1
|
Glatzel M, Flechsig E, Navarro B, Klein MA, Paterna JC, Büeler H, Aguzzi A. Adenoviral and adeno-associated viral transfer of genes to the peripheral nervous system. Proc Natl Acad Sci U S A 2000; 97:442-7. [PMID: 10618437 PMCID: PMC26682 DOI: 10.1073/pnas.97.1.442] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Targeted expression of foreign genes to the peripheral nervous system is interesting for many applications, including gene therapy of neuromuscular diseases, neuroanatomical studies, and elucidation of mechanisms of axonal flow. Here we describe a microneurosurgical technique for injection of replication-defective viral vectors into dorsal root ganglia (DRG). Adenovirus- and adeno-associated virus-based vectors with transcriptional competence for DRG neurons led to expression of the gene of interest throughout the first neuron of the sensory system, from the distal portions of the respective sensory nerve to the ipsilateral nucleus gracilis and cuneatus, which contains the synapses to the spinothalamic tracts. Use of Rag-1 ablated mice, which lack all B and T lymphocytes, allowed for sustained expression for periods exceeding 100 days. In immunocompetent mice, long-term (52 days) expression was achieved with similar efficiency by using adeno-associated viral vectors. DRG injection was vastly superior to intraneural injection into the sciatic nerve, which mainly transduced Schwann cells in the vicinity of the site of inoculation site but only inefficiently transduced nerve fibers, whereas i.m. injection did not lead to any significant expression of the reporter gene in nerve fibers. The versatile and efficient transduction of genes of interest should enable a wide variety of functional studies of peripheral nervous system pathophysiology.
Collapse
|
research-article |
25 |
97 |
2
|
Ohka S, Yang WX, Terada E, Iwasaki K, Nomoto A. Retrograde transport of intact poliovirus through the axon via the fast transport system. Virology 1998; 250:67-75. [PMID: 9770421 DOI: 10.1006/viro.1998.9360] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intramuscularly inoculated poliovirus is thought to spread to the central nervous system through neural pathways in humans, monkeys, and the transgenic (Tg) mice carrying the human poliovirus receptor (PVR) gene. To gain insight into molecular mechanisms for the retrograde axonal transport of poliovirus, resulting in the expression of neurovirulence, a poliovirus-sensitive ICR-PVRTg21 mouse line (Tg21) was used as an animal model for poliomyelitis. We detected poliovirus antigens in axons of the sciatic nerve. All of the Tg21 mice, which had been inoculated into the calves with 1 x 10(6) pfu of the Mahoney strain of type 1 poliovirus, showed symptoms of paralysis in the inoculated limbs (initial paralysis) within 48 h after the inoculation. The appearance of this initial paralysis was observed in mice whose sciatic nerves were transected at various times after virus inoculation. The results were indicators of the velocity of poliovirus transportation through the sciatic nerves under analysis. Poliovirus-related materials recovered from the sciatic nerve were mainly composed of intact 160S virion particles. The amount of 160S particle recovered was greatly reduced by coinjection with anti-PVR monoclonal antibody. These results suggest that one of the fast retrograde axonal transport systems is involved in poliovirus dissemination through the sciatic nerve and that IM-inoculated poliovirus is incorporated into the sciatic nerve as intact particles in a PVR-dependent manner, as it is in humans.
Collapse
|
|
27 |
85 |
3
|
Lancaster KZ, Pfeiffer JK. Limited trafficking of a neurotropic virus through inefficient retrograde axonal transport and the type I interferon response. PLoS Pathog 2010; 6:e1000791. [PMID: 20221252 PMCID: PMC2832671 DOI: 10.1371/journal.ppat.1000791] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 01/26/2010] [Indexed: 11/19/2022] Open
Abstract
Poliovirus is an enteric virus that rarely invades the human central nervous system (CNS). To identify barriers limiting poliovirus spread from the periphery to CNS, we monitored trafficking of 10 marked viruses. After oral inoculation of susceptible mice, poliovirus was present in peripheral neurons, including vagus and sciatic nerves. To model viral trafficking in peripheral neurons, we intramuscularly injected mice with poliovirus, which follows a muscle-sciatic nerve-spinal cord-brain route. Only 20% of the poliovirus population successfully moved from muscle to brain, and three barriers limiting viral trafficking were identified. First, using light-sensitive viruses, we found limited viral replication in peripheral neurons. Second, retrograde axonal transport of poliovirus in peripheral neurons was inefficient; however, the efficiency was increased upon muscle damage, which also increased the transport efficiency of a non-viral neural tracer, wheat germ agglutinin. Third, using susceptible interferon (IFN) alpha/beta receptor knockout mice, we demonstrated that the IFN response limited viral movement from the periphery to the brain. Surprisingly, the retrograde axonal transport barrier was equivalent in strength to the IFN barrier. Illustrating the importance of barriers created by the IFN response and inefficient axonal transport, IFN alpha/beta receptor knockout mice with muscle damage permitted 80% of the viral population to access the brain, and succumbed to disease three times faster than mice with intact barriers. These results suggest that multiple separate barriers limit poliovirus trafficking from peripheral neurons to the CNS, possibly explaining the rare incidence of paralytic poliomyelitis. This study identifies inefficient axonal transport as a substantial barrier to poliovirus trafficking in peripheral neurons, which may limit CNS access for other viruses.
Collapse
MESH Headings
- Animals
- Axonal Transport/immunology
- Central Nervous System/cytology
- Central Nervous System/immunology
- Central Nervous System/virology
- HeLa Cells
- Humans
- Injections, Intramuscular
- Interferon Type I/immunology
- Interferon Type I/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscle, Skeletal/injuries
- Muscle, Skeletal/innervation
- Muscle, Skeletal/virology
- Neurons/immunology
- Neurons/virology
- Poliomyelitis/immunology
- Poliomyelitis/physiopathology
- Poliomyelitis/virology
- Poliovirus/growth & development
- Poliovirus/immunology
- Poliovirus/metabolism
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Sciatic Nerve/cytology
- Sciatic Nerve/immunology
- Sciatic Nerve/virology
- Virus Replication/immunology
Collapse
|
Research Support, N.I.H., Extramural |
15 |
48 |
4
|
Boulis NM, Noordmans AJ, Song DK, Imperiale MJ, Rubin A, Leone P, During M, Feldman EL. Adeno-associated viral vector gene expression in the adult rat spinal cord following remote vector delivery. Neurobiol Dis 2004; 14:535-41. [PMID: 14678769 DOI: 10.1016/j.nbd.2003.08.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The current investigation tests whether adeno-associated viral vectors (rAAV) undergo remote delivery to the spinal cord via peripheral nerve injection as previously demonstrated with adenoviral vectors. The sciatic nerves of adult rats (n = 10) were injected with either an rAAV (rAAVCMV-lacZ) or adenoviral (AdCMV-lacZ) vector (1.4 x 10(7) particles/ml). After 21 days, the rAAV group demonstrated significantly higher spinal cord viral expression than the adenoviral group (P < 0.024). A second group of rats was injected with rAAV expressing the green fluorescence protein (GFP) reporter gene. GFP was detected 21 days after unilateral sciatic nerve injection in the neurons of the dorsal root ganglion and spinal cord. The codistribution of the viral genome and transgene in CNS neurons was confirmed with in situ hybridization. In summary, rAAV genes are expressed in CNS neurons following peripheral nerve injection at levels exceeding those seen following remote adenovirus injection.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
45 |
5
|
Ohka S, Sakai M, Bohnert S, Igarashi H, Deinhardt K, Schiavo G, Nomoto A. Receptor-dependent and -independent axonal retrograde transport of poliovirus in motor neurons. J Virol 2009; 83:4995-5004. [PMID: 19244317 PMCID: PMC2682071 DOI: 10.1128/jvi.02225-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 02/18/2009] [Indexed: 11/20/2022] Open
Abstract
Poliovirus (PV), when injected intramuscularly into the calf, is incorporated into the sciatic nerve and causes an initial paralysis of the inoculated limb in transgenic (Tg) mice carrying the human PV receptor (hPVR/CD155) gene. We have previously demonstrated that a fast retrograde axonal transport process is required for PV dissemination through the sciatic nerves of hPVR-Tg mice and that intramuscularly inoculated PV causes paralytic disease in an hPVR-dependent manner. Here we showed that hPVR-independent axonal transport of PV was observed in hPVR-Tg and non-Tg mice, indicating that several different pathways for PV axonal transport exist in these mice. Using primary motor neurons (MNs) isolated from these mice or rats, we demonstrated that the axonal transport of PV requires several kinetically different motor machineries and that fast transport relies on a system involving cytoplasmic dynein. Unexpectedly, the hPVR-independent axonal transport of PV was not observed in cultured MNs. Thus, PV transport machineries in cultured MNs and in vivo differ in their hPVR requirements. These results suggest that the axonal trafficking of PV is carried out by several distinct pathways and that MNs in culture and in the sciatic nerve in situ are intrinsically different in the uptake and axonal transport of PV.
Collapse
|
research-article |
16 |
43 |
6
|
Wang H, Siddharthan V, Hall JO, Morrey JD. West Nile virus preferentially transports along motor neuron axons after sciatic nerve injection of hamsters. J Neurovirol 2009; 15:293-9. [PMID: 19504391 PMCID: PMC3104926 DOI: 10.1080/13550280902973978] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Prior findings led us to hypothesize that West Nile virus (WNV) preferentially transports along motor axons instead of sensory axons. WNV is known to undergo axonal transport in cell culture and in infected hamsters to infect motor neurons in the spinal cord. To investigate this hypothesis, WNV was injected directly into the left sciatic nerve of hamsters. WNV envelope-staining in these hamsters was only observed in motor neurons of the ipsilateral ventral horn of the spinal cord, but not in the dorsal root ganglion (DRG). To evaluate the consequence of motor neuron infection by WNV, the authors inoculated wheat germ agglutinin-horseradish peroxidase (WGA-HRP) 9 days after WNV sciatic nerve injection, and stained the spinal cord and the DRG for HRP activity 3 days later. The degree of HRP-staining in DRG was the same in WNV- and sham-infected animals, but the HRP-staining in the motor neuron in the ventral horn was considerably less for WNV-infected hamsters. To investigate the mechanism of WNV transport, hamsters were treated with colchicine, an inhibitor of membranous microtubule-mediated transport. The intensity of the WNV-stained area in the spinal cord of colchicine-treated hamsters at 6 days after WNV infection were significantly reduced (P
Collapse
|
Research Support, N.I.H., Extramural |
16 |
29 |
7
|
Mann MA, Knipe DM, Fischbach GD, Fields BN. Type 3 reovirus neuroinvasion after intramuscular inoculation: direct invasion of nerve terminals and age-dependent pathogenesis. Virology 2002; 303:222-31. [PMID: 12490385 DOI: 10.1006/viro.2002.1699] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neonatal but not adult mice are vulnerable to reovirus invasion of the central nervous system after peripheral inoculation. After hindlimb injection, type 3 reovirus travels via the sciatic nerve to replicate in spinal cord motor neurons before spread to the brain and development of lethal encephalitis. Here we provide ultrastructural evidence for direct reovirus invasion of unmyelinated neonatal motor nerve terminals within 2 h and replication in spinal cord motor neurons within 14 h after hindlimb injection of 1-day-old mice. In adult mice, resistance to reovirus lethality after intracranial (IC) injection correlates with the restriction of virus growth in cortical neurons. We found that neuroinvasion also is age dependent after intramuscular injection. Virus lethality and CNS infection decreased sharply during the first postnatal week, while lethality after IC injection continued for 2 additional weeks. Mice inoculated at 7 days of age with high virus doses suffered paralysis of the injected limb, but significant brain infection was not lethal. These results suggest that reovirus invasion of the neonatal CNS is restricted by several progressive age-dependent mechanisms.
Collapse
|
|
23 |
24 |
8
|
Tomaru U, Ikeda H, Ohya O, Abe M, Kasai T, Yamasita I, Morita K, Wakisaka A, Yoshiki T. Human T lymphocyte virus type I-induced myeloneuropathy in rats: implication of local activation of the pX and tumor necrosis factor-alpha genes in pathogenesis. J Infect Dis 1996; 174:318-23. [PMID: 8699061 DOI: 10.1093/infdis/174.2.318] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The pathogenetic roles of human T lymphocyte virus type I (HTLV-I) and cytokines were investigated in HTLV-I-induced myeloneuropathy in Wistar-King-Aptekman-Hokudai rats. In the nervous system, pX messenger RNAs of HTLV-I were selectively expressed in the diseased spinal cord and peripheral nerves but not in the unaffected cerebrum and cerebellum, even though proviral DNAs were consistently identified in these tissues. Among several cytokines examined, mRNA expression and production of tumor necrosis factor (TNF)-alpha in the spinal cord and cerebrospinal fluid correlated positively with the development of spinal cord lesions. The collective evidence strongly suggests that selective activation of HTLV-I, in particular Tax expression and production of TNF-alpha induced by HTLV-I infection in target spinal cord and peripheral nerves, is causally related to apoptotic death of oligodendrocytes and Schwann cells, a major pathogenetic pathway of the HTLV-I-induced myeloneuropathy.
Collapse
|
|
29 |
22 |
9
|
Luethy LN, Erickson AK, Jesudhasan PR, Ikizler M, Dermody TS, Pfeiffer JK. Comparison of three neurotropic viruses reveals differences in viral dissemination to the central nervous system. Virology 2016; 487:1-10. [PMID: 26479325 PMCID: PMC4679581 DOI: 10.1016/j.virol.2015.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 11/28/2022]
Abstract
Neurotropic viruses initiate infection in peripheral tissues prior to entry into the central nervous system (CNS). However, mechanisms of dissemination are not completely understood. We used genetically marked viruses to compare dissemination of poliovirus, yellow fever virus 17D (YFV-17D), and reovirus type 3 Dearing in mice from a hind limb intramuscular inoculation site to the sciatic nerve, spinal cord, and brain. While YFV-17D likely entered the CNS via blood, poliovirus and reovirus likely entered the CNS by transport through the sciatic nerve to the spinal cord. We found that dissemination was inefficient in adult immune-competent mice for all three viruses, particularly reovirus. Dissemination of all viruses was more efficient in immune-deficient mice. Although poliovirus and reovirus both accessed the CNS by transit through the sciatic nerve, stimulation of neuronal transport by muscle damage enhanced dissemination only of poliovirus. Our results suggest that these viruses access the CNS using different pathways.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
22 |
10
|
Kanao M, Kanda H, Huang W, Liu S, Yi H, Candiotti KA, Lubarsky DA, Levitt RC, Hao S. Gene Transfer of Glutamic Acid Decarboxylase 67 by Herpes Simplex Virus Vectors Suppresses Neuropathic Pain Induced by Human Immunodeficiency Virus gp120 Combined with ddC in Rats. Anesth Analg 2015; 120:1394-404. [PMID: 25851180 DOI: 10.1213/ane.0000000000000729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-related painful sensory neuropathies primarily consist of the HIV infection-related distal sensory polyneuropathy and antiretroviral toxic neuropathies. Pharmacotherapy provides only partial relief of pain in patients with HIV/acquired immune deficiency syndrome because little is known about the exact neuropathological mechanisms for HIV-associated neuropathic pain (NP). Hypofunction of γ-aminobutyric acid (GABA) GABAergic inhibitory mechanisms has been reported after peripheral nerve injury. In this study, we tested the hypothesis that HIV gp120 combined with antiretroviral therapy reduces spinal GABAergic inhibitory tone and that restoration of GABAergic inhibitory tone will reduce HIV-related NP in a rat model. METHODS The application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve plus systemic ddC (one antiretroviral drug) induced mechanical allodynia. The hind paws of rats were inoculated with replication-defective herpes simplex virus (HSV) vectors genetically encoding gad1 gene to express glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes the decarboxylation of glutamate to GABA. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The expression of GAD67 in both the lumbar spinal cord and the L4-5 dorsal root ganglia was examined using western blots. The expression of mitochondrial superoxide in the spinal dorsal horn was examined using MitoSox imaging. The immunoreactivity of spinal GABA, pCREB, and pC/EBPβ was tested using immunohistochemistry. RESULTS In the gp120 with ddC-induced neuropathic pain model, GAD67 expression mediated by the HSV vector caused an elevation of mechanical threshold that was apparent on day 3 after vector inoculation. The antiallodynic effect of the single HSV vector inoculation expressing GAD67 lasted >28 days. The area under the time-effect curves in the HSV vector expressing GAD67 was increased compared with that in the control vectors (P = 0.0005). Intrathecal GABA-A/B agonists elevated mechanical threshold in the pain model. The HSV vectors expressing GAD67 reversed the lowered GABA immunoreactivity in the spinal dorsal horn in the neuropathic rats. HSV vectors expressing GAD67 in the neuropathic rats reversed the increased signals of mitochondrial superoxide in the spinal dorsal horn. The vectors expressing GAD67 reversed the upregulated immunoreactivity expression of pCREB and pC/EBPβ in the spinal dorsal horn in rats exhibiting NP. CONCLUSIONS Based on our results, we suggest that GAD67 mediated by HSV vectors acting through the suppression of mitochondrial reactive oxygen species and transcriptional factors in the spinal cord decreases pain in the HIV-related neuropathic pain model, providing preclinical evidence for gene therapy applications in patients with HIV-related pain states.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
22 |
11
|
Mashour GA, Moulding HD, Chahlavi A, Khan GA, Rabkin SD, Martuza RL, Driever PH, Kurtz A, Chalavi A. Therapeutic efficacy of G207 in a novel peripheral nerve sheath tumor model. Exp Neurol 2001; 169:64-71. [PMID: 11312559 DOI: 10.1006/exnr.2001.7641] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nerve involvement poses a significant obstacle for the management of peripheral nervous system tumors, and nerve injury provides a frequent source of postoperative morbidity. The lack of suitable animal models for peripheral nerve tumors has impeded the development of alternative nerve-sparing therapies. To evaluate the effect of a multimutated replication-competent herpes simplex virus (G207) on the growth of peripheral nerve tumors and on nerve function, we developed a novel peripheral nerve sheath tumor model. Human neuroblastoma-derived cells injected into murine sciatic nerve consistently caused tumor development within the nerve sheath after 2 weeks followed by increasingly severe impairment of nerve function. Tumor treatment by a single intratumoral injection of G207 resulted in significant reduction of functional impairment, inhibition of tumor growth and prolonged survival. Direct injection of G207 viral particles into the healthy nerve sheath caused no obvious neurologic sequelae, whereas injections of wild-type virus resulted in uniform lethality. The results indicate that viral therapy might be considered as a safe alternative to surgical removal of tumors with peripheral nerve involvement.
Collapse
|
|
24 |
18 |
12
|
Martinat C, Jarousse N, Prévost MC, Brahic M. The GDVII strain of Theiler's virus spreads via axonal transport. J Virol 1999; 73:6093-8. [PMID: 10364364 PMCID: PMC112673 DOI: 10.1128/jvi.73.7.6093-6098.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Following intracerebral inoculation, the DA strain of Theiler's virus sequentially infects neurons in the gray matter and glial cells in the white matter of the spinal cord. It persists in the latter throughout the life of the animal. Several observations suggest that the virus spreads from the gray to the white matter by axonal transport. In contrast, the neurovirulent GDVII strain causes a fatal encephalitis with lytic infection of neurons. It does not infect the white matter of the spinal cord efficiently and does not persist in survivors. The inability of this virus to infect the white matter could be due to a defect in axonal transport. Using footpad inoculations, we showed that the GDVII strain is, in fact, transported in axons. Transport was prevented by sectioning the sciatic nerve. The kinetics of transport and experiments using colchicine suggested that the virus uses microtubule-associated fast axonal transport. Our results show that a cardiovirus can spread by fast axonal transport and suggest that the inability of the GDVII strain to infect the white matter is not due to a defect in axonal transport.
Collapse
|
research-article |
26 |
18 |
13
|
Watanabe TS, Ohtori S, Koda M, Aoki Y, Doya H, Shirasawa H, Yamazaki M, Moriya H, Takahashi K, Yamashita T. Adenoviral gene transfer in the peripheral nervous system. J Orthop Sci 2006; 11:64-9. [PMID: 16437351 DOI: 10.1007/s00776-005-0971-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 09/29/2005] [Indexed: 11/26/2022]
Abstract
BACKGROUND Viral vectors have gained widespread use as vehicles for somatic gene transfer, and the targeted expression of foreign proteins by these vectors offers advantages over the systemic administration of the drugs in some therapeutic situations. Selective virus-mediated gene transfer to the peripheral nervous system (PNS), however, remains to be established. There are no data showing efficiency of protein transduction in the PNS, which consists of a variety of cell types, many of which are postmitotic. METHODS We prepared the first-generation replication-deficient recombinant adenovirus vectors engineered to express LacZ. Eight-week-old Wister rats were used in this study. Adenovirus vector (5 microl) containing the LacZ gene (5 x 10(8) pfu) was injected into rat sciatic nerves or the dorsal root ganglia at the level of L5. The sciatic nerves, the dorsal root ganglia, and the spinal cords were obtained 7, 14, 21, and 28 days after injection. Expression of LacZ was assessed by X-gal histochemistry and beta-gal immunohistochemistry. RESULTS Following injection of the adenovirus carrying the LacZ gene into the sciatic nerve, LacZ expression was seen mainly in the Schwann cells and the small neurons in the dorsal root ganglion. In contrast, expression was observed in the primary nerve terminals of the spinal dorsal horn and the small to large dorsal root ganglion neurons and the Schwann cells after injection of the vectors into the L5 dorsal root ganglion. There were no side effects in rats with injection in the dorsal root ganglia or the sciatic nerve. CONCLUSIONS The present study shows efficient protein transduction by adenovirus vectors in the PNS. It is noted that injection of the virus into the dorsal root ganglia leads to extensive expression of LacZ in the spinal cord, the dorsal root ganglia, and the sciatic nerves.
Collapse
|
|
19 |
17 |
14
|
Hirano N, Tohyama K, Taira H. Spread of swine hemagglutinating encephalomyelitis virus from peripheral nerves to the CNS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 440:601-7. [PMID: 9782335 DOI: 10.1007/978-1-4615-5331-1_78] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Swine hemagglutinating encephalomyelitis virus (HEV) strain 67N was inoculated into the sciatic nerve or the right leg crural muscle of rats. In both cases, the virus was isolated first from the caudal half of the spinal cord on day 2 after inoculation, and from the rostral half of the spinal cord and the brain on day 3. The virus titers in the brain reached a maximum when the infected rats developed CNS symptoms on day 5. Using confocal laser scanning microscope, fluorescent positive cells were first found in the lumbar dorsal root ganglion (DRG) and spinal cord ipsilateral of the inoculated leg on day 3. Antigen positive neurons were found bilaterally in the lumbar DRG and spinal cord on day 4. On day 5 specific fluorescence was observed in the neurons of the cerebral cortex, hippocampus, brainstem and Purkinje cells in the cerebellum.
Collapse
|
|
27 |
14 |
15
|
Libbey JE, McCright IJ, Tsunoda I, Wada Y, Fujinami RS. Peripheral nerve protein, P0, as a potential receptor for Theiler's murine encephalomyelitis virus. J Neurovirol 2001; 7:97-104. [PMID: 11517382 DOI: 10.1080/13550280152058753] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) belongs the family Picornaviridae. TMEV not only replicates in the gastrointestinal tract but also spreads to the central nervous system (CNS) either by a hematogenous or a neural pathway during natural infection. The DA strain of TMEV infects neurons during the acute phase, and glial cells and macrophages during the chronic phase, leading to a demyelinating disease similar to multiple sclerosis. Different virus-host receptor interactions in the peripheral and the neuronal cells could explain the pathways of viral spread from the peripheral to the CNS and neurons to glial cells. However, the receptor for TMEV remains unknown. P0 protein, a 28-31 kD glycoprotein, belongs to the immunoglobulin superfamily and constitutes 50% of the total myelin protein in the peripheral nerve. Other picornaviruses use members of the immunoglobulin superfamily as receptors. Thus we hypothesized P0 protein could act as a receptor for TMEV. In a virus overlay assay, radiolabeled TMEV bound to a 28-30 kD protein from the peripheral nerve of wild-type C57BL/6, but no binding was found in the peripheral nerve from P0-knockout mice. TMEV replicated fourfold higher in P0-transfected BW5147.G.1.4 cells than in mock-transfected cells. The increase in virus replication in the P0-transfected cell line was blocked by preincubation of the cells with anti-P0 antibody. A virus binding study showed that TMEV bound to P0-transfected cells but not to mock-transfected cells. The use of the P0 protein in Schwann cells as a receptor may be one mechanism by which TMEV spreads from the gastrointestinal tract to the CNS.
Collapse
|
|
24 |
13 |
16
|
Kato N, Nakanishi K, Nemoto K, Morishita R, Kaneda Y, Uenoyama M, Ikeda T, Fujikawa K. Efficient gene transfer from innervated muscle into rat peripheral and central nervous systems using a non-viral haemagglutinating virus of Japan (HVJ)-liposome method. J Neurochem 2003; 85:810-5. [PMID: 12694407 DOI: 10.1046/j.1471-4159.2003.01730.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We evaluated the feasibility of gene delivery into the peripheral and central nervous systems via retrograde axonal transport following injection of a haemagglutinating virus of Japan (HVJ)-liposome-DNA complex vector into an innervated muscle. Transfection efficiency was assessed by measuring luciferase activity, and was compared statistically with that achieved using a liposome-DNA control vector. High luciferase activity was observed in the injected muscle, the ipsilateral sciatic nerve, and the ipsilateral dorsal root ganglia on day 1 after gene transfer. The spinal cord also showed luciferase activity, although this was lower than in the other tissues. However, no activity was observed in the contralateral sciatic nerve or the contralateral dorsal root ganglia. In addition, we performed gene transfer twice, with a 1-week interval, to evaluate the feasibility of repeated therapeutic gene delivery. Again, a high transfection efficiency was observed immediately, even after the second gene transfer, and transfection efficiency was significantly higher at each defined time-point using the HVJ-liposome complex vector than using a control vector. These results indicate that this method could be used for repeated therapeutic gene delivery into muscle, nerve, dorsal root ganglia, and possibly spinal cord, without the need for a surgical approach, making it well suited to clinical applications.
Collapse
|
|
22 |
13 |
17
|
Kratzel C, Mai J, Madela K, Beekes M, Krüger D. Propagation of scrapie in peripheral nerves after footpad infection in normal and neurotoxin exposed hamsters. Vet Res 2006; 38:127-39. [PMID: 17181988 DOI: 10.1051/vetres:2006047] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 09/01/2006] [Indexed: 11/14/2022] Open
Abstract
As is known from various animal models, the spread of agents causing transmissible spongiform encephalopathies (TSE) after peripheral infection affects peripheral nerves before reaching the central nervous system (CNS) and leading to a fatal end of the disease. The lack of therapeutic approaches for TSE is partially due to the limited amount of information available on the involvement of host biological compartments and processes in the propagation of the infectious agent. The in vivo model presented here can provide information on the spread of the scrapie agent via the peripheral nerves of hamsters under normal and altered axonal conditions. Syrian hamsters were unilaterally footpad (f.p.) infected with scrapie. The results of the spatiotemporal ultrasensitive immunoblot-detection of scrapie-associated prion protein (PrP(Sc)) in serial nerve segments of both distal sciatic nerves could be interpreted as a centripetal and subsequent centrifugal neural spread of PrP(Sc) for this route of infection. In order to determine whether this propagation is dependent on main components in the axonal cytoskeleton (e.g. neurofilaments, also relevant for the component ;a' of slow axonal transport mechanisms), hamsters were treated -in an additional experiment- with the neurotoxin beta,beta-iminodiproprionitrile (IDPN) around the beginning of the scrapie infection. A comparison of the Western blot signals of PrP(Sc) in the ipsilateral and in the subsequently affected contralateral sciatic nerve segments with the results revealed from IDPN-untreated animals at preclinical and clinical stages of the TSE disease, indicated similar amounts of PrP(Sc). Furthermore, the mean survival time was unchanged in both groups. This in vivo model, therefore, suggests that the propagation of PrP(Sc) along peripheral nerves is not dependent on an intact neurofilament component of the axonal cytoskeleton. Additionally, the model indicates that the spread of PrP(Sc) is not mediated by the slow component ;a' of the axonal transport mechanism.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
13 |
18
|
Tannous R, Grose C. Calculation of the anterograde velocity of varicella-zoster virions in a human sciatic nerve during shingles. J Infect Dis 2011; 203:324-6. [PMID: 21186259 PMCID: PMC3071100 DOI: 10.1093/infdis/jiq068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 09/28/2010] [Indexed: 11/13/2022] Open
Abstract
Zoster of the sciatic nerve, the longest nerve in the human body, is an uncommon event. We cared for a child with sciatic nerve zoster who had severe pain over the lower back 6 days before appearance of vesicular rash on the foot in the L4 dermatome. On the basis of the clinical data, we calculated an anterograde velocity for the varicella zoster virion of 5.55 mm/h or .0015 mm/s. Because there is no good animal model of varicella zoster virus reactivation from latency, this experiment of nature fills a notable gap in our knowledge about varicella zoster virus neuronal transportation.
Collapse
|
Case Reports |
14 |
12 |
19
|
Drescher KM, Tracy SM. Injection of the sciatic nerve with TMEV: a new model for peripheral nerve demyelination. Virology 2007; 359:233-242. [PMID: 17028060 PMCID: PMC1847644 DOI: 10.1016/j.virol.2006.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/07/2006] [Indexed: 10/24/2022]
Abstract
Demyelination of the human peripheral nervous system (PNS) can be caused by diverse mechanisms including viral infection. Despite association of several viruses with the development of peripheral demyelination, animal models of the condition have been limited to disease that is either autoimmune or genetic in origin. We describe here a model of PNS demyelination based on direct injection of sciatic nerves of mice with the cardiovirus, Theiler's murine encephalomyelitis virus (TMEV). Sciatic nerves of FVB mice develop inflammatory cell infiltration following TMEV injection. Schwann cells and macrophages are infected with TMEV. Viral replication is observed initially in the sciatic nerves and subsequently the spinal cord. Sciatic nerves are demyelinated by day 5 post-inoculation (p.i.). Injecting sciatic nerves of scid mice resulted in increased levels of virus recovered from the sciatic nerve and spinal cord relative to FVB mice. Demyelination also occurred in scid mice and by 12 days p.i., hindlimbs were paralyzed. This new model of virus-induced peripheral demyelination may be used to dissect processes involved in protection of the PNS from viral insult and to study the early phases of lesion development.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
10 |
20
|
Miwa H, Shibata M, Okado H, Hirano S. Tracing axons in the peripheral nerve using lacZ gene recombinant adenovirus and its application to regeneration of the peripheral nerve. J Neuropathol Exp Neurol 2001; 60:671-5. [PMID: 11444795 DOI: 10.1093/jnen/60.7.671] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The usefulness of recombinant adenovirus with LacZ to trace axons in the peripheral nervous system was investigated. Recombinant adenovirus with LacZ was applied to the cut end of the tibial nerve in rats. The LacZ gene product (B-galactosidase) filled axons of the tibial nerve, which permitted the continuous long-range tracing of axons. Further, the branching and the direction of the branches could also be examined. Labeled axons in the tibial nerves ran parallel to each other without branching and kept this relative position in the tibial and the sciatic nerve. When the virus was introduced to the regenerating nerve using a silicon tube, the regenerating fibers grew tortuously with short branches in the bulge at the proximal end of the silicon tube. The fibers grew straight in the tube and passed through the bulge at the distal end of the tube without branching. These observations indicate that the LacZ gene recombinant adenovirus is a useful tracer for the study of the peripheral nervous system and of the regeneration processes.
Collapse
|
|
24 |
8 |
21
|
Abstract
Poliovirus (PV) infects susceptible cells through poliovirus receptor (PVR), which functions to bind virus and to convert its conformation. To study early infection process of PV, infection systems were employed using in vitro cultured cells and in vivo neural pathway of PVR transgenic (Tg) mice. For in vitro study, mouse L cells were established expressing mouse high affinity Fc gamma receptor molecules, and used them as in vitro PV infection system. PV infection was mediated, albeit inefficiently, by mouse anti-PV monoclonal antibodies (mAbs; IgG2a subtypes) that did not show an activity to convert PV (160S) to 135S particle. The infection efficiency was enhanced when PVR-IgG2a, a chimera molecule consisting of the extracellular moiety of PVR and the Fc portion of mouse IgG2a, was used for anti-PV mAbs. Virion conformational change to 135S particle was induced by PVR-IgG2a. For in vivo study, intramuscular (i.m.) inoculation of PV into the calves of PV-sensitive Tg mice was employed. PV-related materials recovered from the sciatic nerve, after the i.m. inoculation, were mainly composed of intact 160S virion particle, although this neural pathway appeared to be dependent on PVR. These results suggested that some specific interaction(s) of PVR to PV beyond its binding activity was important to enhance infectivity of PV in in vitro cultured cells, and that PV uncoating occurs after retrograde axonal transport of the virus through the sciatic nerve of Tg mice. Thus, PV infection may be established by any of these several pathways. reserved.
Collapse
|
|
26 |
8 |
22
|
Maratou E, Theophilidis G, Arsenakis M. Axonal transport of herpes simplex virus-1 in an in vitro model based on the isolated sciatic nerve of the frog Rana ridibunda. J Neurosci Methods 1998; 79:75-8. [PMID: 9531462 DOI: 10.1016/s0165-0270(97)00166-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An in vitro model for the study of the axonal transport of herpes simplex virus-1 (HSV-1) in the nerve fibres of the sciatic nerve of the frog Rana ridibunda, has been developed. The nerve was placed along a three-chambered bath consisting of three isolated chambers arranged in series: the stimulating, perfusion and recording chambers. The HSV-1 inoculum was placed in the stimulating chamber, where the proximal part of the isolated sciatic nerve was immersed. HSV-1 was detected after 24-36 h in the recording chamber, where the distal part of the nerve was immersed in Dulbecco's Modified Eagle Medium (DMEM), indicating an axonal transport speed of 46-60 mm/day. The evoked maximum compound action potentials generated in the stimulating chamber was monitored continuously in the recording chamber as an indication of the viability of the nerve during axonal transport. The in vitro method presented here is a useful tool for the pharmacological study of various parameters, e.g. drugs diluted in the perfusion chamber, ionising radiation and temperature, which may affect the axonal transport or other properties of HSV-1.
Collapse
|
|
27 |
7 |
23
|
Turner DE, Noordmans AJ, Feldman EL, Boulis NM. Remote adenoviral gene delivery to the spinal cord: contralateral delivery and reinjection. Neurosurgery 2001; 48:1309-16; discussion 1316-7. [PMID: 11383735 DOI: 10.1097/00006123-200106000-00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE This study characterizes the distribution of adenoviral genes in the spinal cord after viral vector injection into the sciatic nerve. It also evaluates the ability of repeated adenoviral sciatic nerve injections to prolong gene expression in the spinal cord. METHODS Rat sciatic nerves were unilaterally coinjected with the retrograde tracer Fluoro-Gold (Fluorochrome, Inc., Denver, CO) and the adenoviral vector Ad5RSVntLacZ. The distribution of adenoviral gene expression in the spinal cord was compared with that of Fluoro-Gold. Next, levels of gene expression in the sciatic nerve and spinal cord were compared after single and repeated injections of Ad5RSVntLacZ. Finally, remote spinal cord gene expression in naive animals was compared with expression in animals that had been pretreated with subcutaneous Ad5RSVntLacZ inoculation. RESULTS Viral gene expression was detected in all quadrants of the spinal cord gray matter, whereas Fluoro-Gold was detected only in the ipsilateral ventral horn (n = 5). This remote delivery was blocked by sciatic nerve transection (n = 10). Viral gene expression occurred in the sciatic nerve after both initial and repeated injections, whereas remote gene expression in the spinal cord was observed only after primary sciatic nerve injection (n = 24; P < 0.003). As with repeated sciatic nerve injections, subcutaneous inoculation with Ad5RSVntLacZ blocked subsequent remote spinal cord gene delivery (n = 8; P < 0.05). CONCLUSION Remote viral gene delivery occurs in neurons without direct sciatic nerve projections but is dependent on intact peripheral nerves. Repeated injections fail to boost spinal cord gene expression, because of immune recognition of reinjected virus.
Collapse
|
|
24 |
3 |
24
|
Kitselman CH, Mital AK. Terminal dissemination of rabies virus in selected rat tissues. CANADIAN JOURNAL OF COMPARATIVE MEDICINE : REVUE CANADIENNE DE MEDECINE COMPAREE 1968; 32:461-4. [PMID: 15846893 PMCID: PMC1319276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Fifty rats were divided into 3 groups and challenged via the foot pad route with a fixed and 2 different strains of street rabies virus in order to study the dissemination of the virus and the affinity for certain tissues of the rat. The incubation period for rats inoculated with fixed rabies is shorter than with street virus, being 5 to 7 days compared with 10 to 12 days. Rats inoculated with the fixed strain were less aggressive and irritable than rats inoculated with street virus. The fixed strain demonstrated a greater affinity for the tissues studied as compared to the street strains of virus. Both the fixed and street strains revealed a low affinity for the parotid gland since no virus could be demonstrated in 14 of 20 in the fixed virus group and 27 of 30 in the street virus group.
Collapse
|
research-article |
57 |
|
25
|
Ohka S, Nomoto A. The molecular basis of poliovirus neurovirulence. DEVELOPMENTS IN BIOLOGICALS 2002; 105:51-8. [PMID: 11763337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Species specificity of poliovirus (PV) is mostly governed by host cellular molecules that serve as the PV receptor (PVR). Molecular cloning of the gene and cDNAs of human PVR and the subsequent development of PV-sensitive transgenic (Tg) mice carrying the human PVR gene made it possible to investigate molecular mechanisms for PV-specific dissemination in the whole body. After intravenous inoculation which makes artificial viremia, poliovirus appears to enter the central nervous system (CNS) at a fairly high rate via the blood brain barrier, suggesting existence of a specific permeation system for PV. This main dissemination process does not require PVR. After intramuscular inoculation, PV appears to be incorporated by endocytosis at synapses, and the endosomes containing PV transported through axons to neuron cell body, where viral replication occurs. Efficiency of viral multiplication in the CNS probably determines the neurovirulence level, which differs between PV strains. An important determinant for neurovirulence phenotype resides in the internal ribosomal entry site (IRES). This has led us to a concept of "IRES-dependent virus tropism".
Collapse
|
|
23 |
|