1
|
Hall AB, Yassour M, Sauk J, Garner A, Jiang X, Arthur T, Lagoudas GK, Vatanen T, Fornelos N, Wilson R, Bertha M, Cohen M, Garber J, Khalili H, Gevers D, Ananthakrishnan AN, Kugathasan S, Lander ES, Blainey P, Vlamakis H, Xavier RJ, Huttenhower C. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med 2017; 9:103. [PMID: 29183332 PMCID: PMC5704459 DOI: 10.1186/s13073-017-0490-5] [Citation(s) in RCA: 503] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract that is associated with changes in the gut microbiome. Here, we sought to identify strain-specific functional correlates with IBD outcomes. METHODS We performed metagenomic sequencing of monthly stool samples from 20 IBD patients and 12 controls (266 total samples). These were taxonomically profiled with MetaPhlAn2 and functionally profiled using HUMAnN2. Differentially abundant species were identified using MaAsLin and strain-specific pangenome haplotypes were analyzed using PanPhlAn. RESULTS We found a significantly higher abundance in patients of facultative anaerobes that can tolerate the increased oxidative stress of the IBD gut. We also detected dramatic, yet transient, blooms of Ruminococcus gnavus in IBD patients, often co-occurring with increased disease activity. We identified two distinct clades of R. gnavus strains, one of which is enriched in IBD patients. To study functional differences between these two clades, we augmented the R. gnavus pangenome by sequencing nine isolates from IBD patients. We identified 199 IBD-specific, strain-specific genes involved in oxidative stress responses, adhesion, iron-acquisition, and mucus utilization, potentially conferring an adaptive advantage for this R. gnavus clade in the IBD gut. CONCLUSIONS This study adds further evidence to the hypothesis that increased oxidative stress may be a major factor shaping the dysbiosis of the microbiome observed in IBD and suggests that R. gnavus may be an important member of the altered gut community in IBD.
Collapse
|
research-article |
8 |
503 |
2
|
Saulnier DM, Riehle K, Mistretta TA, Diaz MA, Mandal D, Raza S, Weidler EM, Qin X, Coarfa C, Milosavljevic A, Petrosino JF, Highlander S, Gibbs R, Lynch SV, Shulman RJ, Versalovic J. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology 2011; 141:1782-91. [PMID: 21741921 PMCID: PMC3417828 DOI: 10.1053/j.gastro.2011.06.072] [Citation(s) in RCA: 499] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/15/2011] [Accepted: 06/24/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The intestinal microbiomes of healthy children and pediatric patients with irritable bowel syndrome (IBS) are not well defined. Studies in adults have indicated that the gastrointestinal microbiota could be involved in IBS. METHODS We analyzed 71 samples from 22 children with IBS (pediatric Rome III criteria) and 22 healthy children, ages 7-12 years, by 16S ribosomal RNA gene sequencing, with an average of 54,287 reads/stool sample (average 454 read length = 503 bases). Data were analyzed using phylogenetic-based clustering (Unifrac), or an operational taxonomic unit (OTU) approach using a supervised machine learning tool (randomForest). Most samples were also hybridized to a microarray that can detect 8741 bacterial taxa (16S rRNA PhyloChip). RESULTS Microbiomes associated with pediatric IBS were characterized by a significantly greater percentage of the class γ-proteobacteria (0.07% vs 0.89% of total bacteria, respectively; P < .05); 1 prominent component of this group was Haemophilus parainfluenzae. Differences highlighted by 454 sequencing were confirmed by high-resolution PhyloChip analysis. Using supervised learning techniques, we were able to classify different subtypes of IBS with a success rate of 98.5%, using limited sets of discriminant bacterial species. A novel Ruminococcus-like microbe was associated with IBS, indicating the potential utility of microbe discovery for gastrointestinal disorders. A greater frequency of pain correlated with an increased abundance of several bacterial taxa from the genus Alistipes. CONCLUSIONS Using 16S metagenomics by PhyloChip DNA hybridization and deep 454 pyrosequencing, we associated specific microbiome signatures with pediatric IBS. These findings indicate the important association between gastrointestinal microbes and IBS in children; these approaches might be used in diagnosis of functional bowel disorders in pediatric patients.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
499 |
3
|
Hsiao A, Shamsir Ahmed A, Subramanian S, Griffin NW, Drewry LL, Petri WA, Haque R, Ahmed T, Gordon JI. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 2014; 515:423-6. [PMID: 25231861 PMCID: PMC4353411 DOI: 10.1038/nature13738] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 08/06/2014] [Indexed: 01/21/2023]
Abstract
Given the global burden of diarrhoeal diseases, it is important to understand how members of the gut microbiota affect the risk for, course of, and recovery from disease in children and adults. The acute, voluminous diarrhoea caused by Vibrio cholerae represents a dramatic example of enteropathogen invasion and gut microbial community disruption. Here we conduct a detailed time-series metagenomic study of faecal microbiota collected during the acute diarrhoeal and recovery phases of cholera in a cohort of Bangladeshi adults living in an area with a high burden of disease. We find that recovery is characterized by a pattern of accumulation of bacterial taxa that shows similarities to the pattern of assembly/maturation of the gut microbiota in healthy Bangladeshi children. To define the underlying mechanisms, we introduce into gnotobiotic mice an artificial community composed of human gut bacterial species that directly correlate with recovery from cholera in adults and are indicative of normal microbiota maturation in healthy Bangladeshi children. One of the species, Ruminococcus obeum, exhibits consistent increases in its relative abundance upon V. cholerae infection of the mice. Follow-up analyses, including mono- and co-colonization studies, establish that R. obeum restricts V. cholerae colonization, that R. obeum luxS (autoinducer-2 (AI-2) synthase) expression and AI-2 production increase significantly with V. cholerae invasion, and that R. obeum AI-2 causes quorum-sensing-mediated repression of several V. cholerae colonization factors. Co-colonization with V. cholerae mutants discloses that R. obeum AI-2 reduces Vibrio colonization/pathogenicity through a novel pathway that does not depend on the V. cholerae AI-2 sensor, LuxP. The approach described can be used to mine the gut microbiota of Bangladeshi or other populations for members that use autoinducers and/or other mechanisms to limit colonization with V. cholerae, or conceivably other enteropathogens.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
284 |
4
|
Borgo F, Riva A, Benetti A, Casiraghi MC, Bertelli S, Garbossa S, Anselmetti S, Scarone S, Pontiroli AE, Morace G, Borghi E. Microbiota in anorexia nervosa: The triangle between bacterial species, metabolites and psychological tests. PLoS One 2017; 12:e0179739. [PMID: 28636668 PMCID: PMC5479564 DOI: 10.1371/journal.pone.0179739] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/02/2017] [Indexed: 01/02/2023] Open
Abstract
Anorexia nervosa (AN) is a psychiatric disease with devastating physical consequences, with a pathophysiological mechanism still to be elucidated. Metagenomic studies on anorexia nervosa have revealed profound gut microbiome perturbations as a possible environmental factor involved in the disease. In this study we performed a comprehensive analysis integrating data on gut microbiota with clinical, anthropometric and psychological traits to gain new insight in the pathophysiology of AN. Fifteen AN women were compared with fifteen age-, sex- and ethnicity-matched healthy controls. AN diet was characterized by a significant lower energy intake, but macronutrient analysis highlighted a restriction only in fats and carbohydrates consumption. Next generation sequencing showed that AN intestinal microbiota was significantly affected at every taxonomic level, showing a significant increase of Enterobacteriaceae, and of the archeon Methanobrevibacter smithii compared with healthy controls. On the contrary, the genera Roseburia, Ruminococcus and Clostridium, were depleted, in line with the observed reduction in AN of total short chain fatty acids, butyrate, and propionate. Butyrate concentrations inversely correlated with anxiety levels, whereas propionate directly correlated with insulin levels and with the relative abundance of Roseburia inulinivorans, a known propionate producer. BMI represented the best predictive value for gut dysbiosis and metabolic alterations, showing a negative correlation with Bacteroides uniformis (microbiota), with alanine aminotransferase (liver function), and with psychopathological scores (obsession-compulsion, anxiety, and depression), and a positive correlation with white blood cells count. In conclusion, our findings corroborate the hypothesis that the gut dysbiosis could take part in the AN neurobiology, in particular in sustaining the persistence of alterations that eventually result in relapses after renourishment and psychological therapy, but causality still needs to be proven.
Collapse
|
research-article |
8 |
166 |
5
|
Rowin J, Xia Y, Jung B, Sun J. Gut inflammation and dysbiosis in human motor neuron disease. Physiol Rep 2017; 5:e13443. [PMID: 28947596 PMCID: PMC5617930 DOI: 10.14814/phy2.13443] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a systemic disorder that involves dysfunction of multiple organs. Growing evidence has shown that neurodegenerative disorders with gut dysbiosis affect the central nervous system via pro-inflammatory mediators thus impacting gut-brain communications. We have demonstrated dysbiosis and increased intestinal permeability in the SOD1G93A ALS mouse model. In this study, we comprehensively examined the human gut microbiome in stool samples and evaluated infection and markers of intestinal inflammation in five patients with ALS and motor neuron disorders. Five patients we studied all had alteration in their gut microbiome characterized by a low diversity of the microbiome, compared to healthy cohorts with relatively intact abundance. Firmicutes and Bacteroidetes are the two major members of bacteria at the phylum level. Low Ruminococcus spp occurred in three patients with low Firmicutes/Bacteroidetes (F/B) ratio. A majority of patients had signs of intestinal inflammation. This is the first comprehensive examination of inflammatory markers in the stool of ALS patients. Studies in gut health and microbiome related to the onset and progression of ALS may reveal novel therapeutic targets for disease modulation.
Collapse
|
case-report |
8 |
141 |
6
|
Larue R, Yu Z, Parisi VA, Egan AR, Morrison M. Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing. Environ Microbiol 2005; 7:530-43. [PMID: 15816930 DOI: 10.1111/j.1462-2920.2005.00721.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well recognized that a dynamic biofilm develops upon plant biomass in the herbivore gastrointestinal tract, but this component of the microbiome has not previously been specifically sampled, or directly compared with the biodiversity present in the planktonic fraction of digesta. In this study, the digesta collected from four sheep fed two different diets was separated into three fractions: the planktonic phase, and the microbial populations either weakly or tightly adherent to plant biomass. The community DNA prepared from each fraction was then subjected to both ribosomal intergenic spacer analysis (RISA) and denaturing gradient gel electrophoresis (DGGE). Both types of analysis showed that dietary factors influence community structure, and that the adherent fractions produced more complex profiles. The RIS-clone libraries prepared from the planktonic and adherent populations were then subjected to restriction fragment length polymorphism (RFLP) and DNA sequence analyses, which resulted in a far greater degree of discrimination among the fractions. Although many of the sequenced clones from the adherent populations were assigned to various clusters within the low G+C Gram-positive bacteria, the clone libraries from animals consuming an all-grass diet were largely comprised of novel lineages of Clostridium, while in animals consuming the starch-containing diet, Selenomonas and Ruminococcus spp. were the dominant low G+C Gram-positive bacteria. Additionally, the libraries from hay-fed animals also contained clones most similar to asaccharolytic Clostridia, and other Gram-positive bacteria that specialize in the transformation of plant phenolic compounds and the formation of cinnamic, phenylacetic and phenylpropionic acids. These results reveal, for the first time, the phylogeny of adherent subpopulations that specialize in the transformation of plant lignins and other secondary compounds, which potentiate polysaccharide hydrolysis by other members of the biofilm.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
127 |
7
|
Klieve AV, Yokoyama MT, Forster RJ, Ouwerkerk D, Bain PA, Mawhinney EL. Naturally occurring DNA transfer system associated with membrane vesicles in cellulolytic Ruminococcus spp. of ruminal origin. Appl Environ Microbiol 2005; 71:4248-53. [PMID: 16085810 PMCID: PMC1183309 DOI: 10.1128/aem.71.8.4248-4253.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genetic transformation system with similarities to those reported for gram-negative bacteria was found to be associated with membrane vesicles of the ruminal cellulolytic genus Ruminococcus. Double-stranded DNA was recovered from the subcellular particulate fraction of all the cellulolytic ruminococci examined. Electron microscopy revealed that the only particles present resembled membrane vesicles. The likelihood that the DNA was associated with membrane vesicles (also known to contain cellulosomes) was further supported by the adherence of the particles associated with the subcellular DNA to cellulose powder added to culture filtrates. The particle-associated DNA comprised a population of linear molecules ranging in size from <20 kb to 49 kb (Ruminococcus sp. strain YE73) and from 23 kb to 90 kb (Ruminococcus albus AR67). Particle-associated DNA from R. albus AR67 represented DNA derived from genomic DNA of the host bacterium having an almost identical HindIII digestion pattern and an identical 16S rRNA gene. Paradoxically, particle-associated DNA was refractory to digestion with EcoRI, while the genomic DNA was susceptible to extensive digestion, suggesting that there is differential restriction modification of genomic DNA and DNA exported from the cell. Transformation using the vesicle-containing fraction of culture supernatant of Ruminococcus sp. strain YE71 was able to restore the ability to degrade crystalline cellulose to two mutants that were otherwise unable to do so. The ability was heritable and transferred to subsequent generations. It appears that membrane-associated transformation plays a role in lateral gene transfer in complex microbial ecosystems, such as the rumen.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
88 |
8
|
Ben David Y, Dassa B, Borovok I, Lamed R, Koropatkin NM, Martens EC, White BA, Bernalier-Donadille A, Duncan SH, Flint HJ, Bayer EA, Moraïs S. Ruminococcal cellulosome systems from rumen to human. Environ Microbiol 2015; 17:3407-26. [PMID: 25845888 DOI: 10.1111/1462-2920.12868] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/24/2015] [Accepted: 03/31/2015] [Indexed: 01/19/2023]
Abstract
A cellulolytic fiber-degrading bacterium, Ruminococcus champanellensis, was isolated from human faecal samples, and its genome was recently sequenced. Bioinformatic analysis of the R. champanellensis genome revealed numerous cohesin and dockerin modules, the basic elements of the cellulosome, and manual sequencing of partially sequenced genomic segments revealed two large tandem scaffoldin-coding genes that form part of a gene cluster. Representative R. champanellensis dockerins were tested against putative cohesins, and the results revealed three different cohesin-dockerin binding profiles which implied two major types of cellulosome architectures: (i) an intricate cell-bound system and (ii) a simplistic cell-free system composed of a single cohesin-containing scaffoldin. The cell-bound system can adopt various enzymatic architectures, ranging from a single enzyme to a large enzymatic complex comprising up to 11 enzymes. The variety of cellulosomal components together with adaptor proteins may infer a very tight regulation of its components. The cellulosome system of the human gut bacterium R. champanellensis closely resembles that of the bovine rumen bacterium Ruminococcus flavefaciens. The two species contain orthologous gene clusters comprising fundamental components of cellulosome architecture. Since R. champanellensis is the only human colonic bacterium known to degrade crystalline cellulose, it may thus represent a keystone species in the human gut.
Collapse
|
|
10 |
86 |
9
|
Shinkai T, Kobayashi Y. Localization of ruminal cellulolytic bacteria on plant fibrous materials as determined by fluorescence in situ hybridization and real-time PCR. Appl Environ Microbiol 2007; 73:1646-52. [PMID: 17209077 PMCID: PMC1828787 DOI: 10.1128/aem.01896-06] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To visualize and localize specific bacteria associated with plant materials, a new fluorescence in situ hybridization (FISH) protocol was established. By using this protocol, we successfully minimized the autofluorescence of orchard grass hay and detected rumen bacteria attached to the hay under a fluorescence microscope. Real-time PCR assays were also employed to quantitatively monitor the representative fibrolytic species Fibrobacter succinogenes and Ruminococcus flavefaciens and also total bacteria attached to the hay. F. succinogenes was found firmly attached to not only the cut edges but also undamaged inner surfaces of the hay. Cells of phylogenetic group 1 of F. succinogenes were detected on many stem and leaf sheath fragments of the hay, even on fragments on which few other bacteria were seen. Cells of phylogenetic group 2 of F. succinogenes were often detected on hay fragments coexisting with many other bacteria. On the basis of 16S rRNA gene copy number analysis, the numbers of bacteria attached to the leaf sheaths were higher than those attached to the stems (P<0.05). In addition, R. flavefaciens had a greater tendency than F. succinogenes to be found on the leaf sheath (P<0.01) with formation of many pits. F. succinogenes, particularly phylogenetic group 1, is suggested to possibly play an important role in fiber digestion, because it is clearly detectable by FISH and is the bacterium with the largest population size in the less easily degradable hay stem.
Collapse
|
Journal Article |
18 |
80 |
10
|
Mukhopadhya I, Moraïs S, Laverde‐Gomez J, Sheridan PO, Walker AW, Kelly W, Klieve AV, Ouwerkerk D, Duncan SH, Louis P, Koropatkin N, Cockburn D, Kibler R, Cooper PJ, Sandoval C, Crost E, Juge N, Bayer EA, Flint HJ. Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch-degrader Ruminococcus bromii. Environ Microbiol 2018; 20:324-336. [PMID: 29159997 PMCID: PMC5814915 DOI: 10.1111/1462-2920.14000] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/25/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022]
Abstract
Ruminococcus bromii is a dominant member of the human colonic microbiota that plays a 'keystone' role in degrading dietary resistant starch. Recent evidence from one strain has uncovered a unique cell surface 'amylosome' complex that organizes starch-degrading enzymes. New genome analysis presented here reveals further features of this complex and shows remarkable conservation of amylosome components between human colonic strains from three different continents and a R. bromii strain from the rumen of Australian cattle. These R. bromii strains encode a narrow spectrum of carbohydrate active enzymes (CAZymes) that reflect extreme specialization in starch utilization. Starch hydrolysis products are taken up mainly as oligosaccharides, with only one strain able to grow on glucose. The human strains, but not the rumen strain, also possess transporters that allow growth on galactose and fructose. R. bromii strains possess a full complement of sporulation and spore germination genes and we demonstrate the ability to form spores that survive exposure to air. Spore formation is likely to be a critical factor in the ecology of this nutritionally highly specialized bacterium, which was previously regarded as 'non-sporing', helping to explain its widespread occurrence in the gut microbiota through the ability to transmit between hosts.
Collapse
|
research-article |
7 |
68 |
11
|
Liu B, Zhang Y, Wang R, An Y, Gao W, Bai L, Li Y, Zhao S, Fan J, Liu E. Western diet feeding influences gut microbiota profiles in apoE knockout mice. Lipids Health Dis 2018; 17:159. [PMID: 30021609 PMCID: PMC6052692 DOI: 10.1186/s12944-018-0811-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut microbiota plays an important role in many metabolic diseases such as diabetes and atherosclerosis. Apolipoprotein E (apoE) knock-out (KO) mice are frequently used for the study of hyperlipidemia and atherosclerosis. However, it is unknown whether apoE KO mice have altered gut microbiota when challenged with a Western diet. METHODS In the current study, we assessed the gut microbiota profiling of apoE KO mice and compared with wild-type mice fed either a normal chow or Western diet for 12 weeks using 16S pyrosequencing. RESULTS On a western diet, the gut microbiota diversity was significantly decreased in apoE KO mice compared with wild type (WT) mice. Firmicutes and Erysipelotrichaceae were significantly increased in WT mice but Erysipelotrichaceae was unchanged in apoE KO mice on a Western diet. The weighted UniFrac principal coordinate analysis exhibited clear separation between WT and apoE KO mice on the first vector (58.6%) with significant changes of two dominant phyla (Bacteroidetes and Firmicutes) and seven dominant families (Porphyromonadaceae, Lachnospiraceae, Ruminococcaceae, Desulfovibrionaceae, Helicobacteraceae, Erysipelotrichaceae and Veillonellaceae). Lachnospiraceae was significantly enriched in apoE KO mice on a Western diet. In addition, Lachnospiraceae and Ruminococcaceae were positively correlated with relative atherosclerosis lesion size in apoE KO. CONCLUSIONS Collectively, our study showed that there are marked changes in the gut microbiota of apoE KO mice, particularly challenged with a Western diet and these alterations may be possibly associated with atherosclerosis.
Collapse
|
research-article |
7 |
56 |
12
|
Mullaney JA, Stephens JE, Costello ME, Fong C, Geeling BE, Gavin PG, Wright CM, Spector TD, Brown MA, Hamilton-Williams EE. Type 1 diabetes susceptibility alleles are associated with distinct alterations in the gut microbiota. MICROBIOME 2018; 6:35. [PMID: 29454391 PMCID: PMC5816355 DOI: 10.1186/s40168-018-0417-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/26/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Dysbiosis of the gut microbiota has been implicated in the pathogenesis of many autoimmune conditions including type 1 diabetes (T1D). It is unknown whether changes in the gut microbiota observed in T1D are due to environmental drivers, genetic risk factors, or both. Here, we have performed an analysis of associations between the gut microbiota and T1D genetic risk using the non-obese diabetic (NOD) mouse model of T1D and the TwinsUK cohort. RESULTS Through the analysis of five separate colonies of T1D susceptible NOD mice, we identified similarities in NOD microbiome that were independent of animal facility. Introduction of disease protective alleles at the Idd3 and Idd5 loci (IL2, Ctla4, Slc11a1, and Acadl) resulted in significant alterations in the NOD microbiome. Disease-protected strains exhibited a restoration of immune regulatory pathways within the gut which could also be reestablished using IL-2 therapy. Increased T1D disease risk from IL-2 pathway loci in the TwinsUK cohort of human subjects resulted in some similar microbiota changes to those observed in the NOD mouse. CONCLUSIONS These findings demonstrate for the first time that type 1 diabetes-associated genetic variants that restore immune tolerance to islet antigens also result in functional changes in the gut immune system and resultant changes in the microbiota.
Collapse
|
research-article |
7 |
53 |
13
|
Song MY, Wang JH, Eom T, Kim H. Schisandra chinensis fruit modulates the gut microbiota composition in association with metabolic markers in obese women: a randomized, double-blind placebo-controlled study. Nutr Res 2015; 35:655-663. [PMID: 26048342 DOI: 10.1016/j.nutres.2015.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/28/2015] [Accepted: 05/08/2015] [Indexed: 11/20/2022]
Abstract
Schisandra chinensis fruit (SCF) is known to have beneficial effects on metabolic diseases, including obesity, and to affect gut microbiota in in vivo studies. However, in human research, there have been a few studies in terms of its clinical roles in lipid metabolism and modulation of gut microbiota. A double-blind, placebo-controlled study with 28 obese women with SCF or placebo was conducted for 12 weeks. Anthropometry and blood and fecal sampling were performed before and after treatment. Analysis of the gut microbiota in feces was performed using denaturing gradient gel electrophoresis and quantitative polymerase chain reaction. Although the values did not differ significantly between the 2 groups, the SCF group tended to show a greater decrease in waist circumference, fat mass, fasting blood glucose, triglycerides, aspartate aminotransferase, and alanine aminotransferase than the placebo group. Clustering of the denaturing gradient gel electrophoresis fingerprints for total bacteria before and after treatment indicated more separate clustering in SCF group than placebo. In correlation analysis, Bacteroides and Bacteroidetes (both increased by SCF) showed significant negative correlation with fat mass, aspartate aminotransferase, and/or alanine aminotransferase, respectively. Ruminococcus (decreased by SCF) showed negative correlation with high-density lipoprotein cholesterol and fasting blood glucose. In conclusion, administration of SCF for 12 weeks resulted in modulation of the gut microbiota composition in Korean obese women, and significant correlations with some bacterial genera and metabolic parameters were noted. However, in general, SCF was not sufficient to induce significant changes in obesity-related parameters compared with placebo.
Collapse
|
Randomized Controlled Trial |
10 |
51 |
14
|
Huang S, Zhang H. The impact of environmental heterogeneity and life stage on the hindgut microbiota of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). PLoS One 2013; 8:e57169. [PMID: 23437336 PMCID: PMC3578786 DOI: 10.1371/journal.pone.0057169] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/17/2013] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota has diverse ecological and evolutionary effects on its hosts. However, the ways in which it responds to environmental heterogeneity and host physiology remain poorly understood. To this end, we surveyed intestinal microbiota of Holotrichia parallela larvae at different instars and from different geographic regions. Bacterial 16S rRNA gene clone libraries were constructed and clones were subsequently screened by DGGE and sequenced. Firmicutes and Proteobacteria were the major phyla, and bacteria belonging to Ruminococcaceae, Lachnospiraceae, Enterobacteriaceae, Desulfovibrionaceae and Rhodocyclaceae families were commonly found in all natural populations. However, bacterial diversity (Chao1 and Shannon indices) and community structure varied across host populations, and the observed variation can be explained by soil pH, organic carbon and total nitrogen, and the climate factors (e.g., mean annual temperature) of the locations where the populations were sampled. Furthermore, increases in the species richness and diversity of gut microbiota were observed during larval growth. Bacteroidetes comprised the dominant group in the first instar; however, Firmicutes composed the majority of the hindgut microbiota during the second and third instars. Our results suggest that the gut's bacterial community changes in response to environmental heterogeneity and host's physiology, possibly to meet the host's ecological needs or physiological demands.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
48 |
15
|
Zhang S, Wu P, Tian Y, Liu B, Huang L, Liu Z, Lin N, Xu N, Ruan Y, Zhang Z, Wang M, Cui Z, Zhou H, Xie L, Chen H, Sun J. Gut Microbiota Serves a Predictable Outcome of Short-Term Low-Carbohydrate Diet (LCD) Intervention for Patients with Obesity. Microbiol Spectr 2021; 9:e0022321. [PMID: 34523948 PMCID: PMC8557869 DOI: 10.1128/spectrum.00223-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/15/2021] [Indexed: 12/25/2022] Open
Abstract
To date, much progress has been made in dietary therapy for obese patients. A low-carbohydrate diet (LCD) has reached a revival in its clinical use during the past decade with undefined mechanisms and debatable efficacy. The gut microbiota has been suggested to promote energy harvesting. Here, we propose that the gut microbiota contributes to the inconsistent outcome under an LCD. To test this hypothesis, patients with obesity or patients who were overweight were randomly assigned to a normal diet (ND) or an LCD group with ad libitum energy intake for 12 weeks. Using matched sampling, the microbiome profile at baseline and end stage was examined. The relative abundance of butyrate-producing bacteria, including Porphyromonadaceae Parabacteroides and Ruminococcaceae Oscillospira, was markedly increased after LCD intervention for 12 weeks. Moreover, within the LCD group, participants with a higher relative abundance of Bacteroidaceae Bacteroides at baseline exhibited a better response to LCD intervention and achieved greater weight loss outcomes. Nevertheless, the adoption of an artificial neural network (ANN)-based prediction model greatly surpasses a general linear model in predicting weight loss outcomes after LCD intervention. Therefore, the gut microbiota served as a positive outcome predictor and has the potential to predict weight loss outcomes after short-term LCD intervention. Gut microbiota may help to guide the clinical application of short-term LCD intervention to develop effective weight loss strategies. (This study has been registered at the China Clinical Trial Registry under approval no. ChiCTR1800015156). IMPORTANCE Obesity and its related complications pose a serious threat to human health. Short-term low-carbohydrate diet (LCD) intervention without calorie restriction has a significant weight loss effect for overweight/obese people. Furthermore, the relative abundance of Bacteroidaceae Bacteroides is a positive outcome predictor of individual weight loss after short-term LCD intervention. Moreover, leveraging on these distinct gut microbial structures at baseline, we have established a prediction model based on the artificial neural network (ANN) algorithm that could be used to estimate weight loss potential before each clinical trial (with Chinese patent number 2021104655623). This will help to guide the clinical application of short-term LCD intervention to improve weight loss strategies.
Collapse
|
Randomized Controlled Trial |
4 |
45 |
16
|
Reider SJ, Moosmang S, Tragust J, Trgovec-Greif L, Tragust S, Perschy L, Przysiecki N, Sturm S, Tilg H, Stuppner H, Rattei T, Moschen AR. Prebiotic Effects of Partially Hydrolyzed Guar Gum on the Composition and Function of the Human Microbiota-Results from the PAGODA Trial. Nutrients 2020; 12:nu12051257. [PMID: 32354152 PMCID: PMC7281958 DOI: 10.3390/nu12051257] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Alterations in the structural composition of the human gut microbiota have been identified in various disease entities along with exciting mechanistic clues by reductionist gnotobiotic modeling. Improving health by beneficially modulating an altered microbiota is a promising treatment approach. Prebiotics, substrates selectively used by host microorganisms conferring a health benefit, are broadly used for dietary and clinical interventions. Herein, we sought to investigate the microbiota-modelling effects of the soluble fiber, partially hydrolyzed guar gum (PHGG). (2) Methods: We performed a 9 week clinical trial in 20 healthy volunteers that included three weeks of a lead-in period, followed by three weeks of an intervention phase, wherein study subjects received 5 g PHGG up to three times per day, and concluding with a three-week washout period. A stool diary was kept on a daily basis, and clinical data along with serum/plasma and stool samples were collected on a weekly basis. PHGG-induced alterations of the gut microbiota were studied by 16S metagenomics of the V1–V3 and V3–V4 regions. To gain functional insight, we further studied stool metabolites using nuclear magnetic resonance (NMR) spectroscopy. (3) Results: In healthy subjects, PHGG had significant effects on stool frequency and consistency. These effects were paralleled by changes in α- (species evenness) and β-diversity (Bray–Curtis distances), along with increasing abundances of metabolites including butyrate, acetate and various amino acids. On a taxonomic level, PHGG intake was associated with a bloom in Ruminococcus, Fusicatenibacter, Faecalibacterium and Bacteroides and a reduction in Roseburia, Lachnospiracea and Blautia. The majority of effects disappeared after stopping the prebiotic and most effects tended to be more pronounced in male participants. (4) Conclusions: Herein, we describe novel aspects of the prebiotic PHGG on compositional and functional properties of the healthy human microbiota.
Collapse
|
Journal Article |
5 |
37 |
17
|
Dione N, Lacroix S, Taschler U, Deschênes T, Abolghasemi A, Leblanc N, Di Marzo V, Silvestri C. Mgll Knockout Mouse Resistance to Diet-Induced Dysmetabolism Is Associated with Altered Gut Microbiota. Cells 2020; 9:E2705. [PMID: 33348740 PMCID: PMC7765900 DOI: 10.3390/cells9122705] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Monoglyceride lipase (MGLL) regulates metabolism by catabolizing monoacylglycerols (MAGs), including the endocannabinoid 2-arachidonoyl glycerol (2-AG) and some of its bioactive congeners, to the corresponding free fatty acids. Mgll knockout mice (Mgll-/-) exhibit elevated tissue levels of MAGs in association with resistance to the metabolic and cardiovascular perturbations induced by a high fat diet (HFD). The gut microbiome and its metabolic function are disrupted in obesity in a manner modulated by 2-arachidonoyl glycerol (2-AG's) main receptors, the cannabinoid CB1 receptors. We therefore hypothesized that Mgll-/- mice have an altered microbiome, that responds differently to diet-induced obesity from that of wild-type (WT) mice. We subjected mice to HFD and assessed changes in the microbiomes after 8 and 22 weeks. As expected, Mgll-/- mice showed decreased adiposity, improved insulin sensitivity, and altered circulating incretin/adipokine levels in response to HFD. Mgll-/- mice on a chow diet exhibited significantly higher levels of Hydrogenoanaerobacterium, Roseburia, and Ruminococcus than WT mice. The relative abundance of the Lactobacillaceae and Coriobacteriaceae and of the Lactobacillus, Enterorhabdus, Clostridium_XlVa, and Falsiporphyromonas genera was significantly altered by HFD in WT but not Mgll-/- mice. Differently abundant families were also associated with changes in circulating adipokine and incretin levels in HFD-fed mice. Some gut microbiota family alterations could be reproduced by supplementing 2-AG or MAGs in culturomics experiments carried out with WT mouse fecal samples. We suggest that the altered microbiome of Mgll-/- mice contributes to their obesity resistant phenotype, and results in part from increased levels of 2-AG and MAGs.
Collapse
|
research-article |
5 |
34 |
18
|
Wina E, Muetzel S, Becker K. The dynamics of major fibrolytic microbes and enzyme activity in the rumen in response to short- and long-term feeding of Sapindus rarak saponins. J Appl Microbiol 2006; 100:114-22. [PMID: 16405691 DOI: 10.1111/j.1365-2672.2005.02746.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To investigate the short- and long-term effects of an extract of Sapindus rarak saponins (SE) on the rumen fibrolytic enzyme activity and the major fibrolytic micro-organisms. METHODS AND RESULTS Two feeding trials were conducted. In the short-term trial, four fistulated goats were fed a basal diet containing sugar cane tops and wheat pollard (65:35, w/w) and were supplemented for 7 days with SE at a level of 0.6 g kg(-1) body weight. Rumen liquor was taken before, during and after SE feeding. In the long-term trial, 28 sheep were fed the same basal diet as the goats and were supplemented for 105 days with 0.24, 0.48 and 0.72 g kg(-1) body mass of the extract. Rumen liquor was taken on days 98 and 100. Protozoal numbers were counted under the microscope. Cell wall degradation was determined by enzyme assays and the major fibrolytic micro-organisms were quantified by dot blot hybridization. Sapindus extract significantly depressed rumen xylanase activity in both trials and carboxymethylcellulase activity in the long-term trial (P < 0.01). Fibrobacter sp. were not affected by the SE in both trials, while ruminococci and the anaerobic fungi showed a short-term response to the application of saponins. Protozoal counts were decreased only in the long-term trial with sheep. CONCLUSION These data suggest that there is an adaptation of Ruminococcus albus, Ruminococcus flavefaciens and Chytridiomycetes (fungi) to saponin when fed over a long period. The fact that no correlation between the cell wall degrading enzyme activities and the cell wall degrading micro-organisms was observed suggests that the organisms tracked in this experiment are not the only key players in ruminal cell wall degradation. SIGNIFICANCE AND IMPACT OF THE STUDY Sapindus rarak saponins partially defaunate the rumen flora. Their negative effect on cell wall degradation, however, is not related to rumen organisms currently recognized as the major cell wall degrading species. The adaptation of microbes in the long-term feeding experiment suggests that the results from short-term trial on the ruminal microbial community have to be interpreted carefully.
Collapse
|
|
19 |
33 |
19
|
Ozutsumi Y, Tajima K, Takenaka A, Itabashi H. Real-time PCR detection of the effects of protozoa on rumen bacteria in cattle. Curr Microbiol 2006; 52:158-62. [PMID: 16467991 DOI: 10.1007/s00284-005-0266-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 09/21/2005] [Indexed: 11/30/2022]
Abstract
A real-time PCR approach was used in this study to clarify the populations of major bacterial species in the rumens of faunated and unfaunated cattle. The sensitivity of this novel real-time PCR assay was evaluated by using 10(1) to 10(8) plasmid copies of target bacteria. The numbers of plasmid copies of Ruminococcus albus, Ruminococcus flavefaciens, Prevotella ruminicola, and the CUR-E cluster were higher in the unfaunated than in the faunated rumens. The CUR-E cluster belongs to the Clostridium group. In contrast, Fibrobacter succinogenes was higher in the faunated than in the unfaunated rumens. Although it is well known that an absence of protozoa brings about an increase in the bacterial population, it was clarified here that an absence of protozoa exerted differential effects on the populations of cellulolytic bacteria in cattle rumens (i.e., F. succinogenes, R. albus, and R. flavefaciens). In addition, real-time PCR analysis suggested that the CUR-E cluster was more prevalent in the unfaunated rumens.
Collapse
|
Journal Article |
19 |
31 |
20
|
Minamida K, Shiga K, Sujaya IN, Sone T, Yokota A, Hara H, Asano K, Tomita F. Effects of difructose anhydride III (DFA III) administration on rat intestinal microbiota. J Biosci Bioeng 2005; 99:230-6. [PMID: 16233782 DOI: 10.1263/jbb.99.230] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Accepted: 12/03/2004] [Indexed: 11/17/2022]
Abstract
The effects of difructose anhydride III (di-D-fructofuranose-1,2':2,3'-dianhydride; DFA III) administration (3% DFA III for 4 weeks) on rat intestinal microbiota were examined using denaturing gradient gel electrophoresis (DGGE). According to DGGE profiles, the number of bacteria related to Bacteroides acidofaciens and uncultured bacteria within the Clostridium lituseburense group decreased, while that of bacteria related to Bacteroides vulgatus, Bacteroides uniformis and Ruminococcus productus increased in DFA III-fed rat cecum. In the cecal contents of DFA III-fed rats, a lowering of pH and an increase in short chain fatty acids (SCFAs), especially acetic acid, were observed. The DFA III-assimilating bacterium, Ruminococcus sp. M-1, was isolated from the cecal contents of DFA III-fed rats. The strain had 98% similarity with R. productus ATCC 27340T (L76595), and mainly produced acetic acid. These results confirmed that the bacteria harmful to host health were not increased by DFA III administration. Moreover, DFA III stimulated the growth of Ruminococcus sp. M-1 producing acetic acid, which may alter the intestinal microbiota towards a healthier composition. It is expected that DFA III would be a new candidate as a prebiotic.
Collapse
|
|
20 |
29 |
21
|
Hynönen U, Rasinkangas P, Satokari R, Paulin L, de Vos WM, Pietilä TE, Kant R, Palva A. Isolation and whole genome sequencing of a Ruminococcus-like bacterium, associated with irritable bowel syndrome. Anaerobe 2016; 39:60-7. [PMID: 26946362 DOI: 10.1016/j.anaerobe.2016.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 12/11/2022]
Abstract
In our previous studies on the intestinal microbiota in irritable bowel syndrome (IBS), we identified a bacterial phylotype with higher abundance in patients suffering from diarrhea than in healthy controls. In the present work, we have isolated in pure culture strain RT94, belonging to this phylotype, determined its whole genome sequence and performed an extensive genomic analysis and phenotypical testing. This revealed strain RT94 to be a strict anaerobe apparently belonging to a novel species with only 94% similarity in the 16S rRNA gene sequence to the closest relatives Ruminococcus torques and Ruminococcus lactaris. The G + C content of strain RT94 is 45.2 mol% and the major long-chain cellular fatty acids are C16:0, C18:0 and C14:0. The isolate is metabolically versatile but not a mucus or cellulose utilizer. It produces acetate, ethanol, succinate, lactate and formate, but very little butyrate, as end products of glucose metabolism. The mechanisms underlying the association of strain RT94 with diarrhea-type IBS are discussed.
Collapse
|
Journal Article |
9 |
24 |
22
|
Zozaya-Valdés E, Wong SQ, Raleigh J, Hatzimihalis A, Ftouni S, Papenfuss AT, Sandhu S, Dawson MA, Dawson SJ. Detection of cell-free microbial DNA using a contaminant-controlled analysis framework. Genome Biol 2021; 22:187. [PMID: 34162397 PMCID: PMC8220693 DOI: 10.1186/s13059-021-02401-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/04/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The human microbiome plays an important role in cancer. Accumulating evidence indicates that commensal microbiome-derived DNA may be represented in minute quantities in the cell-free DNA of human blood and could possibly be harnessed as a new cancer biomarker. However, there has been limited use of rigorous experimental controls to account for contamination, which invariably affects low-biomass microbiome studies. RESULTS We apply a combination of 16S-rRNA-gene sequencing and droplet digital PCR to determine if the specific detection of cell-free microbial DNA (cfmDNA) is possible in metastatic melanoma patients. Compared to matched stool and saliva samples, the absolute concentration of cfmDNA is low but significantly above the levels detected from negative controls. The microbial community of plasma is strongly influenced by laboratory and reagent contaminants introduced during the DNA extraction and sequencing processes. Through the application of an in silico decontamination strategy including the filtering of amplicon sequence variants (ASVs) with batch dependent abundances and those with a higher prevalence in negative controls, we identify known gut commensal bacteria, such as Faecalibacterium, Bacteroides and Ruminococcus, and also other uncharacterised ASVs. We analyse additional plasma samples, highlighting the potential of this framework to identify differences in cfmDNA between healthy and cancer patients. CONCLUSIONS Together, these observations indicate that plasma can harbour a low yet detectable level of cfmDNA. The results highlight the importance of accounting for contamination and provide an analytical decontamination framework to allow the accurate detection of cfmDNA for future biomarker studies in cancer and other diseases.
Collapse
|
research-article |
4 |
24 |
23
|
Gong G, Zhou S, Luo R, Gesang Z, Suolang S. Metagenomic insights into the diversity of carbohydrate-degrading enzymes in the yak fecal microbial community. BMC Microbiol 2020; 20:302. [PMID: 33036549 PMCID: PMC7547465 DOI: 10.1186/s12866-020-01993-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Yaks are able to utilize the gastrointestinal microbiota to digest plant materials. Although the cellulolytic bacteria in the yak rumen have been reported, there is still limited information on the diversity of the major microorganisms and putative carbohydrate-metabolizing enzymes for the degradation of complex lignocellulosic biomass in its gut ecosystem. RESULTS Here, this study aimed to decode biomass-degrading genes and genomes in the yak fecal microbiota using deep metagenome sequencing. A comprehensive catalog comprising 4.5 million microbial genes from the yak feces were established based on metagenomic assemblies from 92 Gb sequencing data. We identified a full spectrum of genes encoding carbohydrate-active enzymes, three-quarters of which were assigned to highly diversified enzyme families involved in the breakdown of complex dietary carbohydrates, including 120 families of glycoside hydrolases, 25 families of polysaccharide lyases, and 15 families of carbohydrate esterases. Inference of taxonomic assignments to the carbohydrate-degrading genes revealed the major microbial contributors were Bacteroidaceae, Ruminococcaceae, Rikenellaceae, Clostridiaceae, and Prevotellaceae. Furthermore, 68 prokaryotic genomes were reconstructed and the genes encoding glycoside hydrolases involved in plant-derived polysaccharide degradation were identified in these uncultured genomes, many of which were novel species with lignocellulolytic capability. CONCLUSIONS Our findings shed light on a great diversity of carbohydrate-degrading enzymes in the yak gut microbial community and uncultured species, which provides a useful genetic resource for future studies on the discovery of novel enzymes for industrial applications.
Collapse
|
research-article |
5 |
23 |
24
|
Brulc JM, Yeoman CJ, Wilson MK, Berg Miller ME, Jeraldo P, Jindou S, Goldenfeld N, Flint HJ, Lamed R, Borovok I, Vodovnik M, Nelson KE, Bayer EA, White BA. Cellulosomics, a gene-centric approach to investigating the intraspecific diversity and adaptation of Ruminococcus flavefaciens within the rumen. PLoS One 2011; 6:e25329. [PMID: 22043282 PMCID: PMC3197198 DOI: 10.1371/journal.pone.0025329] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/01/2011] [Indexed: 01/28/2023] Open
Abstract
Background The bovine rumen maintains a diverse microbial community that serves to break down indigestible plant substrates. However, those bacteria specifically adapted to degrade cellulose, the major structural component of plant biomass, represent a fraction of the rumen microbiome. Previously, we proposed scaC as a candidate for phylotyping Ruminococcus flavefaciens, one of three major cellulolytic bacterial species isolated from the rumen. In the present report we examine the dynamics and diversity of scaC-types both within and between cattle temporally, following a dietary switch from corn-silage to grass-legume hay. These results were placed in the context of the overall bacterial population dynamics measured using the 16S rRNA. Principal Findings As many as 117 scaC-types were estimated, although just nineteen were detected in each of three rumens tested, and these collectively accounted for the majority of all types present. Variation in scaC populations was observed between cattle, between planktonic and fiber-associated fractions and temporally over the six-week survey, and appeared related to scaC phylogeny. However, by the sixth week no significant separation of scaC populations was seen between animals, suggesting enrichment of a constrained set of scaC-types. Comparing the amino-acid translation of each scaC-type revealed sequence variation within part of the predicted dockerin module but strong conservation in the N-terminus, where the cohesin module is located. Conclusions The R. flavefaciens species comprises a multiplicity of scaC-types in-vivo. Enrichment of particular scaC-types temporally, following a dietary switch, and between fractions along with the phylogenetic congruence suggests that functional differences exist between types. Observed differences in dockerin modules suggest at least part of the functional heterogeneity may be conferred by scaC. The polymorphic nature of scaC enables the relative distribution of R. flavefaciens strains to be examined and represents a gene-centric approach to investigating the intraspecific adaptation of an important specialist population.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
14 |
22 |
25
|
Jin JS, Hattori M. Further studies on a human intestinal bacterium Ruminococcus sp. END-1 for transformation of plant lignans to mammalian lignans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:7537-7542. [PMID: 19630415 DOI: 10.1021/jf900902p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A human intestinal bacterium Ruminococcus (R.) sp. END-1 capable of oxidizing (-)-enterodiol to (-)-enterolactone, enantioselectively, was further investigated from the perspective of transformation of plant lignans to mammalian lignans; A cell-free extract of the bacterium transformed (-)-enterodiol to (-)-enterolactone through an intermediate, enterolactol. The bacterium showed not only oxidation but also demethylation and deglucosylation activities for plant lignans. Arctiin and secoisolariciresinol diglucoside were converted to (-)-dihydroxyenterolactone and (+)-dihydroxyenterodiol, respectively. Moreover, by coincubation with Eggerthella sp. SDG-2, the bacterium transformed arctiin and secoisolariciresinol diglucoside to (-)-enterolactone and (+)-enterodiol, respectively.
Collapse
|
|
16 |
22 |