1
|
McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR. Riboswitch diversity and distribution. RNA (NEW YORK, N.Y.) 2017; 23:995-1011. [PMID: 28396576 PMCID: PMC5473149 DOI: 10.1261/rna.061234.117] [Citation(s) in RCA: 340] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/04/2017] [Indexed: 05/04/2023]
Abstract
Riboswitches are commonly used by bacteria to detect a variety of metabolites and ions to regulate gene expression. To date, nearly 40 different classes of riboswitches have been discovered, experimentally validated, and modeled at atomic resolution in complex with their cognate ligands. The research findings produced since the first riboswitch validation reports in 2002 reveal that these noncoding RNA domains exploit many different structural features to create binding pockets that are extremely selective for their target ligands. Some riboswitch classes are very common and are present in bacteria from nearly all lineages, whereas others are exceedingly rare and appear in only a few species whose DNA has been sequenced. Presented herein are the consensus sequences, structural models, and phylogenetic distributions for all validated riboswitch classes. Based on our findings, we predict that there are potentially many thousands of distinct bacterial riboswitch classes remaining to be discovered, but that the rarity of individual undiscovered classes will make it increasingly difficult to find additional examples of this RNA-based sensory and gene control mechanism.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
340 |
2
|
Ceroni F, Algar R, Stan GB, Ellis T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods 2015; 12:415-8. [PMID: 25849635 DOI: 10.1038/nmeth.3339] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/20/2015] [Indexed: 12/29/2022]
Abstract
Heterologous gene expression can be a significant burden for cells. Here we describe an in vivo monitor that tracks changes in the capacity of Escherichia coli in real time and can be used to assay the burden imposed by synthetic constructs and their parts. We identify construct designs with reduced burden that predictably outperformed less efficient designs, despite having equivalent output.
Collapse
|
|
10 |
299 |
3
|
Miao Z, Adamiak RW, Antczak M, Batey RT, Becka AJ, Biesiada M, Boniecki MJ, Bujnicki JM, Chen SJ, Cheng CY, Chou FC, Ferré-D'Amaré AR, Das R, Dawson WK, Ding F, Dokholyan NV, Dunin-Horkawicz S, Geniesse C, Kappel K, Kladwang W, Krokhotin A, Łach GE, Major F, Mann TH, Magnus M, Pachulska-Wieczorek K, Patel DJ, Piccirilli JA, Popenda M, Purzycka KJ, Ren A, Rice GM, Santalucia J, Sarzynska J, Szachniuk M, Tandon A, Trausch JJ, Tian S, Wang J, Weeks KM, Williams B, Xiao Y, Xu X, Zhang D, Zok T, Westhof E. RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme. RNA (NEW YORK, N.Y.) 2017; 23:655-672. [PMID: 28138060 PMCID: PMC5393176 DOI: 10.1261/rna.060368.116] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/26/2017] [Indexed: 05/21/2023]
Abstract
RNA-Puzzles is a collective experiment in blind 3D RNA structure prediction. We report here a third round of RNA-Puzzles. Five puzzles, 4, 8, 12, 13, 14, all structures of riboswitch aptamers and puzzle 7, a ribozyme structure, are included in this round of the experiment. The riboswitch structures include biological binding sites for small molecules (S-adenosyl methionine, cyclic diadenosine monophosphate, 5-amino 4-imidazole carboxamide riboside 5'-triphosphate, glutamine) and proteins (YbxF), and one set describes large conformational changes between ligand-free and ligand-bound states. The Varkud satellite ribozyme is the most recently solved structure of a known large ribozyme. All puzzles have established biological functions and require structural understanding to appreciate their molecular mechanisms. Through the use of fast-track experimental data, including multidimensional chemical mapping, and accurate prediction of RNA secondary structure, a large portion of the contacts in 3D have been predicted correctly leading to similar topologies for the top ranking predictions. Template-based and homology-derived predictions could predict structures to particularly high accuracies. However, achieving biological insights from de novo prediction of RNA 3D structures still depends on the size and complexity of the RNA. Blind computational predictions of RNA structures already appear to provide useful structural information in many cases. Similar to the previous RNA-Puzzles Round II experiment, the prediction of non-Watson-Crick interactions and the observed high atomic clash scores reveal a notable need for an algorithm of improvement. All prediction models and assessment results are available at http://ahsoka.u-strasbg.fr/rnapuzzles/.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
142 |
4
|
Mitton-Fry RM, DeGregorio SJ, Wang J, Steitz TA, Steitz JA. Poly(A) tail recognition by a viral RNA element through assembly of a triple helix. Science 2010; 330:1244-7. [PMID: 21109672 PMCID: PMC3074936 DOI: 10.1126/science.1195858] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus produces a highly abundant, nuclear noncoding RNA, polyadenylated nuclear (PAN) RNA, which contains an element that prevents its decay. The 79-nucleotide expression and nuclear retention element (ENE) was proposed to adopt a secondary structure like that of a box H/ACA small nucleolar RNA (snoRNA), with a U-rich internal loop that hybridizes to and protects the PAN RNA poly(A) tail. The crystal structure of a complex between the 40-nucleotide ENE core and oligo(A)(9) RNA at 2.5 angstrom resolution reveals that unlike snoRNAs, the U-rich loop of the ENE engages its target through formation of a major-groove triple helix. A-minor interactions extend the binding interface. Deadenylation assays confirm the functional importance of the triple helix. Thus, the ENE acts as an intramolecular RNA clamp, sequestering the PAN poly(A) tail and preventing the initiation of RNA decay.
Collapse
MESH Headings
- Base Pairing
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Crystallography, X-Ray
- Herpesvirus 8, Human/genetics
- Mutation
- Nucleic Acid Conformation
- Poly A/chemistry
- Poly A/metabolism
- RNA Stability
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Nuclear/chemistry
- RNA, Nuclear/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Regulatory Sequences, Ribonucleic Acid
- Riboswitch
Collapse
|
Research Support, N.I.H., Extramural |
15 |
137 |
5
|
Watters KE, Strobel EJ, Yu AM, Lis JT, Lucks JB. Cotranscriptional folding of a riboswitch at nucleotide resolution. Nat Struct Mol Biol 2016; 23:1124-1131. [PMID: 27798597 PMCID: PMC5497173 DOI: 10.1038/nsmb.3316] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022]
Abstract
RNAs can begin to fold immediately as they emerge from RNA polymerase. During cotranscriptional folding, interactions between nascent RNAs and ligands are able to direct the formation of alternative RNA structures, a feature exploited by noncoding RNAs called riboswitches to make gene-regulatory decisions. Despite their importance, cotranscriptional folding pathways have yet to be uncovered with sufficient resolution to reveal how cotranscriptional folding governs RNA structure and function. To access cotranscriptional folding at nucleotide resolution, we extended selective 2'-hydroxyl acylation analyzed by primer-extension sequencing (SHAPE-seq) to measure structural information of nascent RNAs during transcription. Using cotranscriptional SHAPE-seq, we determined how the cotranscriptional folding pathway of the Bacillus cereus crcB fluoride riboswitch undergoes a ligand-dependent bifurcation that delays or promotes terminator formation via a series of coordinated structural transitions. Our results directly link cotranscriptional RNA folding to a genetic decision and establish a framework for cotranscriptional analysis of RNA structure at nucleotide resolution.
Collapse
|
research-article |
9 |
130 |
6
|
Kappel K, Zhang K, Su Z, Watkins AM, Kladwang W, Li S, Pintilie G, Topkar VV, Rangan R, Zheludev IN, Yesselman JD, Chiu W, Das R. Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nat Methods 2020; 17:699-707. [PMID: 32616928 PMCID: PMC7386730 DOI: 10.1038/s41592-020-0878-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
Abstract
The discovery and design of biologically important RNA molecules is outpacing three-dimensional structural characterization. Here, we demonstrate that cryo-electron microscopy can routinely resolve maps of RNA-only systems and that these maps enable subnanometer-resolution coordinate estimation when complemented with multidimensional chemical mapping and Rosetta DRRAFTER computational modeling. This hybrid 'Ribosolve' pipeline detects and falsifies homologies and conformational rearrangements in 11 previously unknown 119- to 338-nucleotide protein-free RNA structures: full-length Tetrahymena ribozyme, hc16 ligase with and without substrate, full-length Vibrio cholerae and Fusobacterium nucleatum glycine riboswitch aptamers with and without glycine, Mycobacterium SAM-IV riboswitch with and without S-adenosylmethionine, and the computer-designed ATP-TTR-3 aptamer with and without AMP. Simulation benchmarks, blind challenges, compensatory mutagenesis, cross-RNA homologies and internal controls demonstrate that Ribosolve can accurately resolve the global architectures of RNA molecules but does not resolve atomic details. These tests offer guidelines for making inferences in future RNA structural studies with similarly accelerated throughput.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
125 |
7
|
Nelson JW, Atilho RM, Sherlock ME, Stockbridge RB, Breaker RR. Metabolism of Free Guanidine in Bacteria Is Regulated by a Widespread Riboswitch Class. Mol Cell 2016; 65:220-230. [PMID: 27989440 DOI: 10.1016/j.molcel.2016.11.019] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/27/2016] [Accepted: 11/09/2016] [Indexed: 01/25/2023]
Abstract
The guanidyl moiety is a component of fundamental metabolites, including the amino acid arginine, the energy carrier creatine, and the nucleobase guanine. Curiously, reports regarding the importance of free guanidine in biology are sparse, and no biological receptors that specifically recognize this compound have been previously identified. We report that many members of the ykkC motif RNA, the longest unresolved riboswitch candidate, naturally sense and respond to guanidine. This RNA is found throughout much of the bacterial domain of life, where it commonly controls the expression of proteins annotated as urea carboxylases and multidrug efflux pumps. Our analyses reveal that these proteins likely function as guanidine carboxylases and guanidine transporters, respectively. Furthermore, we demonstrate that bacteria are capable of endogenously producing guanidine. These and related findings demonstrate that free guanidine is a biologically relevant compound, and several gene families that can alleviate guanidine toxicity exist.
Collapse
|
Journal Article |
9 |
123 |
8
|
Kladwang W, VanLang CC, Cordero P, Das R. A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nat Chem 2011; 3:954-62. [PMID: 22109276 PMCID: PMC3725140 DOI: 10.1038/nchem.1176] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 09/15/2011] [Indexed: 12/24/2022]
Abstract
Non-coding RNAs fold into precise base-pairing patterns to carry out critical roles in genetic regulation and protein synthesis, but determining RNA structure remains difficult. Here, we show that coupling systematic mutagenesis with high-throughput chemical mapping enables accurate base-pair inference of domains from ribosomal RNA, ribozymes and riboswitches. For a six-RNA benchmark that has challenged previous chemical/computational methods, this 'mutate-and-map' strategy gives secondary structures that are in agreement with crystallography (helix error rates, 2%), including a blind test on a double-glycine riboswitch. Through modelling of partially ordered states, the method enables the first test of an interdomain helix-swap hypothesis for ligand-binding cooperativity in a glycine riboswitch. Finally, the data report on tertiary contacts within non-coding RNAs, and coupling to the Rosetta/FARFAR algorithm gives nucleotide-resolution three-dimensional models (helix root-mean-squared deviation, 5.7 Å) of an adenine riboswitch. These results establish a promising two-dimensional chemical strategy for inferring the secondary and tertiary structures that underlie non-coding RNA behaviour.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
96 |
9
|
Rojas-Duran MF, Gilbert WV. Alternative transcription start site selection leads to large differences in translation activity in yeast. RNA (NEW YORK, N.Y.) 2012; 18:2299-305. [PMID: 23105001 PMCID: PMC3504680 DOI: 10.1261/rna.035865.112] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/17/2012] [Indexed: 05/20/2023]
Abstract
mRNA levels do not accurately predict protein levels in eukaryotic cells. To investigate contributions of 5' untranslated regions (5' UTRs) to mRNA-specific differences in translation, we determined the 5' UTR boundaries of 96 yeast genes for which in vivo translational efficiency varied by 80-fold. A total of 25% of genes showed substantial 5' UTR heterogeneity. We compared the capacity of these genes' alternative 5' UTR isoforms for cap-dependent and cap-independent translation using quantitative in vitro and in vivo translation assays. Six out of nine genes showed mRNA isoform-specific translation activity differences of greater than threefold in at least one condition. For three genes, in vivo translation activities of alternative 5' UTR isoforms differed by more than 100-fold. These results show that changing genes' 5' UTR boundaries can produce large changes in protein output without changing the overall amount of mRNA. Because transcription start site (TSS) heterogeneity is common, we suggest that TSS choice is greatly under-appreciated as a quantitatively significant mechanism for regulating protein production.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
94 |
10
|
Vicens Q, Mondragón E, Batey RT. Molecular sensing by the aptamer domain of the FMN riboswitch: a general model for ligand binding by conformational selection. Nucleic Acids Res 2011; 39:8586-98. [PMID: 21745821 PMCID: PMC3201879 DOI: 10.1093/nar/gkr565] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 12/25/2022] Open
Abstract
Understanding the nature of the free state of riboswitch aptamers is important for illuminating common themes in gene regulation by riboswitches. Prior evidence indicated the flavin mononucleotide (FMN)-binding riboswitch aptamer adopted a 'bound-like' structure in absence of FMN, suggesting only local conformational changes upon ligand binding. In the scope of pinpointing the general nature of such changes at the nucleotide level, we performed SHAPE mapping experiments using the aptamer domain of two phylogenetic variants, both in absence and in presence of FMN. We also solved the crystal structures of one of these domains both free (3.3 Å resolution) and bound to FMN (2.95 Å resolution). Our comparative study reveals that structural rearrangements occurring upon binding are restricted to a few of the joining regions that form the binding pocket in both RNAs. This type of binding event with minimal structural perturbations is reminiscent of binding events by conformational selection encountered in other riboswitches and various RNAs.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
88 |
11
|
Zhang K, Li S, Kappel K, Pintilie G, Su Z, Mou TC, Schmid MF, Das R, Chiu W. Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA at 3.7 Å resolution. Nat Commun 2019; 10:5511. [PMID: 31796736 PMCID: PMC6890682 DOI: 10.1038/s41467-019-13494-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/03/2019] [Indexed: 01/17/2023] Open
Abstract
Specimens below 50 kDa have generally been considered too small to be analyzed by single-particle cryo-electron microscopy (cryo-EM). The high flexibility of pure RNAs makes it difficult to obtain high-resolution structures by cryo-EM. In bacteria, riboswitches regulate sulfur metabolism through binding to the S-adenosylmethionine (SAM) ligand and offer compelling targets for new antibiotics. SAM-I, SAM-I/IV, and SAM-IV are the three most commonly found SAM riboswitches, but the structure of SAM-IV is still unknown. Here, we report the structures of apo and SAM-bound SAM-IV riboswitches (119-nt, ~40 kDa) to 3.7 Å and 4.1 Å resolution, respectively, using cryo-EM. The structures illustrate homologies in the ligand-binding core but distinct peripheral tertiary contacts in SAM-IV compared to SAM-I and SAM-I/IV. Our results demonstrate the feasibility of resolving small RNAs with enough detail to enable detection of their ligand-binding pockets and suggest that cryo-EM could play a role in structure-assisted drug design for RNA.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
88 |
12
|
Daldrop P, Reyes F, Robinson D, Hammond C, Lilley D, Batey R, Brenk R. Novel ligands for a purine riboswitch discovered by RNA-ligand docking. CHEMISTRY & BIOLOGY 2011; 18:324-35. [PMID: 21439477 PMCID: PMC3119931 DOI: 10.1016/j.chembiol.2010.12.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/02/2010] [Accepted: 12/29/2010] [Indexed: 01/01/2023]
Abstract
The increasing number of RNA crystal structures enables a structure-based approach to the discovery of new RNA-binding ligands. To develop the poorly explored area of RNA-ligand docking, we have conducted a virtual screening exercise for a purine riboswitch to probe the strengths and weaknesses of RNA-ligand docking. Using a standard protein-ligand docking program with only minor modifications, four new ligands with binding affinities in the micromolar range were identified, including two compounds based on molecular scaffolds not resembling known ligands. RNA-ligand docking performed comparably to protein-ligand docking indicating that this approach is a promising option to explore the wealth of RNA structures for structure-based ligand design.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
84 |
13
|
Hayes RL, Noel JK, Mohanty U, Whitford PC, Hennelly SP, Onuchic JN, Sanbonmatsu KY. Magnesium fluctuations modulate RNA dynamics in the SAM-I riboswitch. J Am Chem Soc 2012; 134:12043-53. [PMID: 22612276 PMCID: PMC3675279 DOI: 10.1021/ja301454u] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Experiments demonstrate that Mg(2+) is crucial for structure and function of RNA systems, yet the detailed molecular mechanism of Mg(2+) action on RNA is not well understood. We investigate the interplay between RNA and Mg(2+) at atomic resolution through ten 2-μs explicit solvent molecular dynamics simulations of the SAM-I riboswitch with varying ion concentrations. The structure, including three stemloops, is very stable on this time scale. Simulations reveal that outer-sphere coordinated Mg(2+) ions fluctuate on the same time scale as the RNA, and that their dynamics couple. Locally, Mg(2+) association affects RNA conformation through tertiary bridging interactions; globally, increasing Mg(2+) concentration slows RNA fluctuations. Outer-sphere Mg(2+) ions responsible for these effects account for 80% of Mg(2+) in our simulations. These ions are transiently bound to the RNA, maintaining interactions, but shuttled from site to site. Outer-sphere Mg(2+) are separated from the RNA by a single hydration shell, occupying a thin layer 3-5 Å from the RNA. Distribution functions reveal that outer-sphere Mg(2+) are positioned by electronegative atoms, hydration layers, and a preference for the major groove. Diffusion analysis suggests transient outer-sphere Mg(2+) dynamics are glassy. Since outer-sphere Mg(2+) ions account for most of the Mg(2+) in our simulations, these ions may change the paradigm of Mg(2+)-RNA interactions. Rather than a few inner-sphere ions anchoring the RNA structure surrounded by a continuum of diffuse ions, we observe a layer of outer-sphere coordinated Mg(2+) that is transiently bound but strongly coupled to the RNA.
Collapse
|
research-article |
13 |
79 |
14
|
Lu C, Ding F, Chowdhury A, Pradhan V, Tomsic J, Holmes WM, Henkin TM, Ke A. SAM recognition and conformational switching mechanism in the Bacillus subtilis yitJ S box/SAM-I riboswitch. J Mol Biol 2010; 404:803-18. [PMID: 20951706 PMCID: PMC3222078 DOI: 10.1016/j.jmb.2010.09.059] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/21/2010] [Accepted: 09/27/2010] [Indexed: 01/09/2023]
Abstract
S-box (SAM-I) riboswitches are a widespread class of riboswitches involved in the regulation of sulfur metabolism in Gram-positive bacteria. We report here the 3.0-Å crystal structure of the aptamer domain of the Bacillus subtilis yitJ S-box (SAM-I) riboswitch bound to S-adenosyl-L-methionine (SAM). The RNA folds into two sets of helical stacks spatially arranged by tertiary interactions including a K-turn and a pseudoknot at a four-way junction. The tertiary structure is further stabilized by metal coordination, extensive ribose zipper interactions, and SAM-mediated tertiary interactions. Despite structural differences in the peripheral regions, the SAM-binding core of the B. subtilis yitJ riboswitch is virtually superimposable with the previously determined Thermoanaerobacter tengcongensis yitJ riboswitch structure, suggesting that a highly conserved ligand-recognition mechanism is utilized by all S-box riboswitches. SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) chemical probing analysis further revealed that the alternative base-pairing element in the expression platform controls the conformational switching process. In the absence of SAM, the apo yitJ aptamer domain folds predominantly into a pre-binding conformation that resembles, but is not identical with, the SAM-bound state. We propose that SAM enters the ligand-binding site through the "J1/2-J3/4" gate and "locks" down the SAM-bound conformation through an induced-fit mechanism. Temperature-dependent SHAPE revealed that the tertiary interaction-stabilized SAM-binding core is extremely stable, likely due to the cooperative RNA folding behavior. Mutational studies revealed that certain modifications in the SAM-binding region result in loss of SAM binding and constitutive termination, which suggests that these mutations lock the RNA into a form that resembles the SAM-bound form in the absence of SAM.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
79 |
15
|
Berens C, Suess B. Riboswitch engineering - making the all-important second and third steps. Curr Opin Biotechnol 2014; 31:10-5. [PMID: 25137633 DOI: 10.1016/j.copbio.2014.07.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/20/2022]
Abstract
Synthetic biology uses our understanding of biological systems to develop innovative solutions for challenges in fields as diverse as genetic control and logic devices, bioremediation, materials production or diagnostics and therapy in medicine by designing new biological components. RNA-based elements are key components of these engineered systems. Their structural and functional diversity is ideal for generating regulatory riboswitches that react with many different types of output to molecular and environmental signals. Recent advances have added new sensor and output domains to the existing toolbox, and demonstrated the portability of riboswitches to many different organisms. Improvements in riboswitch design and screens for selecting in vivo active switches provide the means to isolate riboswitches with regulatory properties more like their natural counterparts.
Collapse
|
Review |
11 |
75 |
16
|
Butler EB, Xiong Y, Wang J, Strobel SA. Structural basis of cooperative ligand binding by the glycine riboswitch. CHEMISTRY & BIOLOGY 2011; 18:293-8. [PMID: 21439473 PMCID: PMC3076126 DOI: 10.1016/j.chembiol.2011.01.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/15/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
Abstract
The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 Å crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
75 |
17
|
Remmele CW, Xian Y, Albrecht M, Faulstich M, Fraunholz M, Heinrichs E, Dittrich MT, Müller T, Reinhardt R, Rudel T. Transcriptional landscape and essential genes of Neisseria gonorrhoeae. Nucleic Acids Res 2014; 42:10579-95. [PMID: 25143534 PMCID: PMC4176332 DOI: 10.1093/nar/gku762] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 02/06/2023] Open
Abstract
The WHO has recently classified Neisseria gonorrhoeae as a super-bacterium due to the rapid spread of antibiotic resistant derivatives and an overall dramatic increase in infection incidences. Genome sequencing has identified potential genes, however, little is known about the transcriptional organization and the presence of non-coding RNAs in gonococci. We performed RNA sequencing to define the transcriptome and the transcriptional start sites of all gonococcal genes and operons. Numerous new transcripts including 253 potentially non-coding RNAs transcribed from intergenic regions or antisense to coding genes were identified. Strikingly, strong antisense transcription was detected for the phase-variable opa genes coding for a family of adhesins and invasins in pathogenic Neisseria, that may have regulatory functions. Based on the defined transcriptional start sites, promoter motifs were identified. We further generated and sequenced a high density Tn5 transposon library to predict a core of 827 gonococcal essential genes, 133 of which have no known function. Our combined RNA-Seq and Tn-Seq approach establishes a detailed map of gonococcal genes and defines the first core set of essential gonococcal genes.
Collapse
|
research-article |
11 |
73 |
18
|
Afonin K, Kasprzak WK, Bindewald E, Kireeva M, Viard M, Kashlev M, Shapiro BA. In silico design and enzymatic synthesis of functional RNA nanoparticles. Acc Chem Res 2014; 47:1731-41. [PMID: 24758371 PMCID: PMC4066900 DOI: 10.1021/ar400329z] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Indexed: 12/25/2022]
Abstract
CONSPECTUS: The use of RNAs as scaffolds for biomedical applications has several advantages compared with other existing nanomaterials. These include (i) programmability, (ii) precise control over folding and self-assembly, (iii) natural functionalities as exemplified by ribozymes, riboswitches, RNAi, editing, splicing, and inherent translation and transcription control mechanisms, (iv) biocompatibility, (v) relatively low immune response, and (vi) relatively low cost and ease of production. We have tapped into several of these properties and functionalities to construct RNA-based functional nanoparticles (RNA NPs). In several cases, the structural core and the functional components of the NPs are inherent in the same construct. This permits control over the spatial disposition of the components, intracellular availability, and precise stoichiometry. To enable the generation of RNA NPs, a pipeline is being developed. On one end, it encompasses the rational design and various computational schemes that promote design of the RNA-based nanoconstructs, ultimately producing a set of sequences consisting of RNA or RNA-DNA hybrids, which can assemble into the designed construct. On the other end of the pipeline is an experimental component, which takes the produced sequences and uses them to initialize and characterize their proper assembly and then test the resulting RNA NPs for their function and delivery in cell culture and animal models. An important aspect of this pipeline is the feedback that constantly occurs between the computational and the experimental parts, which synergizes the refinement of both the algorithmic methodologies and the experimental protocols. The utility of this approach is depicted by the several examples described in this Account (nanocubes, nanorings, and RNA-DNA hybrids). Of particular interest, from the computational viewpoint, is that in most cases, first a three-dimensional representation of the assembly is produced, and only then are algorithms applied to generate the sequences that will assemble into the designated three-dimensional construct. This is opposite to the usual practice of predicting RNA structures from a given sequence, that is, the RNA folding problem. To be considered is the generation of sequences that upon assembly have the proper intra- or interstrand interactions (or both). Of particular interest from the experimental point of view is the determination and characterization of the proper thermodynamic, kinetic, functionality, and delivery protocols. Assembly of RNA NPs from individual single-stranded RNAs can be accomplished by one-pot techniques under the proper thermal and buffer conditions or, potentially more interestingly, by the use of various RNA polymerases that can promote the formation of RNA NPs cotransciptionally from specifically designed DNA templates. Also of importance is the delivery of the RNA NPs to the cells of interest in vitro or in vivo. Nonmodified RNAs rapidly degrade in blood serum and have difficulties crossing biological membranes due to their negative charge. These problems can be overcome by using, for example, polycationic lipid-based carriers. Our work involves the use of bolaamphiphiles, which are amphipathic compounds with positively charged hydrophilic head groups at each end connected by a hydrophobic chain. We have correlated results from molecular dynamics computations with various experiments to understand the characteristics of such delivery agents.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
70 |
19
|
Bastet L, Chauvier A, Singh N, Lussier A, Lamontagne AM, Prévost K, Massé E, Wade JT, Lafontaine DA. Translational control and Rho-dependent transcription termination are intimately linked in riboswitch regulation. Nucleic Acids Res 2017; 45:7474-7486. [PMID: 28520932 PMCID: PMC5499598 DOI: 10.1093/nar/gkx434] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Riboswitches are regulatory elements that control gene expression by altering RNA structure upon the binding of specific metabolites. Although Bacillus subtilis riboswitches have been shown to control premature transcription termination, less is known about regulatory mechanisms employed by Escherichia coli riboswitches, which are predicted to regulate mostly at the level of translation initiation. Here, we present experimental evidence suggesting that the majority of known E. coli riboswitches control transcription termination by using the Rho transcription factor. In the case of the thiamin pyrophosphate-dependent thiM riboswitch, we find that Rho-dependent transcription termination is triggered as a consequence of translation repression. Using in vitro and in vivo assays, we show that the Rho-mediated regulation relies on RNA target elements located at the beginning of thiM coding region. Gene reporter assays indicate that relocating Rho target elements to a different gene induces transcription termination, demonstrating that such elements are modular domains controlling Rho. Our work provides strong evidence that translationally regulating riboswitches also regulate mRNA levels through an indirect control mechanism ensuring tight control of gene expression.
Collapse
|
research-article |
8 |
70 |
20
|
Breaker RR, Joyce GF. The expanding view of RNA and DNA function. CHEMISTRY & BIOLOGY 2014; 21:1059-65. [PMID: 25237854 PMCID: PMC4171699 DOI: 10.1016/j.chembiol.2014.07.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 11/28/2022]
Abstract
RNA and DNA are simple linear polymers consisting of only four major types of subunits, and yet these molecules carry out a remarkable diversity of functions in cells and in the laboratory. Each newly discovered function of natural or engineered nucleic acids enforces the view that prior assessments of nucleic acid function were far too narrow and that many more exciting findings are yet to come. This Perspective highlights just a few of the numerous discoveries over the past 20 years pertaining to nucleic acid function, focusing on those that have been of particular interest to chemical biologists. History suggests that there will continue to be many opportunities to engage chemical biologists in the discovery, creation, and manipulation of nucleic acid function in the years to come.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
69 |
21
|
Iwasaki RS, Batey RT. SPRINT: a Cas13a-based platform for detection of small molecules. Nucleic Acids Res 2020; 48:e101. [PMID: 32797156 PMCID: PMC7515716 DOI: 10.1093/nar/gkaa673] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Recent efforts in biological engineering have made detection of nucleic acids in samples more rapid, inexpensive and sensitive using CRISPR-based approaches. We expand one of these Cas13a-based methods to detect small molecules in a one-batch assay. Using SHERLOCK-based profiling of in vitrotranscription (SPRINT), in vitro transcribed RNA sequence-specifically triggers the RNase activity of Cas13a. This event activates its non-specific RNase activity, which enables cleavage of an RNA oligonucleotide labeled with a quencher/fluorophore pair and thereby de-quenches the fluorophore. This fluorogenic output can be measured to assess transcriptional output. The use of riboswitches or proteins to regulate transcription via specific effector molecules is leveraged as a coupled assay that transforms effector concentration into fluorescence intensity. In this way, we quantified eight different compounds, including cofactors, nucleotides, metabolites of amino acids, tetracycline and monatomic ions in samples. In this manner, hundreds of reactions can be easily quantified in a few hours. This increased throughput also enables detailed characterization of transcriptional regulators, synthetic compounds that inhibit transcription, or other coupled enzymatic reactions. These SPRINT reactions are easily adaptable to portable formats and could therefore be used for the detection of analytes in the field or at point-of-care situations.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
66 |
22
|
Li P, Wei M, Zhang F, Su J, Wei W, Zhang Y, Liu S. Novel Fluorescence Switch for MicroRNA Imaging in Living Cells Based on DNAzyme Amplification Strategy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43405-43410. [PMID: 30474956 DOI: 10.1021/acsami.8b15330] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
MicroRNAs (miRNAs) play important roles in the regulation of target gene expression and cell development. Therefore, developing of accurate and visual detection methods for miRNAs is important for early diagnosis of cancer. In this study, we established a visual detection method for miRNA 155 based on DNAzyme amplification strategy in living cells. MnO2 nanosheets were employed to deliver locked DNAzyme and substrate DNA into cells. The gold nanoparticle (AuNP) probe was taken up by cells autonomously. Then, MnO2 nanosheets were reduced to Mn2+ by glutathione in cells and DNA modules were released. MiRNA 155 took away locker DNA by strand displacement reaction to activate the DNAzyme. Then, the DNAzyme cleaved the substrate DNA and released single-stranded DNA named key DNA. Then, Key DNA hybridized with the hairpin DNA, making cy5 far away from AuNP and turning on its fluorescence. One target miRNA led to plenty of released key DNA when lots of substrate DNA was added. Thus, the visual detection of miRNA 155 in living cells would be initiated. Under confocal laser microscopy, the fluorescence was obviously observed in tumor cells but not in normal cells. The method has a linear range from 0.1 to 10 nM and a low detection limit of 44 pM on in vitro detection.
Collapse
|
|
7 |
66 |
23
|
Abstract
Heterocyclic nucleic acid bases and their analogs can adopt multiple tautomeric forms due to the presence of multiple solvent-exchangeable protons. In DNA, spontaneous formation of minor tautomers has been speculated to contribute to mutagenic mispairings during DNA replication, whereas in RNA, minor tautomeric forms have been proposed to enhance the structural and functional diversity of RNA enzymes and aptamers. This review summarizes the role of tautomerism in RNA biochemistry, specifically focusing on the role of tautomerism in catalysis of small self-cleaving ribozymes and recognition of ligand analogs by riboswitches. Considering that the presence of multiple tautomers of nucleic acid bases is a rare occurrence, and that tautomers typically interconvert on a fast time scale, methods for studying rapid tautomerism in the context of nucleic acids under biologically relevant aqueous conditions are also discussed.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
64 |
24
|
Watson PY, Fedor MJ. The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo. Nat Struct Mol Biol 2011; 18:359-63. [PMID: 21317896 PMCID: PMC3075592 DOI: 10.1038/nsmb.1989] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/25/2010] [Indexed: 12/20/2022]
Abstract
The glmS riboswitch belongs to the family of regulatory RNAs that provide feedback regulation of metabolic genes. It is also a ribozyme that self-cleaves upon binding glucosamine-6-phosphate, the product of the enzyme encoded by glmS. The ligand concentration dependence of intracellular self-cleavage kinetics was measured for the first time in a yeast model system and unexpectedly revealed that this riboswitch is subject to inhibition as well as activation by hexose metabolites. Reporter gene experiments in Bacillus subtilis confirmed that this riboswitch integrates positive and negative chemical signals in its natural biological context. Contrary to the conventional view that a riboswitch responds to just a single cognate metabolite, our new model proposes that a single riboswitch integrates information from an array of chemical signals to modulate gene expression based on the overall metabolic state of the cell.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
63 |
25
|
Chen B, Zuo X, Wang YX, Dayie TK. Multiple conformations of SAM-II riboswitch detected with SAXS and NMR spectroscopy. Nucleic Acids Res 2012; 40:3117-30. [PMID: 22139931 PMCID: PMC3326309 DOI: 10.1093/nar/gkr1154] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/30/2022] Open
Abstract
Riboswitches are a newly discovered large family of structured functional RNA elements that specifically bind small molecule targets out of a myriad of cellular metabolites to modulate gene expression. Structural studies of ligand-bound riboswitches by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy have provided insights into detailed RNA-ligand recognition and interactions. However, the structures of ligand-free riboswitches remain poorly characterized. In this study, we have used a variety of biochemical, biophysical and computational techniques including small-angle X-ray scattering and NMR spectroscopy to characterize the ligand-free and ligand-bound forms of SAM-II riboswitch. Our data demonstrate that the RNA adopts multiple conformations along its folding pathway and suggest that the RNA undergoes marked conformational changes upon Mg(2+) compaction and S-adenosylmethionine (SAM) metabolite binding. Further studies indicated that Mg(2+) ion is not essential for the ligand binding but can stabilize the complex by facilitating loop/stem interactions. In the presence of millimolar concentration of Mg(2+) ion, the RNA samples a more compact conformation. This conformation is near to, but distinct from, the native fold and competent to bind the metabolite. We conclude that the formation of various secondary and tertiary structural elements, including a pseudoknot, occur to sequester the putative Shine-Dalgarno sequence of the RNA only after metabolite binding.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
63 |