1
|
Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutr J 2014; 13:17. [PMID: 24524207 PMCID: PMC3943808 DOI: 10.1186/1475-2891-13-17] [Citation(s) in RCA: 871] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/07/2014] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors are expressed in many tissues, including adipocytes, hepatocytes, muscles and endothelial cells; however, the affinity depends on the isoform of PPAR, and different distribution and expression profiles, which ultimately lead to different clinical outcomes. Because they play an important role in lipid and glucose homeostasis, they are called lipid and insulin sensors. Their actions are limited to specific tissue types and thus, reveal a characteristic influence on target cells. PPARα mainly influences fatty acid metabolism and its activation lowers lipid levels, while PPARγ is mostly involved in the regulation of the adipogenesis, energy balance, and lipid biosynthesis. PPARβ/δ participates in fatty acid oxidation, mostly in skeletal and cardiac muscles, but it also regulates blood glucose and cholesterol levels. Many natural and synthetic ligands influence the expression of these receptors. Synthetic ligands are widely used in the treatment of dyslipidemia (e.g. fibrates--PPARα activators) or in diabetes mellitus (e.g. thiazolidinediones--PPARγ agonists). New generation drugs--PPARα/γ dual agonists--reveal hypolipemic, hypotensive, antiatherogenic, anti-inflammatory and anticoagulant action while the overexpression of PPARβ/δ prevents the development of obesity and reduces lipid accumulation in cardiac cells, even during a high-fat diet. Precise data on the expression and function of natural PPAR agonists on glucose and lipid metabolism are still missing, mostly because the same ligand influences several receptors and a number of reports have provided conflicting results. To date, we know that PPARs have the capability to accommodate and bind a variety of natural and synthetic lipophilic acids, such as essential fatty acids, eicosanoids, phytanic acid and palmitoylethanolamide. A current understanding of the effects of PPARs, their molecular mechanisms and the role of these receptors in nutrition and therapeutic treatment are delineated in this paper.
Collapse
|
Review |
11 |
871 |
2
|
Gual P, Le Marchand-Brustel Y, Tanti JF. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 2005; 87:99-109. [PMID: 15733744 DOI: 10.1016/j.biochi.2004.10.019] [Citation(s) in RCA: 650] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 10/27/2004] [Indexed: 12/12/2022]
Abstract
This review will provide insight on the current understanding of the regulation of insulin signaling in both physiological and pathological conditions through modulations that occur with regards to the functions of the insulin receptor substrate 1 (IRS1). While the phosphorylation of IRS1 on tyrosine residue is required for insulin-stimulated responses, the phosphorylation of IRS1 on serine residues has a dual role, either to enhance or to terminate the insulin effects. The activation of PKB in response to insulin propagates insulin signaling and promotes the phosphorylation of IRS1 on serine residue in turn generating a positive-feedback loop for insulin action. Insulin also activates several kinases and these kinases act to induce the phosphorylation of IRS1 on specific sites and inhibit its functions. This is part of the negative-feedback control mechanism induced by insulin that leads to termination of its action. Agents such as free fatty acids, cytokines, angiotensin II, endothelin-1, amino acids, cellular stress and hyperinsulinemia, which induce insulin resistance, lead to both activation of several serine/threonine kinases and phosphorylation of IRS1. These agents negatively regulate the IRS1 functions by phosphorylation but also via others molecular mechanisms (SOCS expression, IRS degradation, O-linked glycosylation) as summarized in this review. Understanding how these agents inhibit IRS1 functions as well as identification of kinases involved in these inhibitory effects may provide novel targets for development of strategies to prevent insulin resistance.
Collapse
|
Review |
20 |
650 |
3
|
Grün F, Blumberg B. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 2006; 147:S50-5. [PMID: 16690801 DOI: 10.1210/en.2005-1129] [Citation(s) in RCA: 563] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last two decades, the incidence of obesity and associated metabolic syndrome diseases has risen dramatically, becoming a global health crisis. Increased caloric intake and decreased physical activity are believed to represent the root causes of this dramatic rise. However, recent findings highlight the possible involvement of environmental obesogens, xenobiotic chemicals that can disrupt the normal developmental and homeostatic controls over adipogenesis and energy balance. Environmental estrogens, i.e. chemicals with estrogenic potential, have been reported to perturb adipogenic mechanisms using in vitro model systems, but other classes of endocrine-disrupting chemicals are now coming under scrutiny as well. Organotins represent one class of widespread persistent organic pollutants with potent endocrine-disrupting properties in both invertebrates and vertebrates. New data identify tributyltin chloride and triphenyltin chloride as nanomolar agonist ligands for retinoid X receptor (RXR alpha, RXR beta, and RXR gamma) and peroxisome proliferator-activated receptor gamma, nuclear receptors that play pivotal roles in lipid homeostasis and adipogenesis. The environmental obesogen hypothesis predicts that inappropriate receptor activation by organotins will lead directly to adipocyte differentiation and a predisposition to obesity and/or will sensitize exposed individuals to obesity and related metabolic disorders under the influence of the typical high-calorie, high-fat Western diet. The linking of organotin exposure to adipocyte differentiation and obesity opens an important new area of research into potential environmental influences on human health and disease.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
563 |
4
|
Mark M, Ghyselinck NB, Chambon P. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol 2006; 46:451-80. [PMID: 16402912 DOI: 10.1146/annurev.pharmtox.46.120604.141156] [Citation(s) in RCA: 458] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Retinoic acid (RA) is involved in vertebrate morphogenesis, growth, cellular differentiation, and tissue homeostasis. The use of in vitro systems initially led to the identification of nuclear receptor RXR/RAR heterodimers as possible transducers of the RA signal. To unveil the physiological functions of RARs and RXRs, genetic and pharmacological studies have been performed in the mouse. Together, their results demonstrate that (a) RXR/RAR heterodimers in which RXR is either transcriptionally active or silent are involved in the transduction of the RA signal during prenatal development, (b) specific RXRalpha/RAR heterodimers are required at many distinct stages during early embryogenesis and organogenesis, (c) the physiological role of RA and its receptors cannot be extrapolated from teratogenesis studies using retinoids in excess. Additional cell type-restricted and temporally controlled somatic mutagenesis is required to determine the functions of RARs and RXRs during postnatal life.
Collapse
|
Review |
19 |
458 |
5
|
Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H. International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol Rev 2006; 58:760-72. [PMID: 17132853 DOI: 10.1124/pr.58.4.7] [Citation(s) in RCA: 391] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The physiological effects of retinoic acids (RAs) are mediated by members of two families of nuclear receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs), which are encoded by three distinct human genes, RXRalpha, RXRbeta, and RXRgamma. RARs bind both all-trans- and 9-cis-RA, whereas only the 9-cis-RA stereoisomer binds to RXRs. As RXR/RAR heterodimers, these receptors control the transcription of RA target genes through binding to RA-response elements. This review is focused on the structure, mode of action, ligands, expression, and pharmacology of RXRs. Given their role as common partners to many other members of the nuclear receptor superfamily, these receptors have been the subject of intense scrutiny. Moreover, and despite numerous studies since their initial discovery, RXRs remain enigmatic nuclear receptors, and there is still no consensus regarding their role. Indeed, multiple questions about the actual biological role of RXRs and the existence of an endogenous ligand have still to be answered.
Collapse
|
Review |
19 |
391 |
6
|
Kanayama T, Kobayashi N, Mamiya S, Nakanishi T, Nishikawa JI. Organotin compounds promote adipocyte differentiation as agonists of the peroxisome proliferator-activated receptor gamma/retinoid X receptor pathway. Mol Pharmacol 2005; 67:766-74. [PMID: 15611480 DOI: 10.1124/mol.104.008409] [Citation(s) in RCA: 269] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nuclear receptors play important roles in the maintenance of the endocrine system, regulation of organ differentiation, and fetal development. Endocrine disruptors exert their adverse effects by disrupting the endocrine system via various mechanisms. To assess the effects of endocrine disruptors on nuclear receptors, we developed a high-throughput method for identifying activators of nuclear receptors. Using this system, we found that triphenyltin and tributyltin were activators of peroxisome proliferator-activated receptor (PPAR) gamma and retinoid X receptor. Because PPARgamma is a master regulator of adipocyte differentiation, we assessed the effect of organotin compounds on preadipocyte 3T3-L1 cells. We found that organotin compounds stimulated differentiation of 3T3-L1 cells as well as expression of adipocyte marker genes.
Collapse
|
|
20 |
269 |
7
|
Martens JHA, Brinkman AB, Simmer F, Francoijs KJ, Nebbioso A, Ferrara F, Altucci L, Stunnenberg HG. PML-RARalpha/RXR Alters the Epigenetic Landscape in Acute Promyelocytic Leukemia. Cancer Cell 2010; 17:173-85. [PMID: 20159609 DOI: 10.1016/j.ccr.2009.12.042] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 09/09/2009] [Accepted: 12/14/2009] [Indexed: 01/20/2023]
Abstract
Many different molecular mechanisms have been associated with PML-RARalpha-dependent transformation of hematopoietic progenitors. Here, we identified high confidence PML-RARalpha binding sites in an acute promyelocytic leukemia (APL) cell line and in two APL primary blasts. We found colocalization of PML-RARalpha with RXR to the vast majority of these binding regions. Genome-wide epigenetic studies revealed that treatment with pharmacological doses of all-trans retinoic acid induces changes in H3 acetylation, but not H3K27me3, H3K9me3, or DNA methylation at the PML-RARalpha/RXR binding sites or at nearby target genes. Our results suggest that PML-RARalpha/RXR functions as a local chromatin modulator and that specific recruitment of histone deacetylase activities to genes important for hematopoietic differentiation, RAR signaling, and epigenetic control is crucial to its transforming potential.
Collapse
|
|
15 |
243 |
8
|
Lefebvre P, Benomar Y, Staels B. Retinoid X receptors: common heterodimerization partners with distinct functions. Trends Endocrinol Metab 2010; 21:676-83. [PMID: 20674387 DOI: 10.1016/j.tem.2010.06.009] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/25/2010] [Accepted: 06/29/2010] [Indexed: 01/19/2023]
Abstract
Retinoid X receptors (RXRs) have been implicated in a diversity of cellular processes ranging from cellular proliferation to lipid metabolism. These pleiotropic effects stem not only from the ability of RXRs to dimerize with diverse nuclear receptors, which exert transcriptional control on specific aspects of cell biology, but also because binding of RXR ligands to heterodimers can stimulate transcriptional activation by RXR partner receptors. This signaling network is rendered more complex by the existence of different RXR isotypes (RXRα, RXRβ, RXRγ) with distinct properties that thereby modulate the transcriptional activity of RXR-containing heterodimers. This review discusses the emerging roles of RXR isotypes in the RXR signaling network and possible implications for our understanding of nuclear receptor biology and pharmacology.
Collapse
|
Review |
15 |
231 |
9
|
Nishikawa JI, Mamiya S, Kanayama T, Nishikawa T, Shiraishi F, Horiguchi T. Involvement of the retinoid X receptor in the development of imposex caused by organotins in gastropods. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:6271-6276. [PMID: 15597881 DOI: 10.1021/es049593u] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organotin compounds released from antifouling paints, such as tributyltin (TBT) and triphenyltin (TPT), are potent inducers of imposex (a superimposition of male genital tracts, such as penis and vas deferens, on females) in marine gastropods. Little is known about the induction mechanism of gastropod imposex. Here, we show that organotins bind the human retinoid X receptors (hRXRs) with high affinity and that injection of 9-cis retinoic acid (RA), the natural ligand of hRXRs, into females of the rock shell (Thais clavigera) induces the development of imposex. Cloning of the RXR homologue from T. clavigera revealed that the ligand-binding domain of rock shell RXR was very similar to vertebrate RXR and bound to both 9-cis RA and to organotins. These suggest that RXR plays an important role in inducing the development of imposex, namely, the differentiation and growth of male genital tracts in female gastropods.
Collapse
|
Comparative Study |
21 |
224 |
10
|
Szanto A, Narkar V, Shen Q, Uray IP, Davies PJA, Nagy L. Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ 2005; 11 Suppl 2:S126-43. [PMID: 15608692 DOI: 10.1038/sj.cdd.4401533] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Retinoid X receptor (RXR) belongs to a family of ligand-activated transcription factors that regulate many aspects of metazoan life. A class of nuclear receptors requires RXR as heterodimerization partner for their function. This places RXR in the crossroad of multiple distinct biological pathways. This and the fact that the debate on the endogenous ligand requirement for RXR is not yet settled make RXR still an enigmatic transcription factor. Here, we review some of the biology of RXR. We place RXR into the evolution of nuclear receptors, review structural details and ligands of the receptor. Then processes regulated by RXR are discussed focusing on the developmental roles deduced from studies on knockout animals and metabolic roles in diseases such as diabetes and atherosclerosis deduced from pharmacological studies. Finally, aspects of RXR's involvement in myeloid differentiation and apoptosis are summarized along with issues on RXR's suitability as a therapeutic target.
Collapse
|
Review |
20 |
214 |
11
|
Hirahara K, Ghoreschi K, Laurence A, Yang XP, Kanno Y, O'Shea JJ. Signal transduction pathways and transcriptional regulation in Th17 cell differentiation. Cytokine Growth Factor Rev 2010; 21:425-34. [PMID: 21084214 PMCID: PMC3182452 DOI: 10.1016/j.cytogfr.2010.10.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the last decade, our understanding of helper/effector T cell differentiation has changed dramatically. The discovery of interleukin (IL-)17-producing T cells (Th17) and other subsets has changed our view of T cell-mediated immunity. Characterization of the signaling pathways involved in the Th17 commitment has provided exciting new insights into the differentiation of CD4+ T cells. Importantly, the emerging data on conversion among polarized T helper cells have raised the question how we should view such concepts as T cell lineage commitment, terminal differentiation and plasticity. In this review, we will discuss the current understanding of the signaling pathways, molecular interactions, and transcriptional and epigenetic events that contribute to Th17 differentiation and acquisition of effector functions.
Collapse
|
Research Support, N.I.H., Intramural |
15 |
172 |
12
|
Xu L, Kitani A, Stuelten C, McGrady G, Fuss I, Strober W. Positive and negative transcriptional regulation of the Foxp3 gene is mediated by access and binding of the Smad3 protein to enhancer I. Immunity 2010; 33:313-25. [PMID: 20870174 PMCID: PMC2972198 DOI: 10.1016/j.immuni.2010.09.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 03/30/2010] [Accepted: 08/16/2010] [Indexed: 11/23/2022]
Abstract
The molecular mechanisms underlying retinoic acid (RA) augmentation of T cell receptor (TCR) and transforming growth factor-β (TGF-β)-induced Foxp3 transcription and inhibition of the latter by cytokines such as IL-27 were here shown to be related processes involving modifications of baseline (TGF-β-induced) phosphorylated Smad3 (pSmad3) binding to a conserved enhancer region (enhancer I). RA augmentation involved the binding of retinoic acid receptor (RAR) and retinoid X receptor (RXR) to a dominant site in enhancer I and a subordinate site in the promoter. This led to increased histone acetylation in the region of the Smad3 binding site and increased binding of pSmad3. Cytokine (IL-27) inhibition involved binding of pStat3 to a gene silencer in a second conserved enhancer region (enhancer II) downstream from enhancer I; this led to loss of pSmad3 binding to enhancer I. Thus, control of accessibility and binding of pSmad3 provides a common framework for positive and negative regulation of TGF-β-induced Foxp3 transcription.
Collapse
|
Research Support, N.I.H., Intramural |
15 |
153 |
13
|
Chambon P. The Nuclear Receptor Superfamily: A Personal Retrospect on the First Two Decades. Mol Endocrinol 2005; 19:1418-28. [PMID: 15914711 DOI: 10.1210/me.2005-0125] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
|
20 |
144 |
14
|
Khammissa RAG, Fourie J, Motswaledi MH, Ballyram R, Lemmer J, Feller L. The Biological Activities of Vitamin D and Its Receptor in Relation to Calcium and Bone Homeostasis, Cancer, Immune and Cardiovascular Systems, Skin Biology, and Oral Health. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9276380. [PMID: 29951549 PMCID: PMC5987305 DOI: 10.1155/2018/9276380] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 01/15/2023]
Abstract
Vitamin D plays an important role in calcium homeostasis and bone metabolism, with the capacity to modulate innate and adaptive immune function, cardiovascular function, and proliferation and differentiation of both normal and malignant keratinocytes. 1,25(OH)2D, the biologically active form of vitamin D, exerts most of its functions through the almost universally distributed nuclear vitamin D receptor (VDR). Upon stimulation by 1,25(OH)2D, VDR forms a heterodimer with the retinoid X receptor (RXR). In turn, VDR/RXR binds to DNA sequences termed vitamin D response elements in target genes, regulating gene transcription. In order to exert its biological effects, VDR signalling interacts with other intracellular signalling pathways. In some cases 1,25(OH)2D exerts its biological effects without regulating either gene expression or protein synthesis. Although the regulatory role of vitamin D in many biological processes is well documented, there is not enough evidence to support the therapeutic use of vitamin D supplementation in the prevention or treatment of infectious, immunoinflammatory, or hyperproliferative disorders. In this review we highlight the effects of 1,25(OH)2D on bone and calcium homeostasis, on cancer, and refer to its effects on the cardiovascular and immune systems.
Collapse
|
Review |
7 |
128 |
15
|
Gallardo-Soler A, Gómez-Nieto C, Campo ML, Marathe C, Tontonoz P, Castrillo A, Corraliza I. Arginase I induction by modified lipoproteins in macrophages: a peroxisome proliferator-activated receptor-gamma/delta-mediated effect that links lipid metabolism and immunity. Mol Endocrinol 2008; 22:1394-402. [PMID: 18323470 PMCID: PMC5419540 DOI: 10.1210/me.2007-0525] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 02/26/2008] [Indexed: 02/07/2023] Open
Abstract
Macrophages are phagocytic cells that play essential roles in innate immunity and lipid homeostasis. The uptake of modified lipoproteins is an important early event in the development of atherosclerosis. We analyzed the ability of modified low-density lipoprotein (LDL) (oxidized and acetylated) to alter the expression and activity of arginases (ArgI and ArgII) in macrophages. We show that ArgI expression is potently induced by both oxidized and acetylated LDL in macrophages. We further show that this effect is mediated by peroxisome proliferator-activated receptors (PPAR). ArgI expression is highly responsive to agonists for PPARgamma and PPARdelta but not PPARalpha. Moreover, the induction of ArgI by both PPAR agonists and IL-4 is blocked in macrophages from PPARgamma- and PPARdelta-deficient mice. Functionally, PPAR activity induces macrophage activation toward a more Th2 immune phenotype in a model of Leishmania major infection. We show that PPARgamma and -delta ligands promote intracellular amastigote growth in infected macrophages, and this effect is dependent on both PPAR expression and Arg activity. Collectively, our results strongly suggest that ArgI is a key marker of the alternative program triggered by PPAR in macrophages.
Collapse
|
research-article |
17 |
121 |
16
|
Xu J, Storer PD, Chavis JA, Racke MK, Drew PD. Agonists for the peroxisome proliferator-activated receptor-alpha and the retinoid X receptor inhibit inflammatory responses of microglia. J Neurosci Res 2005; 81:403-11. [PMID: 15968640 DOI: 10.1002/jnr.20518] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The peroxisome proliferator-activated receptor-alpha (PPAR-alpha) plays a key role in lipid metabolism and inflammation. Recently, we demonstrated that administration of the PPAR-alpha agonists gemfibrozil and fenofibrate, inhibit the clinical signs of experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). In the present study we investigated the effects of PPAR-alpha agonists on primary mouse microglia, a cell type implicated in the pathology of MS and EAE. Our studies demonstrated that the PPAR-alpha agonists ciprofibrate, fenofibrate, gemfibrozil, and WY 14,643 each inhibited NO production by cytokine-stimulated microglia in a dose-dependent manner. However, fenofibrate and WY 14,643 were more potent inhibitors than gemfibrozil and ciprofibrate. In LPS-stimulated microglia, only fenofibrate and WY 14,643 significantly suppressed NO production. Additionally, PPAR-alpha agonists inhibited the secretion of the proinflammatory cytokines IL-1beta, TNF-alpha, IL-6, and IL-12 p40 and the chemokine MCP-1 by LPS-stimulated microglia. Retinoid X receptors (RXRs) physically interact with PPAR-alpha receptors, and the resulting heterodimers regulate the expression of PPAR-responsive genes. Interestingly, the RXR agonist 9-cis retinoic acid (9-cis RA) inhibited NO production by LPS-stimulated microglia. Furthermore, a combination of 9-cis RA and the PPAR-alpha agonist fenofibrate cooperatively inhibited NO production by these cells. A combination of these agonists also selectively inhibited the expression of proinflammatory cytokines including IL-1beta, TNF-alpha, and IL-6 by LPS-stimulated microglia. Collectively, these results raise the possibility that PPAR-alpha and RXR agonists might have benefit as a therapy in MS, where activated microglia are believed to contribute to disease pathology.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
116 |
17
|
Schaiff WT, Bildirici I, Cheong M, Chern PL, Nelson DM, Sadovsky Y. Peroxisome proliferator-activated receptor-gamma and retinoid X receptor signaling regulate fatty acid uptake by primary human placental trophoblasts. J Clin Endocrinol Metab 2005; 90:4267-75. [PMID: 15827101 DOI: 10.1210/jc.2004-2265] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Transplacental transfer of fatty acids from the maternal to the fetal circulation is essential for fetal development. The nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) regulates fatty acid transport and storage in adipocytes and other cell types. OBJECTIVE This study tested the hypothesis that PPARgamma and its heterodimeric nuclear receptor partner, retinoid X receptor (RXR), regulate fatty acid uptake by human trophoblasts. DESIGN Prospective basic laboratory in vitro research was conducted using primary term human trophoblasts. SETTING The study was performed in the perinatal biology laboratory of an academic medical center. PATIENTS OR OTHER PARTICIPANTS Study materials were obtained from healthy pregnant women at a gestational age of 37-41 wk. INTERVENTIONS There were no interventions. MAIN OUTCOME MEASURES Fat uptake and accumulation in human placental trophoblasts were measured. RESULTS We initially demonstrated that activation of PPARgamma and/or RXR with selective agonists increased the accumulation of neutral lipids in trophoblasts as well as uptake of free fatty acids. Furthermore, activation of PPARgamma and RXR enhanced the expression of the fat droplet-associated protein adipophilin along with fatty acid transport protein (FATP)4, whereas expression of FATP2 was decreased by activation of RXR. Finally, we found that inhibition of p38 MAPK, which diminishes the activity of PPARgamma in trophoblasts, inhibited fatty acid uptake and blocked the PPARgamma- and RXR-dependent increases in adipophilin and FATP4 expression, yet stimulated the expression of FATP1, FATP2, and FATP3. CONCLUSIONS These data support a role for PPARgamma and RXR in regulation of fatty acid transport and storage in human placental trophoblasts.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
115 |
18
|
Alaynick WA. Nuclear receptors, mitochondria and lipid metabolism. Mitochondrion 2008; 8:329-37. [PMID: 18375192 PMCID: PMC2831104 DOI: 10.1016/j.mito.2008.02.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 01/29/2008] [Accepted: 02/15/2008] [Indexed: 01/29/2023]
Abstract
Lipid metabolism is a continuum from emulsification and uptake of lipids in the intestine to cellular uptake and transport to compartments such as mitochondria. Whether fats are shuttled into lipid droplets in adipose tissue or oxidized in mitochondria and peroxisomes depends on metabolic substrate availability, energy balance and endocrine signaling of the organism. Several members of the nuclear hormone receptor superfamily are lipid-sensing factors that affect all aspects of lipid metabolism. The physiologic actions of glandular hormones (e.g. thyroid, mineralocorticoid and glucocorticoid), vitamins (e.g. vitamins A and D) and reproductive hormones (e.g. progesterone, estrogen and testosterone) and their cognate receptors are well established. The peroxisome-proliferator activated receptors (PPARs) and liver X receptors (LXRs), acting in concert with PPARgamma Coactivator 1alpha (PGC-1alpha), have been shown to regulate insulin sensitivity and lipid handling. These receptors are the focus of intense pharmacologic studies to expand the armamentarium of small molecule ligands to treat diabetes and the metabolic syndrome (hypertension, insulin resistance, hyperglycemia, dyslipidemia and obesity). Recently, additional partners of PGC-1alpha have moved to the forefront of metabolic research, the estrogen-related receptors (ERRs). Although no endogenous ligands for these receptors have been identified, phenotypic analyses of knockout mouse models demonstrate an important role for these molecules in substrate sensing and handling as well as mitochondrial function.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
112 |
19
|
Aggarwal S, Kim SW, Cheon K, Tabassam FH, Yoon JH, Koo JS. Nonclassical action of retinoic acid on the activation of the cAMP response element-binding protein in normal human bronchial epithelial cells. Mol Biol Cell 2005; 17:566-75. [PMID: 16280361 PMCID: PMC1356569 DOI: 10.1091/mbc.e05-06-0519] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vitamin A (retinol) is essential for normal regulation of cell growth and differentiation. We have shown that the retinol metabolite retinoic acid (RA) induces mucous cell differentiation of normal human tracheobronchial epithelial (NHTBE) cells. However, early biological effects of RA in the differentiation of bronchial epithelia are largely unknown. Here, we showed that RA rapidly activated cAMP response element-binding protein (CREB). However, RA did not use the conventional retinoic acid receptor (RAR)/retinoid X receptor (RXR) to activate CREB. RA activated CREB in NHTBE and H1734 cells in which RARs/RXR were silenced with small interfering RNA (siRNA) targeting RAR/RXR expression or deactivated by antagonist. Inhibition of protein kinase C (PKC) or extracellular regulated kinase (ERK1/2) blocked the RA-mediated activation of CREB. In addition, depletion of p90 ribosomal S6 kinase (RSK) via siRSK1/2 completely abolished the activation, suggesting that PKC, ERK, and RSK are required for the activation. Altogether, this study provides the first evidence that RA rapidly activates CREB transcription factor via PKC, ERK, and RSK in a retinoid receptor-independent manner in normal bronchial epithelial cells. This noncanonical RA signaling pathway may play an important role in mediating early biological effects in the mucociliary differentiation of bronchial epithelia.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
99 |
20
|
Uehara Y, Miura SI, von Eckardstein A, Abe S, Fujii A, Matsuo Y, Rust S, Lorkowski S, Assmann G, Yamada T, Saku K. Unsaturated fatty acids suppress the expression of the ATP-binding cassette transporter G1 (ABCG1) and ABCA1 genes via an LXR/RXR responsive element. Atherosclerosis 2007; 191:11-21. [PMID: 16730733 DOI: 10.1016/j.atherosclerosis.2006.04.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 04/11/2006] [Accepted: 04/13/2006] [Indexed: 01/13/2023]
Abstract
ATP-binding cassette transporters (ABC) G1 and ABCA1 are membrane cholesterol transporters and have been implicated to mediate cholesterol efflux from cells in the presence of high density lipoproteins and its major protein constituent apolipoprotein A-I, respectively. We previously demonstrated that unsaturated fatty acids suppress the stimulatory effects of oxysterols and retinoids on ABCA1 gene transcription. We here demonstrate that unsaturated fatty acids significantly suppress the stimulatory effects of oxysterols and retinoids on the expression of ABCG1 mRNA and protein and the activity of the wild-type human ABCG1 promoter as well as ABCA1. Mutation or deletion of the DR4 element within the ABCG1 or ABCA1 promoters, to which the transcriptional inducers LXR and RXR bind, abolished the suppressive effects of unsaturated fatty acids. Our observations provide the first evidence that unsaturated fatty acids suppress ABCG1 gene expression by a mechanism which involves the binding of LXR/RXR to the promoters. Suppression of both the ABCA1 and ABCG1 genes may indicate that unsaturated fatty acids suppress not only cholesterol efflux to apoA-I and thereby nascent HDL formation but also HDL-dependent cholesterol efflux from vascular cells.
Collapse
|
|
18 |
97 |
21
|
Tan NS, Michalik L, Desvergne B, Wahli W. Multiple expression control mechanisms of peroxisome proliferator-activated receptors and their target genes. J Steroid Biochem Mol Biol 2005; 93:99-105. [PMID: 15860251 DOI: 10.1016/j.jsbmb.2004.12.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The peroxisome proliferator-activated receptors (PPAR) alpha, beta/delta and gamma belong to the nuclear hormone receptor superfamily. As ligand-activated receptors, they form a functional transcriptional unit upon heterodimerization with retinoid X receptors (RXRs). PPARs are activated by fatty acids and their derivatives, whereas RXR is activated by 9-cis retinoic acid. This heterodimer binds to peroxisome proliferator response elements (PPRE) residing in target genes and stimulates their expression. Recent reports now indicate that PPARs and RXRs can function independently, in the absence of a hetero-partner, to modulate gene expression. Of importance, these non-canonical mechanisms underscore the impact of both cofactors and DNA on gene expression. Furthermore, these different mechanisms reveal the increasing repertoire of PPAR 'target' genes that now encompasses non-PPREs containing genes. It is also becoming apparent that understanding the regulation of PPAR expression and activity, can itself have a significant influence on how the expression of subgroups of target genes is studied and integrated in current knowledge.
Collapse
|
Review |
20 |
92 |
22
|
Zhu J, Nasr R, Pérès L, Riaucoux-Lormière F, Honoré N, Berthier C, Kamashev D, Zhou J, Vitoux D, Lavau C, de Thé H. RXR is an essential component of the oncogenic PML/RARA complex in vivo. Cancer Cell 2007; 12:23-35. [PMID: 17613434 DOI: 10.1016/j.ccr.2007.06.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/04/2007] [Accepted: 06/01/2007] [Indexed: 11/19/2022]
Abstract
Although PML-enforced RARA homodimerization allows PML/RARA to bind DNA independently of its coreceptor RXR, the latter was identified within the PML/RARA complex. We demonstrate that a PML/RARA mutant defective for RXR binding fails to trigger APL development in transgenic mice, although it still transforms primary hematopoietic progenitors ex vivo. RXR enhances PML/RARA binding to DNA and is required for rexinoid-induced APL differentiation. In RA-treated PML/RARA-transformed cells, the absence of RXR binding results in monocytic, rather than granulocytic, differentiation. PML/RARA enhances posttranslational modifications of RXRA, including its sumoylation, suggesting that PML-bound sumoylation enzymes target RXRA and possibly other PML/RARA-bound chromatin proteins, further contributing to deregulated transcription. Thus, unexpectedly, RXR contributes to several critical aspects of in vivo transformation.
Collapse
|
|
18 |
87 |
23
|
Schachtrup C, Emmler T, Bleck B, Sandqvist A, Spener F. Functional analysis of peroxisome-proliferator-responsive element motifs in genes of fatty acid-binding proteins. Biochem J 2005; 382:239-45. [PMID: 15130092 PMCID: PMC1133936 DOI: 10.1042/bj20031340] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 04/13/2004] [Accepted: 05/07/2004] [Indexed: 11/17/2022]
Abstract
Retinoic acids and long-chain fatty acids are lipophilic agonists of nuclear receptors such as RXRs (retinoic X receptors) and PPARs (peroxisome-proliferator-activated receptors) respectively. These agonists are also ligands of intracellular lipid-binding proteins, which include FABPs (fatty acid-binding proteins). We reported previously that L (liver-type)-FABP targets fatty acids to the nucleus of hepatocytes and affects PPARalpha activation, which binds together with an RXR subtype to a PPRE (peroxisome-proliferator-responsive element). In the present study, we first determined the optimal combination of murine PPAR/RXR subtypes for binding to known murine FABP-PPREs and to those found by computer search and then tested their in vitro functionality. We show that all PPARs bind to L-FABP-PPRE, PPARalpha, PPARgamma1 and PPARgamma2 to A (adipocyte-type)-FABP-PPRE. All PPAR/RXR heterodimers transactivate L-FABP-PPRE, best are combinations of PPARalpha with RXRalpha or RXRgamma. In contrast, PPARalpha heterodimers do not transactivate A-FABP-PPRE, best combinations are of PPARgamma1 with RXRalpha and RXRgamma, and of PPARgamma2 with all RXR subtypes. We found that the predicted E (epidermal-type)- and H (heart-type)-FABP-PPREs are not activated by any PPAR/RXR combination without or with the PPAR pan-agonist bezafibrate. In the same way, C2C12 myoblasts transfected with promoter fragments of E-FABP and H-FABP genes containing putative PPREs are also not activated through stimulation of PPARs with bezafibrate applied to the cells. These results demonstrate that only PPREs of L- and A-FABP promoters are functional, and that binding of PPAR/RXR heterodimers to a PPRE in vitro does not necessarily predict transactivation.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
85 |
24
|
Abstract
Vitamin A signaling occurs through nuclear receptors recognizing diverse forms of retinoic acid (RA). The retinoic acid receptors (RARs) bind all-trans RA and its 9-cis isomer (9-cis RA). They convey most of the activity of RA, particularly during embryogenesis. The second subset of receptors, the rexinoid receptors (RXRs), binds 9-cis RA only. However, RXRs are obligatory DNA-binding partners for a number of nuclear receptors, broadening the spectrum of their biological activity to the corresponding nuclear receptor-signaling pathways. The present chapter more particularly focuses on RXR-containing transcriptional complexes for which RXR is not only a structural component necessary for DNA binding but also acts as a ligand-activated partner. After positioning RXR among the nuclear receptor superfamily in the first part, we will give an overview of three major signaling pathways involved in metabolism, which are sensitive to RXR activation: LXR:RXR, FXR:RXR, and PPAR:RXR. The third and last part is focused on RXR signaling and its potential role in metabolic regulation. Indeed, while the nature of the endogenous ligand for RXR is still in question, as we will discuss herein, a better understanding of RXR activities is necessary to envisage the potential therapeutic applications of synthetic RXR ligands.
Collapse
|
|
18 |
82 |
25
|
Fan W, Yanase T, Morinaga H, Mu YM, Nomura M, Okabe T, Goto K, Harada N, Nawata H. Activation of peroxisome proliferator-activated receptor-gamma and retinoid X receptor inhibits aromatase transcription via nuclear factor-kappaB. Endocrinology 2005; 146:85-92. [PMID: 15459115 DOI: 10.1210/en.2004-1046] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our previous studies demonstrated that a peroxisome proliferator-activated receptor (PPAR)-gamma ligand, troglitazone (TGZ),and/or a retinoid X receptor (RXR) ligand, LG100268 (LG), decreased the aromatase activity in both cultured human ovarian granulosa cells and human granulosa-like tumor KGN cells. In the present study, we further found that a combined treatment of TGZ+LG decreased aromatase promoter II (ArPII) activity in both ovarian KGN cells and fibroblast NIH-3T3 cells in a PPARgamma-dependent manner. Furthermore, the inhibition of both aromatase activity and the transcription of ArPII by TGZ+LG was completely eliminated when nuclear factor-kappaB (NF-kappaB) signaling was blocked by specific inhibitors, suggesting NF-kappaB, which is endogenously expressed in both fibroblast and granulosa cells, might be a mediator of this inhibition. Interestingly, activation of NF-kappaB by either forced expression of the p65 subunit or NF-kappaB-inducing kinase up-regulated ArPII activity. Positive regulation of aromatase by endogenous NF-kappaB was also suggested by the fact that NF-kappaB-specific inhibitors suppress basal activity of the aromatase gene. A concomitant formation of high-order complex between NF-kappaB p65 and ArPII was also observed by chromatin immunoprecipitation assay. Although activation of PPARgamma and RXR affected endogenous expression levels of neither inhibitory kappaBalpha nor p65, it impaired the interaction between NF-kappaB and ArPII and the p65 based transcription as well. Altogether, these results indicate that activation of a nuclear receptor system, constituted by PPARgamma and RXR, down-regulates aromatase expression through the suppression of NF-kappaB-dependent aromatase activation and thus provide a new insight in the mechanism of regulation of the aromatase gene.
Collapse
|
|
20 |
81 |