1
|
Mello CB, Garcia ES, Ratcliffe NA, Azambuja P. Trypanosoma cruzi and Trypanosoma rangeli: interplay with hemolymph components of Rhodnius prolixus. J Invertebr Pathol 1995; 65:261-8. [PMID: 7745280 DOI: 10.1006/jipa.1995.1040] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Studies were carried out on the course of infection of Trypanosoma cruzi (clone Dm28c) and Trypanosoma rangeli (clone San Agustin) and their interactions with hemolymph components of Rhodnius prolixus. These parasites when inoculated into the hemocoel of adult R. prolixus (i) had different courses of infection (T. rangeli had high rates of both multiplication and infection and T. cruzi had no division and disappeared soon from the hemolymph); (ii) induced high but no differential increases in lysozyme levels; (iii) failed to induce any other antibacterial activity; (iv) showed similar patterns of hemolymph agglutination activity for erythrocytes and parasites, although there was evidence of limited, unquantifiable, agglutination of T. cruzi; (v) elicited different hemocyte responses with only the T. rangeli infection resulting in significantly increased hemocyte counts; and (vi) did not induce trypanolytic activity. These experiments, unlike previous studies, also showed (i) an interaction of these trypanosomes with the prophenoloxidase-activating system [phenoloxidase (PO) production was spontaneously activated by both parasites but the number of T. cruzi in the hemolymph was directly correlated with PO levels] and (ii) that the elimination of T. cruzi also corresponded to the formation of nodules in the hemolymph. The significance of these results is discussed in relation to the hypothesis that T. rangeli but not T. cruzi has the ability to escape from and perhaps utilize the vector immune system in order to successfully colonize the R. prolixus hemolymph.
Collapse
|
|
30 |
69 |
2
|
Ursic-Bedoya RJ, Lowenberger CA. Rhodnius prolixus: identification of immune-related genes up-regulated in response to pathogens and parasites using suppressive subtractive hybridization. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:109-20. [PMID: 16824597 DOI: 10.1016/j.dci.2006.05.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 05/16/2006] [Accepted: 05/18/2006] [Indexed: 05/10/2023]
Abstract
We report the identification of immune-related molecules from the fat body, and intestine of Rhodnius prolixus, an important vector of Chagas disease. Insects were challenged by introducing pathogens or Trypanosoma cruzi, the parasite that causes Chagas disease, into the hemocoel. RNA from intestines, or fat body were isolated 24h after stimulation. We used suppressive subtractive hybridization to identify immune-related genes, generated three subtracted libraries, sequenced the clones and assembled the sequences. The functional annotation revealed expressed sequence tags (ESTs) generated in response to various stimuli in all tissues, and included pathogen recognition molecules, regulatory molecules, and effector molecules.
Collapse
|
|
18 |
64 |
3
|
Whitten M, Sun F, Tew I, Schaub G, Soukou C, Nappi A, Ratcliffe N. Differential modulation of Rhodnius prolixus nitric oxide activities following challenge with Trypanosoma rangeli, T. cruzi and bacterial cell wall components. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:440-52. [PMID: 17456439 DOI: 10.1016/j.ibmb.2007.02.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 01/24/2007] [Accepted: 02/01/2007] [Indexed: 05/15/2023]
Abstract
Nitric oxide (NO) is a key immune effector and signaling molecule in many organisms. However, the contribution NO makes towards insect immunity has received little attention, particularly in non-dipteran species. In this study, tissue- and time-specific alterations in NO synthase (NOS) gene expression and NO production were documented in the hemipteran vector of Chagas' disease, Rhodnius prolixus, following in vivo immune challenge by Trypanosoma cruzi, T. rangeli and crude bacterial lipopolysaccharide (LPS). The most pronounced reactions to crude LPS occurred in major immune tissues (fat body and blood cells), while tissues of the digestive tract were most responsive to infections by T. cruzi and T. rangeli. The data suggest the NO-mediated immune responses of R. prolixus are pathogen-specific and independently modified both at the transcriptional and enzyme levels.
Collapse
|
|
18 |
61 |
4
|
Ursic-Bedoya R, Buchhop J, Joy JB, Durvasula R, Lowenberger C. Prolixicin: a novel antimicrobial peptide isolated from Rhodnius prolixus with differential activity against bacteria and Trypanosoma cruzi. INSECT MOLECULAR BIOLOGY 2011; 20:775-86. [PMID: 21906194 DOI: 10.1111/j.1365-2583.2011.01107.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We identified and characterized the activity of prolixicin, a novel antimicrobial peptide (AMP) isolated from the hemipteran insect, Rhodnius prolixus. Sequence analysis reveals one region of prolixicin that may be related to the diptericin/attacin family of AMPs. Prolixicin is an 11-kDa peptide containing a putative 21 amino acid signal peptide, two putative phosphorylation sites and no glycosylation sites. It is produced by both adult fat body and midgut tissues in response to bacterial infection of the haemolymph or the midgut. Unlike most insect antibacterial peptides, the prolixicin gene does not seem to be regulated by NF-κB binding sites, but its promoter region contains several GATA sites. Recombinant prolixicin has strong activity against the Gram-negative bacterium Escherichia coli and differential activity against several Gram-negative and Gram-positive bacteria. No significant toxicity was demonstrated against Trypanosoma cruzi, the human parasite transmitted by R. prolixus.
Collapse
|
|
14 |
56 |
5
|
Azambuja P, Garcia ES, Waniek PJ, Vieira CS, Figueiredo MB, Gonzalez MS, Mello CB, Castro DP, Ratcliffe NA. Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:45-65. [PMID: 27866813 DOI: 10.1016/j.jinsphys.2016.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 11/04/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
This review is dedicated to the memory of Professor Sir Vincent B. Wigglesworth (VW) in recognition of his many pioneering contributions to insect physiology which, even today, form the basis of modern-day research in this field. Insects not only make vital contributions to our everyday lives by their roles in pollination, balancing eco-systems and provision of honey and silk products, but they are also outstanding models for studying the pathogenicity of microorganisms and the functioning of innate immunity in humans. In this overview, the immune system of the triatomine bug, Rhodnius prolixus, is considered which is most appropriate to this dedication as this insect species was the favourite subject of VW's research. Herein are described recent developments in knowledge of the functioning of the R. prolixus immune system. Thus, the roles of the cellular defences, such as phagocytosis and nodule formation, as well as the role of eicosanoids, ecdysone, antimicrobial peptides, reactive oxygen and nitrogen radicals, and the gut microbiota in the immune response of R. prolixus are described. The details of many of these were unknown to VW although his work gives indications of his awareness of the importance to R. prolixus of cellular immunity, antibacterial activity, prophenoloxidase and the gut microbiota. This description of R. prolixus immunity forms a backdrop to studies on the interaction of the parasitic flagellates, Trypanosoma cruzi and Trypanosoma rangeli, with the host defences of this important insect vector. These parasites remarkably utilize different strategies to avoid/modulate the triatomine immune response in order to survive in the extremely hostile host environments present in the vector gut and haemocoel. Much recent information has also been gleaned on the remarkable diversity of the immune system in the R. prolixus gut and its interaction with trypanosome parasites. This new data is reviewed and gaps in our knowledge of R. prolixus immunity are identified as subjects for future endeavours. Finally, the publication of the T. cruzi, T. rangeli and R. prolixus genomes, together with the use of modern molecular techniques, should lead to the enhanced identification of the determinants of infection derived from both the vector and the parasites which, in turn, could form targets for new molecular-based control strategies.
Collapse
|
Review |
8 |
38 |
6
|
Takle GB. Studies on the cellular immune responses of insects toward the insect pathogen Trypanosoma rangeli. J Invertebr Pathol 1988; 51:64-72. [PMID: 3280694 DOI: 10.1016/0022-2011(88)90089-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
Comparative Study |
37 |
34 |
7
|
Garcia ES, Machado EMM, Azambuja P. Effects of eicosanoid biosynthesis inhibitors on the prophenoloxidase-activating system and microaggregation reactions in the hemolymph of Rhodnius prolixus infected with Trypanosoma rangeli. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:157-165. [PMID: 15019517 DOI: 10.1016/j.jinsphys.2003.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Revised: 09/04/2003] [Accepted: 11/06/2003] [Indexed: 05/24/2023]
Abstract
Investigations on the effects of eicosanoid biosynthesis inhibitors on the hemocyte microaggregation and prophenoloxidase (proPO)-activating system in the hemolymph, parasitemia and mortality of Rhodnius prolixus infected with Trypanosoma rangeli were performed. Hemocoelic injection of live T. rangeli epimastigotes into fifth-instar larvae of R. prolixus that previously fed on blood containing an inhibitor of phospholipase A(2) (dexamethasone), a specific inhibitor of the cyclooxygenase pathway (indomethacin), and a non-selective lipoxygenase inhibitor (NDGA) (i) reduced the hemocyte microaggregation, (ii) attenuated the proPO system in the hemolymph and (iii) enhanced parasitemia and mortality induced by the parasite challenge in these insects. The effects obtained by dexamethasone administered orally were counteracted by inoculation of the insects with arachidonic acid. We suggest that the infectivity of T. rangeli can be increased by interference with the R. prolixus immune system. This is the first demonstration that the triatomine's immune responses to a parasite infection are modulated by a physiological system that includes eicosanoid biosynthesis.
Collapse
|
Comparative Study |
21 |
34 |
8
|
Garcia ES, Machado EMM, Azambuja P. Inhibition of hemocyte microaggregation reactions in Rhodnius prolixus larvae orally infected with Trypanosoma rangeli. Exp Parasitol 2004; 107:31-8. [PMID: 15208035 DOI: 10.1016/j.exppara.2004.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 02/04/2004] [Accepted: 03/30/2004] [Indexed: 11/15/2022]
Abstract
Hemocoelic inoculation of epimastigotes of Trypanosoma rangeli strain H14 into 5th-instar larvae of Rhodnius prolixus previously fed on blood containing the same parasites, showed reduced number of hemocyte microaggregates in the hemolymph, enhanced number of flagellates in the hemolymph as well as increased mortality of these insects. All these effects were counteracted by combined inoculation of R. prolixus with T. rangeli and arachidonic acid. In vitro assays using hemolymph taken from insects previously fed on blood containing parasites showed that hemocyte microaggregation reactions were also attenuated when T. rangeli is used as inducer of the reaction, and that simultaneous applying T. rangeli with arachidonic counteracted the hemocyte microaggregation inhibition. We suggest that arachidonic acid pathway can be a mediator of hemocyte microaggregation reactions in the hemolymph of insects inoculated with T. rangeli, and that oral infection with this protozoan inhibits the release of arachidonic acid.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
34 |
9
|
Salcedo-Porras N, Guarneri A, Oliveira PL, Lowenberger C. Rhodnius prolixus: Identification of missing components of the IMD immune signaling pathway and functional characterization of its role in eliminating bacteria. PLoS One 2019; 14:e0214794. [PMID: 30943246 PMCID: PMC6447187 DOI: 10.1371/journal.pone.0214794] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
The innate immune system in insects is regulated by specific signalling pathways. Most immune related pathways were identified and characterized in holometabolous insects such as Drosophila melanogaster, and it was assumed they would be highly conserved in all insects. The hemimetabolous insect, Rhodnius prolixus, has served as a model to study basic insect physiology, but also is a major vector of the human parasite, Trypanosoma cruzi, that causes 10,000 deaths annually. The publication of the R. prolixus genome revealed that one of the main immune pathways, the Immune-deficiency pathway (IMD), was incomplete and probably non-functional, an observation shared with other hemimetabolous insects including the pea aphid (Acyrthosiphon pisum) and the bedbug (Cimex lectularius). It was proposed that the IMD pathway is inactive in R. prolixus as an adaptation to prevent eliminating beneficial symbiont gut bacteria. We used bioinformatic analyses based on reciprocal BLAST and HMM-profile searches to find orthologs for most of the "missing" elements of the IMD pathway and provide data that these are regulated in response to infection with Gram-negative bacteria. We used RNAi strategies to demonstrate the role of the IMD pathway in regulating the expression of specific antimicrobial peptides (AMPs) in the fat body of R. prolixus. The data indicate that the IMD pathway is present and active in R. prolixus, which opens up new avenues of research on R. prolixus-T. cruzi interactions.
Collapse
|
research-article |
6 |
32 |
10
|
Gonzalez R, Orchard I. Characterization of neuropeptide F-like immunoreactivity in the blood-feeding hemipteran, Rhodnius prolixus. Peptides 2008; 29:545-58. [PMID: 18201798 DOI: 10.1016/j.peptides.2007.11.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/28/2007] [Accepted: 11/30/2007] [Indexed: 11/23/2022]
Abstract
The invertebrate neuropeptide Y (NPY) homolog, neuropeptide F (NPF), has been characterized for a wide range of invertebrate phyla, including platyhelminthes, molluscs, and arthropods. Current hypotheses suggest that NPF may be capable of regulating responses to diverse external cues related to nutritional status and feeding. The qualitative and quantitative distribution of an NPF-like peptide in fifth instar Rhodnius prolixus was undertaken using an antiserum raised against Drosophila NPF. Immunohistochemistry reveals NPF-like immunoreactive neurons and processes in the central nervous system, stomatogastric nervous system and peripheral nervous system. The distribution of NPF-like immunoreactivity within the medial neurosecretory cells of the brain and neurohemal areas of the corpus cardiacum and dorsal vessel, suggests NPF may act as a neurohormone. Immunoreactive processes are present over the surface of the hindgut and the immunoreactivity in these processes is greatly reduced in intensity 24h post-feeding. The quantification of partially purified NPF-like material in the CNS of R. prolixus was conducted by HPLC fractionation and radioimmunoassay. The results suggest that NPF-like material is present in fifth instar R. prolixus and likely released into the hemolymph following a blood meal.
Collapse
|
|
17 |
28 |
11
|
Gonzalez MS, Hamedi A, Albuquerque-Cunha JM, Nogueira NFS, De Souza W, Ratcliffe NA, Azambuja P, Garcia ES, Mello CB. Antiserum against perimicrovillar membranes and midgut tissue reduces the development of Trypanosoma cruzi in the insect vector, Rhodnius prolixus. Exp Parasitol 2006; 114:297-304. [PMID: 16759654 DOI: 10.1016/j.exppara.2006.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 04/20/2006] [Accepted: 04/24/2006] [Indexed: 11/29/2022]
Abstract
Antiserum raised against Rhodnius prolixus perimicrovillar membranes (PMM) and midgut tissue interfered with the midgut structural organization and reduced the development of Trypanosoma cruzi in the R. prolixus insect vector. SDS-PAGE and Western blot analyses confirmed the specific recognition of midgut proteins by the antibody. Feeding, mortality, molt, and oviposition of the insects were unaffected by feeding with the antiserum. However, the eclosion of the eggs were reduced from R. prolixus females treated with antiserum. Additionally, in vivo evaluation showed that after oral treatment with the antiserum, the intensity of infection with the Dm-28c clone of T. cruzi decreased in the digestive tract of fifth-instar nymphs and in the excretions of R. prolixus adults. These results suggest that the changes observed in the PMM organization in the posterior midgut of R. prolixus may not be important for triatomine survival but the antiserum acts as a transmission-reduction vaccine able to induce significant decreases in T. cruzi infection in the vector.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
21 |
12
|
Figueiredo MB, Castro DP, S Nogueira NF, Garcia ES, Azambuja P. Cellular immune response in Rhodnius prolixus: role of ecdysone in hemocyte phagocytosis. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:711-6. [PMID: 16759667 DOI: 10.1016/j.jinsphys.2006.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/23/2006] [Accepted: 03/27/2006] [Indexed: 05/10/2023]
Abstract
In this paper we investigate in vivo and in vitro effects of orally administered azadirachtin and ecdysone on the phagocytic responses of Rhodnius prolixus 5th-instar larval hemocytes to the yeast Saccharomyces cerevisiae. Groups of insects fed non-treated blood (control) and insects that received azadirachtin plus ecdysone in the blood meal were inoculated with yeast cells in the hemocele. The injected yeast cells disappeared rapidly from the hemolymph, being removed completely by 90min after inoculation. In the insects treated only with azadirachtin the clearance of free yeast circulating particles was significantly delayed compared to the two previously mentioned groups. It was demonstrated that the binding of yeast cells to hemocytes was reduced in the insects treated only with azadirachtin in comparison to both non-treated control and azadirachtin plus ecdysone-treated groups. Phagocytosis occurred when yeast cells were added to hemocyte monolayers prepared with hemolymph from blood fed insects, treated or not with azadirachtin plus ecdysone, so that yeast cells were rapidly bound to hemocytes and internalized in high numbers. By contrast, insects treated with azadirachtin exhibited a drastic reduction in the quantity of yeast cell-hemocyte binding and subsequent internalization. In all groups, the hemocytes attached to the glass slides were predominantly plasmatocytes. The magnitude and speed of the cellular response suggests that hemocyte phagocytosis is one of the main driving forces for the clearance of free circulating yeast cells from the hemolymph. We propose that ecdysone modulates phagocytosis in R. prolixus larvae, and that this effect is antagonized by azadirachtin.
Collapse
|
|
19 |
16 |
13
|
Batista KKDS, Vieira CS, Florentino EB, Caruso KFB, Teixeira PTP, Moraes CDS, Genta FA, de Azambuja P, de Castro DP. Nitric oxide effects on Rhodnius prolixus's immune responses, gut microbiota and Trypanosoma cruzi development. JOURNAL OF INSECT PHYSIOLOGY 2020; 126:104100. [PMID: 32822690 DOI: 10.1016/j.jinsphys.2020.104100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 08/14/2020] [Indexed: 05/21/2023]
Abstract
The immune system of Rhodnius prolixus comprehends the synthesis of different effectors that modulate the intestinal microbiota population and the life cycle of the parasite Trypanosoma cruzi inside the vector midgut. One of these immune responses is the production of reactive nitrogen species (RNS) derived by the action of nitric oxide synthase (NOS). Therefore, we investigated the effects of L-arginine, the substrate for nitric oxide (NO) production and Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NOS, added in the insect blood meal. We analyzed the impact of these treatments on the immune responses and development of intestinal bacteria and parasites on R. prolixus nymphs. The L-arginine treatment in R. prolixus nymphs induced a higher NOS gene expression in the fat body and increased NO production, but reduced catalase and antimicrobial activities in the midgut. As expected, L-NAME treatment reduced NOS gene expression in the fat body. In addition, L-NAME treatment diminished catalase activity in the hemolymph and posterior midgut reduced phenoloxidase activity in the anterior midgut and increased the antimicrobial activity in the hemolymph. Both treatments caused a reduction in the cultivatable intestinal microbiota, especially in insects treated with L-NAME. However, T. cruzi development in the insect's digestive tract was suppressed after L-arginine treatment and the opposite was observed with L-NAME, which resulted in higher parasite counts. Therefore, we conclude that induction and inhibition of NOS and NO production are associated with other R. prolixus humoral immune responses, such as catalase, phenoloxidase, and antibacterial activities in different insect organs. These alterations reflect on intestinal microbiota and T. cruzi development.
Collapse
|
|
5 |
15 |
14
|
Garcia ES, Castro DP, Ribeiro IM, Tomassini TCB, Azambuja P. Trypanosoma rangeli: Effects of physalin B on the immune reactions of the infected larvae of Rhodnius prolixus. Exp Parasitol 2006; 112:37-43. [PMID: 16271717 DOI: 10.1016/j.exppara.2005.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 09/12/2005] [Accepted: 09/19/2005] [Indexed: 11/30/2022]
Abstract
Physalins are seco-steroids obtained from plants of the family Solanaceae. Herein, we tested Physalis angulata L purified physalin B as an immunomodulatory compound in 5th-instar larvae of Rhodnius prolixus, which were systemically infected with the H14 Trypanosoma rangeli strain protozoan. In uninfected insects, the effective concentration of physalin B, which inhibited 50% of the blood ingested (ED(50)) volume, was 15.2+/-1.6 microg/ml of the meal. Ecdysis processes and mortality in uninfected larvae, treated orally with physalin B in concentrations ranging from 1 to 10 microg/ml, was similar to that observed in insects not treated with physalin B. However, R. prolixus larvae previously fed on blood containing 1.0, 0.1, and 0.01 microg of physalin B/ml exhibited mortality rates of 78.1, 54.3, and 12.7%, respectively, 6 days after inoculation of T. rangeli (1 x 10(3) parasites/insect), whereas only 7.2% mortality was observed in the control group, injected with sterile culture medium. The insects treated with physalin B (0.1 microg/ml) and inoculated with T. rangeli did not modify the phenoloxidase (PO) activity and total hemocyte count in the hemolymph. However, physalin B treatment caused a reduction in hemocyte micro-aggregation and nitric oxide production and enhanced the parasitemia in the hemolymph. These results demonstrate that physalin B from P. angulata is a potent immunomodulatory substance for the bloodsucking insect, R. prolixus.
Collapse
|
|
19 |
15 |
15
|
Azambuja P, Feder D, Mello C, Gomes S, Garcia E. Immunity in Rhodnius prolixus: trypanosomatid-vector interactions. Mem Inst Oswaldo Cruz 2000; 94 Suppl 1:219-22. [PMID: 10677721 DOI: 10.1590/s0074-02761999000700035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
Review |
25 |
15 |
16
|
Medeiros MND, Belmonte R, Soares BCC, Medeiros LND, Canetti C, Freire-de-Lima CG, Maya-Monteiro CM, Bozza PT, Almeida IC, Masuda H, Kurtenbach E, Machado EA. Arrest of oogenesis in the bug Rhodnius prolixus challenged with the fungus Aspergillus niger is mediated by immune response-derived PGE2. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:150-157. [PMID: 19059412 DOI: 10.1016/j.jinsphys.2008.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 10/15/2008] [Accepted: 10/30/2008] [Indexed: 05/27/2023]
Abstract
In this work we characterized the immune response of the insect Rhodnius prolixus to a direct injection into the hemocoel of the non-entomopathogenic fungus Aspergillus niger, and evaluated its consequences on host oogenesis. These animals were able to respond by mounting effective cellular and humoral responses to this fungus; these responses were shown, however, to have reproductive fitness costs, as the number of eggs laid per female was significantly reduced. The disturbance of egg formation during infectious process correlated with an elevation in the titer of hemolymph prostaglandin E2 48 h post-challenge. Administration of Zymosan A as an immunogenic non-infectious challenge produced similar effects on phenoloxidase and prophenoloxidase activities, oocyte development and prostaglandin E2 titer, precluding the hypothesis of an effect mediated by fungal metabolites in animals challenged with fungus. Ovaries at 48 h post-challenge showed absence of vitellogenic ovarian follicles, and the in vivo administration of prostaglandin E2 or its receptor agonist misoprostol, partially reproduced this phenotype. Together these data led us to hypothesize that immune-derived prostaglandin E2 raised from the insect response to the fungal challenge is involved in disturbing follicle development, contributing to a reduction in host reproductive output and acting as a host-derived adaptive effector to infection.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
14 |
17
|
de Azambuja P, Garcia ES. Effects of azadirachtin on Rhodnius prolixus: immunity and Trypanosoma interaction. Mem Inst Oswaldo Cruz 1992; 87 Suppl 5:69-72. [PMID: 1342719 DOI: 10.1590/s0074-02761992000900009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The effects of azadirachtin, a tetranortriterpenoid from the neem tree Azadirachta indica J., on both immunity and Trypanosoma cruzi interaction within Rhodnius prolixus and other triatomines, were presented. Given through a blood meal, azadirachtin affected the immune reactivity as shown by a significant reduction in numbers of hemocytes and consequently nodule formation following challenge with Enterobacter cloacae beta 12, reduction in ability to produce antibacterial activities in the hemolymph when injected with bacteria, and decreased ability to destroy the infection caused by inoculation of E. cloacae cells. A single dose of azadirachtin was able to block the development of T. cruzi in R. prolixus if given through the meal at different intervals, together with, before or after parasite infection. Similarly, these results were observed with different triatomine species and different strains of T. cruzi. Azadirachtin induced a permanent resistance of the vector against reinfection with T. cruzi. The significance of these data is discussed in relation to the general mode of azadirachtin action in insects.
Collapse
|
Review |
33 |
13 |
18
|
Castro DP, Moraes CS, Gonzalez MS, Ribeiro IM, Tomassini TCB, Azambuja P, Garcia ES. Physalin B inhibits Trypanosoma cruzi infection in the gut of Rhodnius prolixus by affecting the immune system and microbiota. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1620-1625. [PMID: 23085484 DOI: 10.1016/j.jinsphys.2012.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 06/01/2023]
Abstract
Physalin B is a natural secosteroidal, extracted from the Solanaceae plant, Physalis angulata, and it presents immune-modulator effects on the bloodsucking bug, Rhodnius prolixus. In this work, R. prolixus was treated with physalin B at a concentration of 1 mg/ml of blood meal (oral application), or 20 ng/insect (applied topically) or 57 ng/cm(2) of filter paper (contact treatment), and infected with Trypanosoma cruzi Dm28c clone (2×10(6) epimastigotes/insect). The three types of applications significantly decreased the number of T. cruzi Dm28c in the gut comparing with the non-treated infected insects (controls). All groups of infected insects treated with physalin B had higher numbers of bacterial microbiota in the gut than the non-treated controls infected with T. cruzi. We observed that the infected physalin B insects with topical and contact treatments had a lower antibacterial activity in the gut when compared with control infected insects. Furthermore, infected insects with the physalin B oral treatment produced higher levels of nitrite and nitrate in the gut than control infected insects. These results demonstrate that physalin B decreases the T. cruzi transmission by inhibiting the parasite development in the insect vector R. prolixus. Herein the importance of physalin B modulation on the immune system and microbiota population in terms of parasite development and transmission are discussed.
Collapse
|
|
13 |
12 |
19
|
Kalvachová P, Hríbalová V, Kodym P, Volf P. Modulation of murine lymphocyte responsiveness by the saliva of Rhodnius prolixus (Hemiptera: Reduviidae). JOURNAL OF MEDICAL ENTOMOLOGY 1999; 36:341-344. [PMID: 10337105 DOI: 10.1093/jmedent/36.3.341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Incorporation of 3H-thymidine by splenic lymphocytes was studied in CBA mice that were bitten by the triatomine bug Rhodnius prolixus (Stål) 14, 7, 4, and 2 d before lymphocyte isolation, respectively. In bitten mice, both spontaneous and mitogen-induced proliferative responses were reduced. The most pronounced effect was observed 4 d after exposure when lymphocytes were significantly suppressed in proliferative response to the mitogens concanavalin A, phytohemagglutinin, and bacterial lipopolysaccharide. The maximum inhibition caused an 85% reduction of proliferation and was observed in phytohemagglutinin-stimulated cell cultures. The immunosuppressive effect was caused neither by stress nor by an nonspecific cytotoxic effect of R. prolixus saliva. The described immunosuppressive activity of saliva could aid in successful repeated feedings of R. prolixus on the same host and possibly could play a role in transmission of Trypanosoma cruzi.
Collapse
|
|
26 |
11 |
20
|
Medeiros MN, Ramos IB, Oliveira DMP, da Silva RCB, Gomes FM, Medeiros LN, Kurtenbach E, Chiarini LB, Masuda H, de Souza W, Machado EA. Microscopic and molecular characterization of ovarian follicle atresia in Rhodnius prolixus Stahl under immune challenge. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:945-953. [PMID: 21540034 DOI: 10.1016/j.jinsphys.2011.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 05/30/2023]
Abstract
In this work we characterized the degenerative process of ovarian follicles of the bug Rhodnius prolixus challenged with the non-entomopathogenic fungus Aspergillus niger. An injection of A. niger conidia directly into the hemocoel of adult R. prolixus females at the onset of vitellogenesis caused no effect on host lifespan but elicited a net reduction in egg batch size. Direct inspection of ovaries from the mycosed insects revealed that fungal challenge led to atresia of the vitellogenic follicles. Light microscopy and DAPI staining showed follicle shrinkage, ooplasm alteration and disorganization of the monolayer of follicle cells in the atretic follicles. Transmission electron microscopy of thin sections of follicle epithelium also showed nuclei with condensed chromatin, electron dense mitochondria and large autophagic vacuoles. Occurrence of apoptosis of follicle cells in these follicles was visualized by TUNEL labeling. Resorption of the yolk involved an increase in protease activities (aspartyl and cysteinyl proteases) which were associated with precocious acidification of yolk granules and degradation of yolk protein content. The role of follicle atresia in nonspecific host-pathogen associations and the origin of protease activity that led to yolk resorption are discussed.
Collapse
|
|
14 |
8 |
21
|
Machado EMM, Azambuja P, Garcia ES. WEB 2086, a platelet-activating factor antagonist, inhibits prophenoloxidase-activating system and hemocyte microaggregation reactions induced by Trypanosoma rangeli infection in Rhodnius prolixus hemolymph. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:685-92. [PMID: 16777137 DOI: 10.1016/j.jinsphys.2006.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 03/23/2006] [Accepted: 03/27/2006] [Indexed: 05/10/2023]
Abstract
The effects of the triazolodiazepine WEB 2086, a platelet-activating factor (PAF) antagonist, on hemocyte microaggregation and prophenoloxidase (proPO)-activating system in the hemolymph, hemocoelic infection and mortality in fifth-instar larvae of Rhodnius prolixus inoculated with Trypanosoma rangeli were investigated. Hemocoelic injection of short T. rangeli epimastigotes (1x10(4) parasites/insect) in R. prolixus that were previously fed with blood containing 1muM of WEB 2086 resulted in (i) reduced hemocyte microaggregations as well as an attenuated proPO system in the hemolymph and (ii) greater parasitemia and mortality among the insects. In vitro assays using hemolymph from insects previously fed with blood containing WEB 2086 exhibited attenuated hemocyte microaggregations when T. rangeli was employed as the inducer of the reaction, and this effect was not counteracted by PAF treatment. In vitro assays using hemolymph from insects previously fed with blood, regardless of WEB 2086 presence increased the PO activity when incubated with the parasites. However, the PO activity was drastically inhibited when hemolymph from insects fed with blood, whether or not it contained WEB 2086, was incubated with fat body homogenates from insects fed with blood containing WEB 2086. The addition of PAF did not enhance the PO activity. These analyses did not reveal any PAF influence on WEB 2086 effects in the two defense reactions.
Collapse
|
|
19 |
7 |
22
|
Batista KKS, Vieira CS, Figueiredo MB, Costa-Latgé SG, Azambuja P, Genta FA, Castro DP. Influence of Serratia marcescens and Rhodococcus rhodnii on the Humoral Immunity of Rhodnius prolixus. Int J Mol Sci 2021; 22:ijms222010901. [PMID: 34681561 PMCID: PMC8536199 DOI: 10.3390/ijms222010901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Chagas disease is a human infectious disease caused by Trypanosoma cruzi and can be transmitted by triatomine vectors, such as Rhodnius prolixus. One limiting factor for T. cruzi development is the composition of the bacterial gut microbiota in the triatomine. Herein, we analyzed the humoral immune responses of R. prolixus nymphs treated with antibiotics and subsequently recolonized with either Serratia marcescens or Rhodococcus rhodnii. The treatment with antibiotics reduced the bacterial load in the digestive tract, and the recolonization with each bacterium was successfully detected seven days after treatment. The antibiotic-treated insects, recolonized with S. marcescens, presented reduced antibacterial activity against Staphylococcus aureus and phenoloxidase activity in hemolymph, and lower nitric oxide synthase (NOS) and higher defensin C gene (DefC) gene expression in the fat body. These insects also presented a higher expression of DefC, lower prolixicin (Prol), and lower NOS levels in the anterior midgut. However, the antibiotic-treated insects recolonized with R. rhodnii had increased antibacterial activity against Escherichia coli and lower activity against S. aureus, higher phenoloxidase activity in hemolymph, and lower NOS expression in the fat body. In the anterior midgut, these insects presented higher NOS, defensin A (DefA) and DefC expression, and lower Prol expression. The R. prolixus immune modulation by these two bacteria was observed not only in the midgut, but also systemically in the fat body, and may be crucial for the development and transmission of the parasites Trypanosoma cruzi and Trypanosoma rangeli.
Collapse
|
|
4 |
6 |
23
|
Castro DP, Figueiredo MB, Genta FA, Ribeiro IM, Tomassini TCB, Azambuja P, Garcia ES. Physalin B inhibits Rhodnius prolixus hemocyte phagocytosis and microaggregation by the activation of endogenous PAF-acetyl hydrolase activities. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:532-537. [PMID: 19232405 DOI: 10.1016/j.jinsphys.2009.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/12/2009] [Accepted: 01/26/2009] [Indexed: 05/27/2023]
Abstract
The effects of physalin B (a natural secosteroidal chemical from Physalis angulata, Solanaceae) on phagocytosis and microaggregation by hemocytes of 5th-instar larvae of Rhodnius prolixus were investigated. In this insect, hemocyte phagocytosis and microaggregation are known to be induced by the platelet-activating factor (PAF) or arachidonic acid (AA) and regulated by phospholipase A(2) (PLA(2)) and PAF-acetyl hydrolase (PAF-AH) activities. Phagocytic activity and formation of hemocyte microaggregates by Rhodnius hemocytes were strongly blocked by oral treatment of this insect with physalin B (1mug/mL of blood meal). The inhibition induced by physalin B was reversed for both phagocytosis and microaggregation by exogenous arachidonic acid (10microg/insect) or PAF (1microg/insect) applied by hemocelic injection. Following treatment with physalin B there were no significant alterations in PLA(2) activities, but a significant enhancement of PAF-AH was observed. These results show that physalin B inhibits hemocytic activity by depressing insect PAF analogous (iPAF) levels in hemolymph and confirm the role of PAF-AH in the cellular immune reactions in R. prolixus.
Collapse
|
|
16 |
6 |