(2)=0.60), only GFR (beta=3.4; P<0.0001), lean body mass (beta=2.2; P<0.001) and the inflammatory markers were independently associated with circulating resistin levels. There was a weak but significant impact of -180 C/G genotype on plasma levels of resistin (median 43.0+/-2.4 ng/ml in CC, 37.5+/-2.0 ng/ml in CG, and 41.1+/-4.9 ng/ml in GG; P<0.05). Univariate analysis of non-diabetic patients and controls showed that serum resistin was associated with markers of glucose metabolism. However, in a multiple regression model, resistin, as well as all the measured markers of inflammation, was only associated with insulin resistance if GFR was not taken into account. Circulating resistin levels are strongly associated with both GFR and inflammatory biomarkers in CKD. As the significant relationship between plasma resistin levels and insulin resistance was lost following the correction for GFR, resistin is not a likely mediator of insulin resistance in patients with CKD. Renal function is an important factor to take into account in clinical studies relating insulin sensitivity to inflammatory biomarkers in CKD as well as in patients with diabetes mellitus, who often have an impaired renal function.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
172 |
7
|
Rondinone CM. Adipocyte-derived hormones, cytokines, and mediators. Endocrine 2006; 29:81-90. [PMID: 16622295 DOI: 10.1385/endo:29:1:81] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 11/30/1999] [Accepted: 10/25/2005] [Indexed: 02/08/2023]
Abstract
Adipose tissue is responsive to both central and peripheral metabolic signals and is itself capable of secreting a number of proteins. These adipocyte-specific or enriched proteins, termed adipokines, have been shown to have a variety of local, peripheral, and central effects. These secreted proteins, which include tumor necrosis factor (TNF)-alpha, resistin, IL-6, IL-8, acylation-stimulating protein (ASP), angiotensinogen, plasminogen activator inhibitor-1 (PAI-1) ("bad" adipokines) and leptin, adiponectin ("good" adipokines) seem to play important regulatory roles in a variety of complex processes, including fat metabolism, feeding behavior, hemostasis, vascular tone, energy balance, and insulin sensitivity, but none is without controversy regarding its respective mechanism and scope of action. The present review is focused on the effects of free fatty acids and a restricted number of adipokines, which have been implicated in vascular (angiotensinogen, PAI-1) and energy and glucose homeostasis (ASP, TNFalpha, IL-6, resistin, leptin, adiponectin).
Collapse
|
Review |
19 |
155 |
8
|
Kola B, Boscaro M, Rutter GA, Grossman AB, Korbonits M. Expanding role of AMPK in endocrinology. Trends Endocrinol Metab 2006; 17:205-15. [PMID: 16766204 DOI: 10.1016/j.tem.2006.05.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 05/05/2006] [Accepted: 05/22/2006] [Indexed: 12/22/2022]
Abstract
Adenosine 5' monophosphate-activated protein kinase (AMPK) is a regulator of cellular and systemic energy homeostasis. It mediates some of the effects of peripheral hormones such as leptin, ghrelin and adiponectin, and it is involved in the insulin-sensitizing role of the antidiabetic drug metformin. There is increasing evidence that AMPK has a central role in mediating the appetite-modulating and metabolic effects of many other hormones and substances, including the cannabinoids. Recent studies have illustrated the interaction between hormones and AMPK, and highlighted AMPK as a potential target for the development of tissue-specific AMPK modulators in the treatment of obesity and the metabolic syndrome.
Collapse
|
Review |
19 |
154 |
9
|
Park HK, Kwak MK, Kim HJ, Ahima RS. Linking resistin, inflammation, and cardiometabolic diseases. Korean J Intern Med 2017; 32:239-247. [PMID: 28192887 PMCID: PMC5339472 DOI: 10.3904/kjim.2016.229] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/08/2017] [Indexed: 12/19/2022] Open
Abstract
Adipose tissue secretes a variety of bioactive substances that are associated with chronic inflammation, insulin resistance, and an increased risk of type 2 diabetes mellitus. While resistin was first known as an adipocyte-secreted hormone (adipokine) linked to obesity and insulin resistance in rodents, it is predominantly expressed and secreted by macrophages in humans. Epidemiological and genetic studies indicate that increased resistin levels are associated with the development of insulin resistance, diabetes, and cardiovascular disease. Resistin also appears to mediate the pathogenesis of atherosclerosis by promoting endothelial dysfunction, vascular smooth muscle cell proliferation, arterial inflammation, and the formation of foam cells. Thus, resistin is predictive of atherosclerosis and poor clinical outcomes in patients with cardiovascular disease and heart failure. Furthermore, recent evidence suggests that resistin is associated with atherogenic dyslipidemia and hypertension. The present review will focus on the role of human resistin in the pathogeneses of inflammation and obesity-related diseases.
Collapse
|
Review |
8 |
135 |
10
|
Abstract
The link between obesity and diabetes is strong as well as complex. Fat cells produce many circulating regulators of insulin sensitivity, including pro-inflammatory cytokines. In rodents, resistin is produced by adipose tissue, and is a significant regulator of glucose metabolism and insulin sensitivity. In humans, resistin is derived made mainly from macrophages. Given the emerging interrelationship between inflammation and metabolic disease, hyperresistinemia may be a biomarker, and/or a mediator, of metabolic and inflammatory diseases in humans as well as in rodents.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
131 |
11
|
Propheter DC, Chara AL, Harris TA, Ruhn KA, Hooper LV. Resistin-like molecule β is a bactericidal protein that promotes spatial segregation of the microbiota and the colonic epithelium. Proc Natl Acad Sci U S A 2017; 114:11027-11033. [PMID: 28973871 PMCID: PMC5651776 DOI: 10.1073/pnas.1711395114] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mammalian intestine is colonized by trillions of bacteria that perform essential metabolic functions for their hosts. The mutualistic nature of this relationship depends on maintaining spatial segregation between these bacteria and the intestinal epithelial surface. This segregation is achieved in part by the presence of a dense mucus layer at the epithelial surface and by the production of antimicrobial proteins that are secreted by epithelial cells into the mucus layer. Here, we show that resistin-like molecule β (RELMβ) is a bactericidal protein that limits contact between Gram-negative bacteria and the colonic epithelial surface. Mouse and human RELMβ selectively killed Gram-negative bacteria by forming size-selective pores that permeabilized bacterial membranes. In mice lacking RELMβ, Proteobacteria were present in the inner mucus layer and invaded mucosal tissues. Another RELM family member, human resistin, was also bactericidal, suggesting that bactericidal activity is a conserved function of the RELM family. Our findings thus identify the RELM family as a unique family of bactericidal proteins and show that RELMβ promotes host-bacterial mutualism by regulating the spatial segregation between the microbiota and the intestinal epithelium.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
128 |
12
|
Bertolani C, Sancho-Bru P, Failli P, Bataller R, Aleffi S, DeFranco R, Mazzinghi B, Romagnani P, Milani S, Ginés P, Colmenero J, Parola M, Gelmini S, Tarquini R, Laffi G, Pinzani M, Marra F. Resistin as an intrahepatic cytokine: overexpression during chronic injury and induction of proinflammatory actions in hepatic stellate cells. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 169:2042-53. [PMID: 17148667 PMCID: PMC1762467 DOI: 10.2353/ajpath.2006.060081] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obesity and insulin resistance accelerate the progression of fibrosis during chronic liver disease. Resistin antagonizes insulin action in rodents, but its role in humans is still controversial. The aims of this study were to investigate resistin expression in human liver and to evaluate whether resistin may affect the biology of activated human hepatic stellate cells (HSCs), key modulators of hepatic fibrogenesis. Resistin gene expression was low in normal human liver but was increased in conditions of severe fibrosis. Up-regulation of resistin during chronic liver damage was confirmed by immunohistochemistry. In a group of patients with alcoholic hepatitis, resistin expression correlated with inflammation and fibrosis, suggesting a possible action on HSCs. Exposure of cultured HSCs to recombinant resistin resulted in increased expression of the proinflammatory chemokines monocyte chemoattractant protein-1 and interleukin-8, through activation of nuclear factor (NF)-kappaB. Resistin induced a rapid increase in intracellular calcium concentration, mainly through calcium release from intracellular inositol triphosphate-sensitive pools. The intracellular calcium chelator BAPTA-AM blocked resistin-induced NF-kappaB activation and monocyte chemoattractant protein-1 expression. In conclusion, this study shows a role for resistin as an intrahepatic cytokine exerting proinflammatory actions in HSCs, via a Ca2+/NF-kappaB-dependent pathway and suggests involvement of this adipokine in the pathophysiology of liver fibrosis.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
120 |
13
|
Utzschneider KM, Carr DB, Tong J, Wallace TM, Hull RL, Zraika S, Xiao Q, Mistry JS, Retzlaff BM, Knopp RH, Kahn SE. Resistin is not associated with insulin sensitivity or the metabolic syndrome in humans. Diabetologia 2005; 48:2330-3. [PMID: 16143861 DOI: 10.1007/s00125-005-1932-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 06/19/2005] [Indexed: 02/01/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to further elucidate the relationship between resistin and insulin sensitivity, body fat distribution and the metabolic syndrome in humans. METHODS We measured plasma resistin levels in 177 non-diabetic subjects (75 male, 102 female; age 32-75 years). BMI, waist circumference, blood pressure, lipids, glucose, plasminogen-activator inhibitor 1 (PAI-1), adiponectin and leptin levels were also measured. The insulin sensitivity index (S(I)) was quantified using Bergman's minimal model. Intra-abdominal fat (IAF) and subcutaneous fat (SQF) areas were quantified by CT scan. Presence of metabolic syndrome criteria was determined using the National Cholesterol Education Program Adult Treatment Panel III guidelines. RESULTS When subjects were divided into categories based on BMI (< or > or =27.5 kg/m(2)) and S(I) (< or > or = 7 x 10(-5) min(-1) [pmol/l](-1)), resistin levels did not differ between the lean, insulin-sensitive (n=53, 5.36+/-0.3 ng/ml), lean, insulin-resistant (n=67, 5.70+/-0.4 ng/ml) and obese, insulin-resistant groups (n=48, 5.94+/-0.4 ng/ml; ANOVA p=0.65). Resistin correlated with age (r=-0.22, p<0.01), BMI (r=0.16, p=0.03) and SQF (r=0.19, p=0.01) but not with S(I) (p=0.31) or IAF (p=0.52). Resistin did not correlate with the number of metabolic syndrome criteria or any of the individual metabolic syndrome criteria. In contrast, adiponectin, PAI-1 and leptin each correlated with IAF, SQF and S(I). Additionally, the number of metabolic syndrome criteria correlated with adiponectin (r=-0.32, p<0.001), leptin (r=0.31, p<0.001) and PAI-1 (r=0.26, p=0.001). CONCLUSIONS/INTERPRETATION In contrast to other adipokines, resistin is only weakly associated with body fat and is unlikely to be a major mediator of insulin resistance or the metabolic syndrome in humans.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
119 |
14
|
Kim M, Oh JK, Sakata S, Liang I, Park W, Hajjar RJ, Lebeche D. Role of resistin in cardiac contractility and hypertrophy. J Mol Cell Cardiol 2008; 45:270-80. [PMID: 18597775 PMCID: PMC2613017 DOI: 10.1016/j.yjmcc.2008.05.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/26/2008] [Accepted: 05/11/2008] [Indexed: 12/15/2022]
Abstract
Cardiovascular sequelae including diabetic cardiomyopathy constitute the major cause of death in diabetic patients. Although several factors may contribute to the development of this cardiomyopathy, the underlying molecular/cellular mechanisms leading to cardiac dysfunction are still partially understood. Recently, a novel paradigm for the role of the adipocytokine resistin in diabetes has emerged. Resistin has been proposed to be a link between obesity, insulin resistance and diabetes. Using microarray analysis, we have recently found that cardiomyocytes isolated from type 2 diabetic hearts express high levels of resistin. However, the function of resistin with respect to cardiac function is unknown. In this study we show that resistin is not only expressed in the heart, but also promotes cardiac hypertrophy. Adenovirus-mediated overexpression of resistin in cultured neonatal rat ventricular myocytes (NRVM) significantly increased sarcomere organization and cell size, increased protein synthesis and increased the expression of atrial natriuretic factor and beta-myosin heavy chain. Overexpression of resistin in NRVM was also associated with activation of the mitogen-activated protein (MAP) kinases, ERK1/2 and p38, as well as increased Ser-636 phosphorylation of insulin receptor substrate-1 (IRS-1), indicating that IRS-1/MAPK pathway may be involved in the observed hypertrophic response. Overexpression of resistin in adult cultured cardiomyocytes significantly altered myocyte mechanics by depressing cell contractility as well as contraction and relaxation velocities. Intracellular Ca(2+) measurements showed slower Ca(2+) transients decay in resistin-transduced myocytes compared to controls, suggesting impaired cytoplasmic Ca(2+) clearing or alterations in myofilament activation. We conclude that resistin overexpression alters cardiac contractility, confers to primary cardiomyocytes all the features of the hypertrophic phenotype and promotes cardiac hypertrophy possibly via the IRS-1/MAPK pathway.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
115 |
15
|
Codoñer-Franch P, Alonso-Iglesias E. Resistin: insulin resistance to malignancy. Clin Chim Acta 2015; 438:46-54. [PMID: 25128719 DOI: 10.1016/j.cca.2014.07.043] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 12/17/2022]
Abstract
Adipose tissue is recognized as an endocrine organ that secretes bioactive substances known as adipokines. Excess adipose tissue and adipose tissue dysfunction lead to dysregulated adipokine production that can contribute to the development of obesity-related co-morbidities. Among the various adipokines, resistin, which was initially considered as a determinant of the emergence of insulin resistance in obesity, has appeared as an important link between obesity and inflammatory processes. Several experimental and clinical studies have suggested an association between increased resistin levels and severe conditions associated with obesity such as cardiovascular disease and malignancies. In this review, we present the growing body of evidence that human resistin is an inflammatory biomarker and potential mediator of obesity-associated diseases. A common pathway seems to involve the combined alteration of immune and inflammatory processes that favor metabolic disturbances, atherosclerosis and carcinogenesis. The mode of action and the signaling pathways utilized by resistin in its interactions with target cells could involve oxidative and nitrosative stress. Therefore, resistin could function as a key molecule in the complications of obesity development and could potentially be used as a diagnostic and prognostic marker.
Collapse
|
Review |
10 |
110 |
16
|
Axelsson J, Heimbürger O, Lindholm B, Stenvinkel P. Adipose tissue and its relation to inflammation: The role of adipokines. J Ren Nutr 2005; 15:131-6. [PMID: 15648022 DOI: 10.1053/j.jrn.2004.09.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An activated inflammatory response is a common feature of end-stage renal disease (ESRD) patients and predicts outcome. Although various factors related to the dialysis procedure may contribute to inflammation in ESRD, a number of nondialysis-related factors also are of importance. Adipose tissue is a complex organ with functions far beyond the mere storage of energy and secretes a number of proinflammatory adipokines, such as leptin, resistin, tumor necrosis factor-alpha and interleukin-6, as well as one anti-inflammatory adipokine, adiponectin. It has been proposed that adipose tissue may be a significant contributor to increased systemic inflammation in nonrenal patients. In this review, we put forward the hypothesis that a reduction of renal mass will contribute to retention of proinflammatory adipokines, thus generating adipokine imbalance. Such an imbalance may, via effects on the central nervous system and the vasculature, contribute to wasting, atherosclerosis, and insulin resistance--all common features of ESRD.
Collapse
|
|
20 |
90 |
17
|
Nair MG, Guild KJ, Du Y, Zaph C, Yancopoulos GD, Valenzuela DM, Murphy A, Stevens S, Karow M, Artis D. Goblet cell-derived resistin-like molecule beta augments CD4+ T cell production of IFN-gamma and infection-induced intestinal inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:4709-15. [PMID: 18802073 PMCID: PMC2819319 DOI: 10.4049/jimmunol.181.7.4709] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The secreted goblet cell-derived protein resistin-like molecule beta (RELMbeta) has been implicated in divergent functions, including a direct effector function against parasitic helminths and a pathogenic function in promoting inflammation in models of colitis and ileitis. However, whether RELMbeta influences CD4(+) T cell responses in the intestine is unknown. Using a natural model of intestinal inflammation induced by chronic infection with gastrointestinal helminth Trichuris muris, we identify dual functions for RELMbeta in augmenting CD4(+) Th1 cell responses and promoting infection-induced intestinal inflammation. Following exposure to low-dose Trichuris, wild-type C57BL/6 mice exhibit persistent infection associated with robust IFN-gamma production and intestinal inflammation. In contrast, infected RELMbeta(-/-) mice exhibited a significantly reduced expression of parasite-specific CD4(+) T cell-derived IFN-gamma and TNF-alpha and failed to develop Trichuris-induced intestinal inflammation. In in vitro T cell differentiation assays, recombinant RELMbeta activated macrophages to express MHC class II and secrete IL-12/23p40 and enhanced their ability to mediate Ag-specific IFN-gamma expression in CD4(+) T cells. Taken together, these data suggest that goblet cell-macrophage cross-talk, mediated in part by RELMbeta, can promote adaptive CD4(+) T cell responses and chronic inflammation following intestinal helminth infection.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
80 |
18
|
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by infiltration of blood vessels by lipids and leukocytes. There is a growing body of evidence that among risk factors that promote atherosclerosis, the metabolic syndrome is a powerful and prevalent predictor of cardiovascular events. The systemic inflammatory process associated with the metabolic syndrome has numerous deleterious effects that promote plaque activation, which is responsible for clinical events. Interactions between the innate immune system with lipid-derived products seem to play a major role in the pathophysiology of atherosclerosis in relation with the metabolic syndrome. The multiple links among adipose tissue, the vascular wall, and the immune system are the topics of this review, which examines the roles of oxidized low-density lipoprotein, inflammatory cytokines, and adipokines in triggering and perpetuating a danger signal response that promotes the development of atherosclerosis. Furthermore, therapeutic options that specifically target the metabolic syndrome components are reviewed in light of recent developments.
Collapse
|
Review |
19 |
74 |
19
|
Takeishi Y, Niizeki T, Arimoto T, Nozaki N, Hirono O, Nitobe J, Watanabe T, Takabatake N, Kubota I. Serum Resistin is Associated With High Risk in Patients With Congestive Heart Failure A Novel Link Between Metabolic Signals and Heart Failure. Circ J 2007; 71:460-4. [PMID: 17384443 DOI: 10.1253/circj.71.460] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Resistin is derived from fat tissue in rodents, and serum levels are elevated in animal models of obesity and insulin resistance. Recent studies have reported that resistin is correlated with markers of inflammation and oxidative stress and is predictive of coronary atherosclerosis in humans. However, clinical significance of serum resistin has not been examined in heart failure. Therefore, the purpose of this study was to examine whether: (1) resistin is correlated with the severity of heart failure; and (2) resistin can predict clinical outcomes of patients with heart failure. METHODS AND RESULTS Serum levels of resistin in 126 patients hospitalized for heart failure and 18 control subjects were measured. The patients were followed up with end-points of cardiac death and re-hospitalization caused by worsening of heart failure. The serum resistin level was higher in patients with heart failure than in control subjects and increased with advancing New York Heart Association functional class. The normal upper limit of the resistin level was determined as the mean +2 standard deviation value of control subjects (14.1 ng/ml). In heart failure patients, the cardiac event rate was higher in patients with a high resistin level than in those with a normal level. Among age, body mass index, serum levels of resistin, brain natriuretic peptide, loop diuretics selected by the univariate Cox regression hazard analysis, age and resistin were significant predictors of future cardiac events by multivariate Cox analysis. CONCLUSION Serum resistin was related to the severity of heart failure and associated with a high risk for adverse cardiac events in patients with heart failure.
Collapse
|
|
18 |
73 |
20
|
Windham BG, Griswold ME, Farasat SM, Ling SM, Carlson O, Egan JM, Ferrucci L, Najjar SS. Influence of leptin, adiponectin, and resistin on the association between abdominal adiposity and arterial stiffness. Am J Hypertens 2010; 23:501-7. [PMID: 20150891 PMCID: PMC4557869 DOI: 10.1038/ajh.2010.8] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Adiposity is associated with arterial stiffness, and both adiposity and arterial stiffness independently predict morbidity and mortality. Because adipocytes account for most adipokine production, the objectives of this study were to examine the influence of adipokines such as leptin, adiponectin, and resistin on the relationship between abdominal adiposity and arterial stiffness. METHODS This is a cross-sectional analysis of data from the Baltimore Longitudinal Study of Aging (BLSA). Adiposity was measured as kilograms of abdominal adipose tissue using dual-energy X-ray absorptiometry (DXA). Arterial stiffness was assessed as carotid-femoral pulse wave velocity (PWV). Leptin, adiponectin, and resistin were assayed in fasting serum samples. The influence of adipokines on the relationship between adiposity and arterial stiffness by adipokines was examined using standard mediation pathway analysis. RESULTS Among 749 participants ages 26-96 years (mean age 67, 52% men, 27% black), abdominal adiposity was positively associated with PWV (relative ratio (RR) = 1.04, P = 0.02), after adjusting for potential confounders but was attenuated and no longer significant after adjusting for leptin (RR = 0.99, P = 0.77). The relationship between adiposity and PWV was not substantially influenced by adiponectin (RR = 1.03, P = 0.06) or resistin (RR = 1.05, P = 0.010). Leptin (RR = 1.02, P < 0.001), resistin (RR = 0.92, P < 0.0001), and adiponectin (RR = 0.97, P = 0.004), but not abdominal adiposity (RR = 1.00, P = 0.94), retained significant associations with PWV when adjusting for each other and confounders. CONCLUSIONS Our findings are consistent with the hypothesis that leptin explains, in part, the observed relationship between abdominal adiposity and arterial stiffness. Adiponectin, leptin, and resistin are independent correlates of PWV.
Collapse
|
Research Support, N.I.H., Intramural |
15 |
65 |
21
|
Abstract
Obesity is a well-known risk factor for the development of insulin resistance, type 2 diabetes, dyslipidemia, hypertension, and cardiovascular disease. Rather than the total amount of fat, central distribution of adipose tissue is very important in the pathophysiology of this constellation of abnormalities termed metabolic syndrome. Adipose tissue, regarded only as an energy storage organ until the last decade, is now known as the biggest endocrine organ of the human body. This tissue secretes a number of substances--adipocytokines--with multiple functions in metabolic profile and immunological process. Therefore, excessive fat mass may trigger metabolic and hemostatic disturbances as well as CVD. Adipocytokines may act locally or distally as inflammatory, immune or hormonal signalers. In this review we discuss visceral obesity, the potential mechanisms by which it would be related to insulin resistance, methods for its assessment and focus on the main adipocytokines expressed and secreted by the adipose tissue. Particularly, we review the role of adiponectin, leptin, resistin, angiotensinogen, TNF-alpha, and PAI-1, describing their impact on insulin resistance and cardiovascular risk, based on more recent findings in this area.
Collapse
|
Review |
19 |
65 |
22
|
Dick GM, Katz PS, Farias M, Morris M, James J, Knudson JD, Tune JD. Resistin impairs endothelium-dependent dilation to bradykinin, but not acetylcholine, in the coronary circulation. Am J Physiol Heart Circ Physiol 2006; 291:H2997-3002. [PMID: 16905596 DOI: 10.1152/ajpheart.01035.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Elevated plasma levels of fat-derived signaling molecules are associated with obesity, vascular endothelial dysfunction, and coronary heart disease; however, little is known about their direct coronary vascular effects. Accordingly, we examined mechanisms by which one adipokine, resistin, affects coronary vascular tone and endothelial function. Studies were conducted in anesthetized dogs and isolated coronary artery rings. Resistin did not change coronary blood flow, mean arterial pressure, or heart rate. Resistin had no effect on acetylcholine-induced relaxation of artery rings; however, resistin did impair bradykinin-induced relaxation. Selective impairment was also observed in vivo, as resistin attenuated vasodilation to bradykinin but not to acetylcholine. Resistin had no effect on dihydroethidium fluorescence, an indicator of superoxide (O(2)(-)) production, and the inhibitory effect of resistin on bradykinin-induced relaxation persisted in the presence of Tempol, a superoxide dismutase mimetic. To determine whether resistin impaired production of and/or responses to nitric oxide (NO) or prostaglandins (e.g., prostacyclin; PGI(2)), we performed experiments with N(omega)-nitro-L-arginine methyl ester (L-NAME) and indomethacin. The effect of resistin to attenuate bradykinin-induced vasodilation persisted in the presence of L-NAME or indomethacin, suggesting resistin may act at a cell signaling point upstream of NO or PGI(2) production. Resistin-induced endothelial dysfunction is not generalized, and it is not consistent with effects mediated by O(2)(-) or interference with NO or PGI(2) signaling. The site of the resistin-induced impairment is unknown but may be at the bradykinin receptor or a closely associated signal transduction machinery proximal to NO synthase or cyclooxygenase.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
64 |
23
|
Gao J, Chua CC, Chen Z, Wang H, Xu X, Hamdy RC, McMullen JR, Shioi T, Izumo S, Chua BH. Resistin, an adipocytokine, offers protection against acute myocardial infarction. J Mol Cell Cardiol 2007; 43:601-9. [PMID: 17904155 PMCID: PMC2692307 DOI: 10.1016/j.yjmcc.2007.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 08/09/2007] [Indexed: 11/15/2022]
Abstract
Resistin, an adipocyte-derived hormone, is thought to represent a link between obesity and insulin-resistant diabetes. The potential role of resistin as a cardioprotective agent has not been explored. Our hypothesis is that resistin has a cardioprotective effect that is mediated by the resistin receptor-coupled activation of PI3K/Akt/PKC/K(ATP) dependent pathways. Our studies demonstrated that pretreatment of mouse hearts with 10 nM resistin for 5 min protected the heart against I/R injury in a mouse heart perfusion model. When mouse hearts were subjected to 60 min of LAD ligation followed by 4 h of reperfusion, resistin pretreatment (33 microg/kg) for 30 min or 24 h before ligation was able to significantly reduce the infarct size/risk area. The protective effect of resistin was abolished by wortmannin, as well as by an Akt inhibitor, triciribine. Resistin's protective effect was absent in Akt kinase-deficient mutant mice. The protective effect was also blocked by chelerythrine, a PKC inhibitor, and epsilonV1-2, a PKCepsilon inhibitor. Finally, the protective effect was blocked by 5-hydroxydecanoate, which blocks the opening of mitoK(ATP) channels. Resistin-induced Akt phosphorylation in HL-1 cells was inhibited by wortmannin and triciribine. Resistin also induced PKCepsilon phosphorylation, which was blocked by triciribine. These studies demonstrate that resistin's cardioprotective effect is mediated by PI3K/Akt/PKC dependent pathways. In addition to cardiomyocytes, resistin also induced Akt phosphorylation in endothelial cells and smooth muscle cells, suggesting that resistin receptors are present in these cells. The effect of resistin on apoptosis was assessed in hearts subjected to 30 min of ischemia and 3 h of reperfusion. There were significantly fewer in situ oligo ligation-positive myocyte nuclei in mice treated with resistin. Our results show that resistin can dramatically reduce apoptosis and infarct size, thus protecting the heart against I/R injury.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
51 |
24
|
Kushiyama A, Shojima N, Ogihara T, Inukai K, Sakoda H, Fujishiro M, Fukushima Y, Anai M, Ono H, Horike N, Viana AYI, Uchijima Y, Nishiyama K, Shimosawa T, Fujita T, Katagiri H, Oka Y, Kurihara H, Asano T. Resistin-like Molecule β Activates MAPKs, Suppresses Insulin Signaling in Hepatocytes, and Induces Diabetes, Hyperlipidemia, and Fatty Liver in Transgenic Mice on a High Fat Diet. J Biol Chem 2005; 280:42016-25. [PMID: 16243841 DOI: 10.1074/jbc.m503065200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Resistin and resistin-like molecules (RELMs) are a family of proteins reportedly related to insulin resistance and inflammation. Because the serum concentration and intestinal expression level of RELMbeta were elevated in insulin-resistant rodent models, in this study we investigated the effect of RELMbeta on insulin signaling and metabolism using transgenic mice and primary cultured hepatocytes. First, transgenic mice with hepatic RELMbeta overexpression were shown to exhibit significant hyperglycemia, hyperlipidemia, fatty liver, and pancreatic islet enlargement when fed a high fat diet. Hyperinsulinemic glucose clamp showed a decreased glucose infusion rate due to increased hepatic glucose production. In addition, the expression levels of IRS-1 and IRS-2 proteins as well as the degrees of insulin-induced phosphatidylinositol 3-kinase and Akt activations were attenuated in RELMbeta transgenic mice. Similar down-regulations of IRS-1 and IRS-2 proteins were observed in primary cultured hepatocytes chronically treated (for 24 h) with RELMbeta, suggesting the insulin resistance-inducing effect of RELMbeta to be direct. Furthermore, it was shown that RELMbeta acutely and markedly activates ERK and p38, while weakly activating JNK, in primary cultured hepatocytes. This increased basal p38 phosphorylation level was also observed in the livers of RELMbeta transgenic mice. In conclusion, RELMbeta, a gut-derived hormone, impairs insulin signaling probably via the activations of classic MAPKs, and increased expression of RELMbeta may be involved in the pathogenesis of glucose intolerance and hyperlipidemia in some insulin-resistant models. Thus, RELMbeta is a potentially useful marker for assessing insulin resistance and may also be a target for future novel anti-diabetic agents.
Collapse
|
|
20 |
51 |
25
|
Karmiris K, Koutroubakis IE, Kouroumalis EA. The emerging role of adipocytokines as inflammatory mediators in inflammatory bowel disease. Inflamm Bowel Dis 2005; 11:847-55. [PMID: 16116320 DOI: 10.1097/01.mib.0000178915.54264.8f] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anorexia, malnutrition, altered body composition and development of mesenteric obesity are well known features of inflammatory bowel disease (IBD). Recent data suggest that dysregulation of protein secretion by white adipose tissue is involved in these manifestations of patients with IBD. Adipocytes are recently recognized as endocrine cells that secrete a variety of bioactive substances known as adipocytokines. There is evidence that adipocytokines are involved in inflammatory and metabolic pathways in human beings. Overexpression of adipocytokines such as leptin, adiponectin and resistin in mesenteric adipose tissue of operated patients with Crohn's disease has recently been reported, suggesting that mesenteric adipocytes in IBD may act as immunoregulating cells. Therefore, it could be suggested that adipocytokines play an important role in the disease pathogenesis. Moreover, modulators of mesenteric adipose function have been suggested as potential therapeutic drugs in IBD. In this review, the importance of white adipose tissue function and adipocytokines, is discussed with respect to IBD.
Collapse
|
Review |
20 |
48 |