1
|
Abstract
Sourdough has been used since ancient times and its ability to improve the quality and increase the shelf-life of bread has been widely described. During sourdough fermentation, lactic acid bacteria (LAB) produce a number of metabolites which have been shown to have a positive effect on the texture and staling of bread, e.g. organic acids, exopolysaccharides (EPS) and/or enzymes. EPS produced by LAB have the potential to replace more expensive hydrocolloids used as bread improvers. Organic acids affect the protein and starch fractions of flour. Additionally, the drop in pH associated with acid production causes an increase in the proteases and amylases activity of the flour, thus leading to a reduction in staling. While improving the textural qualities of bread, sourdough fermentation also results in increased mineral bioavailability and reduced phytate content. In this review we will be discussing the effect of sourdough on wheat and rye bread as well as the potential of sourdough to improve the quality of gluten-free bread.
Collapse
|
|
18 |
362 |
2
|
Meroth CB, Walter J, Hertel C, Brandt MJ, Hammes WP. Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 2003; 69:475-82. [PMID: 12514030 PMCID: PMC152404 DOI: 10.1128/aem.69.1.475-482.2003] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2002] [Accepted: 10/18/2002] [Indexed: 11/20/2022] Open
Abstract
Four sourdoughs (A to D) were produced under practical conditions by using a starter mixture of three commercially available sourdough starters and a baker's yeast constitutively containing various species of lactic acid bacteria (LAB). The sourdoughs were continuously propagated until the composition of the LAB flora remained stable. Two LAB-specific PCR-denaturing gradient gel electrophoresis (DGGE) systems were established and used to monitor the development of the microflora. Depending on the prevailing ecological conditions in the different sourdough fermentations, only a few Lactobacillus species were found to be competitive and became dominant. In sourdough A (traditional process with rye flour), Lactobacillus sanfranciscensis and a new species, L. mindensis, were detected. In rye flour sourdoughs B and C, which differed in the process temperature, exclusively L. crispatus and L. pontis became the predominant species in sourdough B and L. crispatus, L. panis, and L. frumenti became the predominant species in sourdough C. On the other hand, in sourdough D (corresponding to sourdough C but produced with rye bran), L. johnsonii and L. reuteri were found. The results of PCR-DGGE were consistent with those obtained by culturing, except for sourdough B, in which L. fermentum was also detected. Isolates of the species L. sanfranciscensis and L. fermentum were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively.
Collapse
|
research-article |
22 |
269 |
3
|
Katina K, Laitila A, Juvonen R, Liukkonen KH, Kariluoto S, Piironen V, Landberg R, Aman P, Poutanen K. Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol 2007; 24:175-86. [PMID: 17008162 DOI: 10.1016/j.fm.2006.07.012] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Response surface methodology was applied to study the effects of fermentation on the levels of phytochemicals (folates, phenolic compounds, alkylresorcinols) and on the solubilization of pentosans in rye bran from native and peeled grains. Furthermore, the microbial composition of the brans before and after fermentation was studied. Peeling reduced the microbial load and lower microbial counts were detected in the fermentation experiments carried out with the bran from peeled grains. High temperature and long fermentation time favoured the growth of indigenous lactic acid bacteria (LAB), and a diverse microbial community was detected. The brans contained low levels of aerobic spore-forming bacteria, but their number was not increased during the fermentations. Fermentation of both brans increased the levels of folates, easily extractable total phenolics and free ferulic acid. During fermentation of bran from native grains, the levels of alkylresorcinols slightly increased but during fermentation of bran from peeled grains they decreased. Significant increase in soluble pentosans was established in both types of rye bran fermentations. Enhanced bioactivity and solubilization of pentosans with limited microbial growth were obtained after 12-14 h fermentation at 25 degrees C. The results suggest that fermentation is a potential bioprocessing technology for improved technological properties and bioactivity of rye bran.
Collapse
|
|
18 |
161 |
4
|
Oeser B, Heidrich PM, Müller U, Tudzynski P, Tenberge KB. Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal Genet Biol 2002; 36:176-86. [PMID: 12135573 DOI: 10.1016/s1087-1845(02)00020-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Claviceps purpurea is a biotrophic, organ-specific pathogen of grasses and cereals, attacking exclusively young ovaries. We have previously shown that its mainly intercellular growth is accompanied by degradation of pectin, and that two endopolygalacturonase genes (cppg1/cppg2) are expressed throughout all stages of infection. We report here on a functional analysis of these genes using a gene-replacement approach. Mutants lacking both polygalacturonase genes are not affected in their vegetative properties, but they are nearly nonpathogenic on rye. Complementation of the mutants with wild-type copies of cppg1 and cppg2 fully restored pathogenicity, proving that the endopolygalacturonases encoded by cppg1 and cppg2 represent pathogenicity factors in the interaction system C. purpurea/Secale cereale, the first unequivocally identified so far in this system.
Collapse
|
|
23 |
141 |
5
|
Suhr KI, Nielsen PV. Antifungal activity of essential oils evaluated by two different application techniques against rye bread spoilage fungi. J Appl Microbiol 2003; 94:665-74. [PMID: 12631202 DOI: 10.1046/j.1365-2672.2003.01896.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To study how antifungal activity of natural essential oils depends on the assay method used. METHODS AND RESULTS Oils of bay, cinnamon leaf, clove, lemongrass, mustard, orange, sage, thyme and two rosemary oils were tested by two methods: (1) a rye bread-based agar medium was supplemented with 100 and 250 microl l-1 essential oil and (2) real rye bread was exposed to 136 and 272 microl l-1 volatile oil in air. Rye bread spoilage fungi were used for testing. Method 1 proved thyme oil to be the overall best growth inhibitor, followed by clove and cinnamon. On the contrary, orange, sage and rosemary oils had very limited effects. Mustard and lemongrass were the most effective oils by the volatile method, and orange, sage and one rosemary showed some effects. Oil compositions were analysed by gas chromatography-mass spectrography. CONCLUSIONS Antifungal effects of the essential oils depended on the application method. Larger phenolic compounds such as thymol and eugenol (thyme, cinnamon and clove) had best effect applied directly to medium, whereas smaller compounds such as allyl isothiocyanate and citral (mustard and lemongrass) were most efficient when added as volatiles. SIGNIFICANCE AND IMPACT OF THE STUDY This study proves that the method used for screening essential oils as potential antimicrobials should correspond with the application sought.
Collapse
|
|
22 |
136 |
6
|
Hurni S, Brunner S, Buchmann G, Herren G, Jordan T, Krukowski P, Wicker T, Yahiaoui N, Mago R, Keller B. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:957-69. [PMID: 24124925 DOI: 10.1111/tpj.12345] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/25/2013] [Accepted: 10/04/2013] [Indexed: 05/18/2023]
Abstract
The improvement of wheat through breeding has relied strongly on the use of genetic material from related wild and domesticated grass species. The 1RS chromosome arm from rye was introgressed into wheat and crossed into many wheat lines, as it improves yield and fungal disease resistance. Pm8 is a powdery mildew resistance gene on 1RS which, after widespread agricultural cultivation, is now widely overcome by adapted mildew races. Here we show by homology-based cloning and subsequent physical and genetic mapping that Pm8 is the rye orthologue of the Pm3 allelic series of mildew resistance genes in wheat. The cloned gene was functionally validated as Pm8 by transient, single-cell expression analysis and stable transformation. Sequence analysis revealed a complex mosaic of ancient haplotypes among Pm3- and Pm8-like genes from different members of the Triticeae. These results show that the two genes have evolved independently after the divergence of the species 7.5 million years ago and kept their function in mildew resistance. During this long time span the co-evolving pathogens have not overcome these genes, which is in strong contrast to the breakdown of Pm8 resistance since its introduction into commercial wheat 70 years ago. Sequence comparison revealed that evolutionary pressure acted on the same subdomains and sequence features of the two orthologous genes. This suggests that they recognize directly or indirectly the same pathogen effectors that have been conserved in the powdery mildews of wheat and rye.
Collapse
|
|
12 |
134 |
7
|
Abstract
Soil microcosms were inoculated with Escherichia coli O157:H7 to test persistence in fallow soil, on roots of cover crops and in presence of manure. In fallow soils, E. coli O157:H7 persisted for 25-41 days, on rye roots for 47-96 days and on alfalfa roots, in a silt loam soil, for 92 days whereas on other legumes persistence ranged from 25-40 days, similar to fallow soil. Manure did not seem to affect the persistence of E. coli O157:H7 in these soils. Indigenous and manure-applied coliform populations often decreased faster when E. coli O157:H7 was applied, indicating possible competition between microflora. Coliform populations in microcosms not inoculated with E. coli O157:H7 decreased more slowly or increased. Microbial community analyses showed little effect for E. coli O157:H7 inoculation or addition of manure. Microbial community metabolic activity was enhanced from rye roots after 14 days and by 63 days from alfalfa roots. Microbial community lactose utilization increased over time on rye roots in all soils and on alfalfa roots in a silt loam soil when E. coli O157:H7 was inoculated. Lactose utilization also increased for uninoculated rye roots, soil around rye roots and in some fallow soils. Our data suggest that clay increases persistence and activity of E. coli O157:H7 and other coliforms. In frozen soil stored for over 500 days, E. coli O157:H7 was viable in 37% of tested samples. In summary, E. coli O157:H7 persisted longer and activity was enhanced with some cover crops in these soils due to plant roots, the presence of clay and freezing.
Collapse
|
Comparative Study |
23 |
134 |
8
|
Meroth CB, Hammes WP, Hertel C. Identification and population dynamics of yeasts in sourdough fermentation processes by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 2004; 69:7453-61. [PMID: 14660398 PMCID: PMC309968 DOI: 10.1128/aem.69.12.7453-7461.2003] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four sourdoughs (A to D) were produced under practical conditions, using a starter obtained from a mixture of three commercially available sourdough starters and baker's yeast. The doughs were continuously propagated until the composition of the microbiota remained stable. A fungi-specific PCR-denaturing gradient gel electrophoresis (DGGE) system was established to monitor the development of the yeast biota. The analysis of the starter mixture revealed the presence of Candida humilis, Debaryomyces hansenii, Saccharomyces cerevisiae, and Saccharomyces uvarum. In sourdough A (traditional process with rye flour), C. humilis dominated under the prevailing fermentation conditions. In rye flour sourdoughs B and C, fermented at 30 and 40 degrees C, respectively, S. cerevisiae became predominant in sourdough B, whereas in sourdough C the yeast counts decreased within a few propagation steps below the detection limit. In sourdough D, which corresponded to sourdough C in temperature but was produced with rye bran, Candida krusei became dominant. Isolates identified as C. humilis and S. cerevisiae were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively. The yeast species isolated from the sourdoughs were also detected by PCR-DGGE. However, in the gel, additional bands were visible. Because sequencing of these PCR fragments from the gel failed, cloning experiments with 28S rRNA amplicons obtained from rye flour were performed, which revealed Cladosporium sp., Saccharomyces servazii, S. uvarum, an unculturable ascomycete, Dekkera bruxellensis, Epicoccum nigrum, and S. cerevisiae. The last four species were also detected in sourdoughs A, B, and C.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
122 |
9
|
Jonsson A, Winquist F, Schnürer J, Sundgren H, Lundström I. Electronic nose for microbial quality classification of grains. Int J Food Microbiol 1997; 35:187-93. [PMID: 9105927 DOI: 10.1016/s0168-1605(96)01218-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The odour of grains is in many countries the primary criterion of fitness for consumption. However, smelling of grain for quality grading should be avoided since inhalation of mould spores or toxins may be hazardous to the health and determinations of the off-odours are subjective. An electronic nose, i.e. a gas sensor array combined with a pattern recognition routine might serve as an alternative. We have used an electronic nose consisting of a sensor array with different types of sensors. The signal pattern from the sensors is collected by a computer and further processed by an artificial neural network (ANN) providing the pattern recognition system. Samples of oats, rye and barley with different odours and wheat with different levels of ergosterol, fungal and bacterial colony forming units (cfu) were heated in a chamber and the gas in the chamber was led over the sensory array. The ANN could predict the odour classes of good, mouldy, weakly and strongly musty oats with a high degree of accuracy. The ANN also indicated the percentage of mouldy barley or rye grains in mixtures with fresh grains. In wheat a high degree of correlation between ANN predictions and measured ergosterol as well as with fungal and bacterial cfu was observed. The electronic nose can be developed to provide a simple and fast method for quality classification of grain and is likely to find applications also in other areas of food mycology.
Collapse
|
|
28 |
104 |
10
|
Li J, Dundas I, Dong C, Li G, Trethowan R, Yang Z, Hoxha S, Zhang P. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1095-1107. [PMID: 31955232 DOI: 10.1007/s00122-020-03534-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/03/2020] [Indexed: 05/02/2023]
Abstract
A physical map of Secale cereale chromosome 6R was constructed using deletion mapping, and a new stripe rust resistance gene Yr83 was mapped to the deletion bin of FL 0.73-1.00 of 6RL. Rye (Secale cereale L., RR) possesses valuable genes for wheat improvement. In the current study, we report a resistance gene conferring stripe rust resistance effective from seedling to adult plant stages located on chromosome 6R. This chromosome was derived from triticale line T-701 and also carries highly effective resistance to the cereal cyst nematode species Heterodera avenae Woll. A wheat-rye 6R(6D) disomic substitution line exhibited high levels of seedling resistance to Australian pathotypes of the stripe rust (Puccinia striiformis f. sp. tritici; Pst) pathogen and showed an even greater resistance to the Chinese Pst pathotypes in the field. Ten chromosome 6R deletion lines and five wheat-rye 6R translocation lines were developed earlier in the attempt to transfer the nematode resistance gene to wheat and used herein to map the stripe rust resistance gene. These lines were subsequently characterized by sequential multicolor fluorescence in situ hybridization (mc-FISH), genomic in situ hybridization (GISH), mc-GISH, PCR-based landmark unique gene (PLUG), and chromosome 6R-specific length amplified fragment sequencing (SLAF-Seq) marker analyses to physically map the stripe rust resistance gene. The new stripe rust resistance locus was located in a chromosomal bin with fraction length (FL) 0.73-1.00 on 6RL and was named Yr83. A wheat-rye translocation line T6RL (#5) carrying the stripe rust resistance gene will be useful as a new germplasm in breeding for resistance.
Collapse
|
|
5 |
100 |
11
|
Praz CR, Bourras S, Zeng F, Sánchez‐Martín J, Menardo F, Xue M, Yang L, Roffler S, Böni R, Herren G, McNally KE, Ben‐David R, Parlange F, Oberhaensli S, Flückiger S, Schäfer LK, Wicker T, Yu D, Keller B. AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus. THE NEW PHYTOLOGIST 2017; 213:1301-1314. [PMID: 27935041 PMCID: PMC5347869 DOI: 10.1111/nph.14372] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/02/2016] [Indexed: 05/20/2023]
Abstract
There is a large diversity of genetically defined resistance genes in bread wheat against the powdery mildew pathogen Blumeria graminis (B. g.) f. sp. tritici. Many confer race-specific resistance to this pathogen, but until now only the mildew avirulence gene AvrPm3a2/f2 that is recognized by Pm3a/f was known molecularly. We performed map-based cloning and genome-wide association studies to isolate a candidate for the mildew avirulence gene AvrPm2. We then used transient expression assays in Nicotiana benthamiana to demonstrate specific and strong recognition of AvrPm2 by Pm2. The virulent AvrPm2 allele arose from a conserved 12 kb deletion, while there is no protein sequence diversity in the gene pool of avirulent B. g. tritici isolates. We found one polymorphic AvrPm2 allele in B. g. triticale and one orthologue in B. g. secalis and both are recognized by Pm2. AvrPm2 belongs to a small gene family encoding structurally conserved RNase-like effectors, including Avra13 from B. g. hordei, the cognate Avr of the barley resistance gene Mla13. These results demonstrate the conservation of functional avirulence genes in two cereal powdery mildews specialized on different hosts, thus providing a possible explanation for successful introgression of resistance genes from rye or other grass relatives to wheat.
Collapse
|
research-article |
8 |
90 |
12
|
Kariluoto S, Aittamaa M, Korhola M, Salovaara H, Vahteristo L, Piironen V. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs. Int J Food Microbiol 2005; 106:137-43. [PMID: 16213050 DOI: 10.1016/j.ijfoodmicro.2005.06.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 03/17/2005] [Accepted: 06/30/2005] [Indexed: 11/30/2022]
Abstract
Fermentation of rye dough is often accompanied with an increase in folate content. In this study, three sourdough yeasts, Candida milleri CBS 8195, Saccharomyces cerevisiae TS 146, and Torulaspora delbrueckii TS 207; a control, baker's yeast S. cerevisiae ALKO 743; and four Lactobacillus spp., L. acidophilus TSB 262, L. brevis TSB 307, L. plantarum TSB 304, and L. sanfranciscensis TSB 299 originally isolated from rye sourdough were examined for their abilities to produce or consume folates. The microorganisms were grown in yeast extract-peptone-d-glucose medium as well as in small-scale fermentations that modelled the sourdough fermentation step used in rye baking. Total folate contents were determined using Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism. The microorganisms studied did not excrete folates into the media in significant amounts. Yeasts increased the folate contents of sterilised rye flour-water mixtures from 6.5 microg/100 g to between 15 and 23 microg/100 g after 19-h fermentation, whereas lactic acid bacteria decreased it to between 2.9 and 4.2 microg/100 g. Strains of Lactobacillus bulgaricus, L. casei, L. curvatus, L. fermentum, L. helveticus, Pediococcus spp., and Streptococcus thermophilus that were also tested gave folate contents after fermentation that varied between 2 and 10.4 microg/100 g. Although the four Lactobacillus spp. from sourdough consumed folates their effect on folate contents in co-cultivations was minimal. It was concluded that the increase of folate content during fermentation was mainly due to folate synthesis by yeasts. Fermentation of non-sterilised flour-water mixtures as such resulted in three-fold increases in the folate contents. Two folate producing bacteria were isolated from the non-sterilised flour and identified as Enterobacter cowanii and Pantoea agglomerans.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
85 |
13
|
Bourras S, Kunz L, Xue M, Praz CR, Müller MC, Kälin C, Schläfli M, Ackermann P, Flückiger S, Parlange F, Menardo F, Schaefer LK, Ben-David R, Roffler S, Oberhaensli S, Widrig V, Lindner S, Isaksson J, Wicker T, Yu D, Keller B. The AvrPm3-Pm3 effector-NLR interactions control both race-specific resistance and host-specificity of cereal mildews on wheat. Nat Commun 2019; 10:2292. [PMID: 31123263 PMCID: PMC6533294 DOI: 10.1038/s41467-019-10274-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/03/2019] [Indexed: 12/25/2022] Open
Abstract
The wheat Pm3 resistance gene against the powdery mildew pathogen occurs as an allelic series encoding functionally different immune receptors which induce resistance upon recognition of isolate-specific avirulence (AVR) effectors from the pathogen. Here, we describe the identification of five effector proteins from the mildew pathogens of wheat, rye, and the wild grass Dactylis glomerata, specifically recognized by the PM3B, PM3C and PM3D receptors. Together with the earlier identified AVRPM3A2/F2, the recognized AVRs of PM3B/C, (AVRPM3B2/C2), and PM3D (AVRPM3D3) belong to a large group of proteins with low sequence homology but predicted structural similarities. AvrPm3b2/c2 and AvrPm3d3 are conserved in all tested isolates of wheat and rye mildew, and non-host infection assays demonstrate that Pm3b, Pm3c, and Pm3d are also restricting the growth of rye mildew on wheat. Furthermore, divergent AVR homologues from non-adapted rye and Dactylis mildews are recognized by PM3B, PM3C, or PM3D, demonstrating their involvement in host specificity.
Collapse
|
research-article |
6 |
84 |
14
|
Maier W, Peipp H, Schmidt J, Wray V, Strack D. Levels of a terpenoid glycoside (blumenin) and cell wall-bound phenolics in some cereal mycorrhizas. PLANT PHYSIOLOGY 1995; 109:465-70. [PMID: 7480342 PMCID: PMC157608 DOI: 10.1104/pp.109.2.465] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Four cereals, Hordeum vulgare (barley), Triticum aestivum (wheat), Secale cereal (rye), and Avena sativa (oat), were grown in a defined nutritional medium with and without the arbuscular mycorrhizal fungus Glomus intraradices. Levels of soluble and cell wall-bound secondary metabolites in the roots of mycorrhizal and nonmycorrhizal plants were determined by high-performance liquid chromatography during the first 6 to 8 weeks of plant development. Whereas there was no difference in the levels of the cell wall-bound hydroxycinnamic acids, 4-coumaric and ferulic acids, there was a fungus-induced change of the soluble secondary root metabolites. The most obvious effect observed in all four cereals was the induced accumulation of a terpenoid glycoside. This compound was isolated and identified by spectroscopic methods (nuclear magnetic resonance, mass spectrometry) to be a cyclohexenone derivative, i.e. blumenol C 9-O-(2'-O-beta-glucuronosyl)-beta-glucoside. The level of this compound was found to be directly correlated with the degree of root colonization.
Collapse
|
Comparative Study |
30 |
81 |
15
|
Mey G, Held K, Scheffer J, Tenberge KB, Tudzynski P. CPMK2, an SLT2-homologous mitogen-activated protein (MAP) kinase, is essential for pathogenesis of Claviceps purpurea on rye: evidence for a second conserved pathogenesis-related MAP kinase cascade in phytopathogenic fungi. Mol Microbiol 2002; 46:305-18. [PMID: 12406210 DOI: 10.1046/j.1365-2958.2002.03133.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cpmk2, encoding a mitogen-activated protein (MAP) kinase from the ascomycete Claviceps purpurea, is an orthologue of SLT2 from Saccharomyces cerevisiae, the first isolated from a biotrophic, non-appressorium-forming pathogen. Deletion mutants obtained by a gene replacement approach show impaired vegetative properties (no conidiation) and a significantly reduced virulence, although they retain a limited ability to colonize the host tissue. Increased sensitivity to protoplasting enzymes indicates that the cell wall structure of the mutants may be altered. As the phenotypes of these mutants are similar to those observed in strains of the rice pathogen, Magnaporthe grisea, that have been deprived of their MAP kinase gene mps1, the ability of cpmk2 to complement the defects of delta mps1 was investigated. Interestingly, the C. purpurea gene, under the control of its own promoter, was able to complement the M. grisea mutant phenotype: transformants were able to sporulate and form infection hyphae on onion epidermis and were fully pathogenic on barley leaves. This indicates that, despite the differences in infection strategies, which include host and organ specificity, mode of penetration and colonization of host tissue, CPMK2/MPS1 defines a second MAP kinase cascade (after the Fus3p/PMK1 cascade) essential for fungal pathogenicity.
Collapse
|
|
23 |
80 |
16
|
Schollenberger M, Suchy S, Jara HT, Drochner W, Müller HM. A survey of Fusarium toxins in cereal-based foods marketed in an area of southwest Germany. Mycopathologia 2000; 147:49-57. [PMID: 10872516 DOI: 10.1023/a:1007088502400] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A total of 237 commercially available samples of cereal-based foods including bread and related products, noodles, breakfast cereals, baby and infant foods, rice and other foods were randomly collected in southwest Germany during the first six months of 1998. The trichothecenes deoxynivalenol (DON), 3- and 15-acetyl-deoxynivalenol (3-,15-ADON), nivalenol (NIV), fusarenon-X (FUS-X), T-2 toxin (T-2) and HT-2 toxin (HT-2) were determined by gas chromatography/mass spectrometry following clean-up by a two stage solid-phase extraction. Detection limits ranged between 2 and 12 micrograms/kg. Based on all samples, the incidence of DON, HT-2, T-2, 3-ADON, 15-ADON, and NIV was at 71, 18, 4, 4, 4 and 2%, respectively; the average contents in positive samples were at 103, 16, 14, 17, 24 and 109 micrograms/kg, respectively. Fus-X was not detected in any sample. A lower (P < 0.05) DON content was found in baby and infant foods as well as in cookies and cakes compared to bread. Overall, based on the incidence and level of all six toxins, the degree of contamination was lowest in baby and infant foods. Foods produced from either white or whole grain flour did not differ (P > 0.05) with regard to the incidence and level of DON. In foods produced from cereals of organic production both the incidence and median content of DON was lower compared to conventional production. Zearalenone, alpha- and beta-zearalenol were determined by high performance liquid chromatography in 20 selected samples, mostly baby and infant foods. These toxins were not present in excess of the detection limit in any sample.
Collapse
|
|
25 |
79 |
17
|
Nathues E, Joshi S, Tenberge KB, von den Driesch M, Oeser B, Bäumer N, Mihlan M, Tudzynski P. CPTF1, a CREB-like transcription factor, is involved in the oxidative stress response in the phytopathogen Claviceps purpurea and modulates ROS level in its host Secale cereale. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:383-393. [PMID: 15077671 DOI: 10.1094/mpmi.2004.17.4.383] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
CPTF1, a transcription factor with significant homology to ATF/CREB bZIP factors, was identified during an expressed sequence tag (EST) analysis of in planta-expressed genes of the phytopathogen Claviceps purpurea. Using a gene-replacement approach, deletion mutants of cptf1 were created. Expression studies in axenic culture showed that the H2O2-inducible gene cpcat1 (encoding a secreted catalase) had a reduced basal expression level and no longer responded to oxidative stress in the delta cptf1 mutant. Biochemical analyses indicated that CPTF1 is a general regulator of catalase activity. Delta cptf1 mutants showed significantly reduced virulence on rye. Electron microscopical in situ localization revealed significant amounts of H2O2 in delta cptf1-infected rye epidermal tissues, indicating that the plant tissue displayed an oxidative burst-like reaction, an event not detected in wild-type infections. These data indicate that CPTF1 is involved not only in oxidative stress response in the fungus but also in modulation of the plant's defense reactions.
Collapse
|
|
21 |
69 |
18
|
Mey G, Oeser B, Lebrun MH, Tudzynski P. The biotrophic, non-appressorium-forming grass pathogen Claviceps purpurea needs a Fus3/Pmk1 homologous mitogen-activated protein kinase for colonization of rye ovarian tissue. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:303-12. [PMID: 12026168 DOI: 10.1094/mpmi.2002.15.4.303] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Claviceps purpurea is a common pathogen of a wide range of grasses and cereals that is able to establish a stable, balanced interaction with its host plant and is considered a biotroph. It does not form special penetration structures such as appressoria. To study the signaling processes involved in this special host-pathogen interaction, we have cloned a gene, cpmk1, encoding a mitogen-activated protein (MAP) kinase that shows significant homology to Fus3 of Saccharomyces cerevisiae and to pmk1 of Magnaporthe grisea. Using a gene-replacement approach, we isolated a Acpmk1 mutant and characterized it in detail. Loss of CPMK1 has no obvious effect on vegetative properties (such as growth rate, morphology, and conidia formation); however, infection tests on rye show that the mutant is unable to colonize rye tissue, i.e., it appears to be completely nonpathogenic. Complementation of the mutant with a wild-type copy of cpmk1 fully restores its pathogenicity, confirming that this MAP kinase is essential for infection of rye by C. purpurea. Transformation of the delta pmk1 mutant of M. grisea with a complete copy of cpmk1 (including the C. purpurea promoter) fully restored its ability to form appressoria and its pathogenicity on barley. Although both fungi drastically differ in their pathogenic strategies, this result indicates that the signal pathway involving CPMK1 is highly conserved.
Collapse
|
|
23 |
68 |
19
|
Miedaner T, Geiger HH. Biology, genetics, and management of ergot (Claviceps spp.) in rye, sorghum, and pearl millet. Toxins (Basel) 2015; 7:659-78. [PMID: 25723323 PMCID: PMC4379517 DOI: 10.3390/toxins7030659] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/05/2022] Open
Abstract
Ergot is a disease of cereals and grasses caused by fungi in the genus Claviceps. Of particular concern are Claviceps purpurea in temperate regions, C. africana in sorghum (worldwide), and C. fusiformis in pearl millet (Africa, Asia). The fungi infect young, usually unfertilized ovaries, replacing the seeds by dark mycelial masses known as sclerotia. The percentage of sclerotia in marketable grain is strictly regulated in many countries. In winter rye, ergot has been known in Europe since the early Middle Ages. The alkaloids produced by the fungus severely affect the health of humans and warm-blooded animals. In sorghum and pearl millet, ergot became a problem when growers adopted hybrid technology, which increased host susceptibility. Plant traits reducing ergot infection include immediate pollination of receptive stigmas, closed flowering (cleistogamy), and physiological resistance. Genetic, nonpollen-mediated variation in ergot susceptibility could be demonstrated in all three affected cereals. Fungicides have limited efficacy and application is weather dependent. Sorting out the sclerotia from the harvest by photocells is expensive and time consuming. In conclusion, molecular-based hybrid rye breeding could improve pollen fertility by introgressing effective restorer genes thus bringing down the ergot infection level to that of conventional population cultivars. A further reduction might be feasible in the future by selecting more resistant germplasm.
Collapse
|
Review |
10 |
64 |
20
|
Hongisto SM, Paajanen L, Saxelin M, Korpela R. A combination of fibre-rich rye bread and yoghurt containing Lactobacillus GG improves bowel function in women with self-reported constipation. Eur J Clin Nutr 2006; 60:319-24. [PMID: 16251881 DOI: 10.1038/sj.ejcn.1602317] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The aim of the study was to investigate the effects of fibre-rich rye bread and yoghurt containing Lactobacillus GG (LGG) on intestinal transit time and bowel function, and to test whether they have an interaction in cases of self-reported constipation. DESIGN The study was carried out as a two-by-two factorial design. SETTING Free-living subjects. SUBJECTS A total of 59 healthy women with self-reported constipation, recruited by advertisement. INTERVENTIONS After a baseline period, the subjects were randomized into four diet groups: (1) rye bread+LGG yoghurt, (2) rye bread, (3) LGG yoghurt, and (4) control. The 3-week dietary intervention was followed by a 3-week follow-up period. During each period, total intestinal transit time was measured and the subjects recorded faecal frequency and consistency, difficulty in defecation and gastrointestinal symptoms. RESULTS The rye bread shortened total intestinal transit time (mean difference, -0.7; CI(95), -1.1 to -0.2; P=0.007), increased faecal frequency (0.3; CI(95), 0.1 to 0.5; P=0.001), softened faeces (-0.3; CI(95), -0.4 to -0.2; P<0.001) and made defecation easier (-0.4; CI(95), -0.5 to -0.2; P<0.001), but also increased gastrointestinal symptoms (1.6; CI(95), 0.7 to 2.4; P<0.001) compared to the low-fibre toast consumed in the LGG and control groups. There were fewer symptoms in the rye bread+LGG group compared to the rye bread group (-1.3; CI(95), -2.4 to -0.2; P=0.027). CONCLUSIONS Fibre-rich rye bread can be recommended in the treatment of constipation, and the simultaneous consumption of LGG yoghurt relieves the adverse gastrointestinal effects associated with increased intake of fibre. SPONSORSHIP Valio Ltd, R&D, and Fazer Bakeries Ltd.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
54 |
21
|
Abstract
Ergot is caused by a fungus (Claviceps species) which has been found on hundreds of plants in almost every country of the world. The fungus can adapt itself to form many different varieties. New species of the fungus and new hosts are still discovered today. The alkaloids in ergot have caused hundreds of thousands of deaths in the Middle Ages after consumption of contaminated cereal grains, but during the last two decades there has not been a recorded outbreak of ergotism. Grain standards in most countries are very strict and do not permit grain which contains ergot to reach commercial food channels. All involved in cereal grain production and ulilization should be cognizant of the potential danger, however, since ergot contamination at levels above those permitted by grain standards cannot necessarily be detected by the normal evaluation of a flour sample in the cereal chemistry laboratory. There always have been and always will be ergot infections and a possible danger to human health, but man has learned to minimize the potential problem by using proper agricultural practices. Futhermore, techniques for the removal of ergot from contaminated grains have been developed. While human ergotism is a disease of the past, ergotism in animals still occurs frequently. The problem is not a simple one because of many unanswered questions. What is the tolerance of different breeds or species of livestock to ergot? What are the effects of low-level long-term ingestion of ergot on livestock? What is the difference in toxicity to animals of ergot from different cereal ingestion of ergot on livestock? What is the difference in toxicity to animals of ergot from different cereal grain varieties? What is the effect of storage and processing of cereal grain products on the potential ergot toxicity? The last and most important chapter in the history of ergot concerns ergot as a source of pharmacologically useful alkaloids which have found applications in internal medicine and obstetrics. The future promises to bring some new ergot alkaloids and some new uses. Recent research data indicate the possibility of using ergot alkaloids in contraceptives, which would be truly remarkable.
Collapse
|
Review |
46 |
50 |
22
|
Almeida MJ, Pais C. Leavening ability and freeze tolerance of yeasts isolated from traditional corn and rye bread doughs. Appl Environ Microbiol 1996; 62:4401-4. [PMID: 8953712 PMCID: PMC168267 DOI: 10.1128/aem.62.12.4401-4404.1996] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Strains of Saccharomyces cerevisiae and Torulaspora delbrueckii isolated from traditional bread doughs displayed dough-raising capacities similar to the ones found in baker's yeasts. During storage of frozen doughs, strains of T. delbrueckii (IGC 5321, IGC 5323, and IGC 4478) presented approximately the same leavening ability for 30 days. Cell viability was not significantly affected by freezing, but when the dough was submitted to a bulk fermentation before being stored at -20 degrees C, there was a decrease in the survival ratio which depended on the yeast strain. Furthermore, the leavening ability after 4 days of storage decreased as the prefermentation period of the dough before freezing increased, except for strains IGC 5321 and IGC 5323. These two strains retained their fermentative activity after 15 days of storage and 2.5 h of prefermentation, despite showing a reduction of viable cells under the same conditions. The intracellular trehalose content was higher than 20% (wt/wt) in four of the yeasts tested: the two commercial strains of baker's yeast (S. cerevisiae IGC 5325 and IGC 5326) and the two mentioned strains of T. delbrueckii (IGC 5321 and IGC 5323). However, the strains of S. cerevisiae were clearly more susceptible to freezing damages, indicating that other factors may contribute to the freeze tolerance of these yeasts.
Collapse
|
research-article |
29 |
49 |
23
|
Müller MR, Ehrmann MA, Vogel RF. Lactobacillus frumenti sp. nov., a new lactic acid bacterium isolated from rye-bran fermentations with a long fermentation period. Int J Syst Evol Microbiol 2000; 50 Pt 6:2127-2133. [PMID: 11155988 DOI: 10.1099/00207713-50-6-2127] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Within the framework of the characterization of the microflora of an industrial sourdough fermentation, strains of Lactobacillus amylovorus, Lactobacillus pontis and two other strains were isolated which could not be associated with a valid species. These latter strains were Gram-positive, catalase-negative, non-spore-forming, non-motile rods that could be clearly differentiated from known species by 16S rDNA sequence analysis. For further characterization, the morphological, physiological (sugar fermentation, formation of DL-lactate, hydrolysis of arginine, growth temperature, CO2 production) and chemotaxonomic (G+C content, cell wall composition, SDS-PAGE of whole-cell proteins) properties were determined. Fitting of the complete 16S rDNA sequence into alignments of such sequences, together with the subsequent phylogenetic calculations, allowed the reconstruction of a phylogenetic tree. These data showed that the two strains were phylogenetically related but formed an independent cluster distinct from their closest neighbours, L. pontis, Lactobacillus panis, Lactobacillus oris, Lactobacillus vaginalis and Lactobacillus reuteri. The results of DNA-DNA hybridization experiments indicated that the two isolates represent a new Lactobacillus species, for which the name Lactobacillus frumenti is proposed; the type strain of this species is DSM 13145T (= LMG 19473T).
Collapse
|
|
25 |
49 |
24
|
Vogel P, Petterson DS, Berry PH, Frahn JL, Anderton N, Cockrum PA, Edgar JA, Jago MV, Lanigan GW, Payne AL, Culvenor CC. Isolation of a group of glycolipid toxins from seedheads of annual ryegrass Lolium rigidum Gaud.) infected by Corynebacterium rathayi. THE AUSTRALIAN JOURNAL OF EXPERIMENTAL BIOLOGY AND MEDICAL SCIENCE 1981; 59:455-67. [PMID: 7295220 DOI: 10.1038/icb.1981.39] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A group of highly toxic compounds was isolated from galled seedheads of annual ryegrass (Lolium rigidum Gaud.) containing Corynebacterium rathayi. Purified extracts were resolved by reverse-phase high-performance liquid chromatography into eight main fractions which have been partially characterised and shown to be toxic to nursling rats. A mixture of the toxins also produced clinical signs and brain lesions in lambs consistent with annual ryegrass toxicity. The name 'corynetoxin' is tentatively proposed for the series, individual members being designated according to their order of elution from the high performance liquid chromatography column as corynetoxins 1 to 8. The two main fractions are corynetoxins 3 and 4 of which the former has been crystallised. They appear to be of glycolipid character, 3-hydroxyheptadecanoic acid and a C6 amino sugar being identified among the hydrolysis products of corynetoxin 3, and heptadec-2-enoic acid and a C6 amino sugar from corynetoxin 4.
Collapse
|
|
44 |
48 |
25
|
An D, Ma P, Zheng Q, Fu S, Li L, Han F, Han G, Wang J, Xu Y, Jin Y, Luo Q, Zhang X. Development and molecular cytogenetic identification of a new wheat-rye 4R chromosome disomic addition line with resistances to powdery mildew, stripe rust and sharp eyespot. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:257-272. [PMID: 30374527 DOI: 10.1007/s00122-018-3214-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/05/2018] [Indexed: 05/07/2023]
Abstract
A wheat-rye 4R chromosome disomic addition line with resistances to powdery mildew, stripe rust, sharp eyespot and high kernel number per spike was developed and characterized by molecular cytogenetic method as novel resistant germplasm. Rye (Secale cereale L.), a close relative of common wheat, is an important and valuable gene donor with multiple disease resistance for wheat improvement. However, resistance genes derived from rye have successively lost resistance to pathogens due to the coevolution of pathogen virulence and host resistance. Development and identification of new effective resistance gene sources from rye therefore are of special importance and urgency. In the present study, a wheat-rye line WR35 was produced through distant hybridization, embryo rescue culture, chromosome doubling and backcrossing. WR35 was then proven to be a new wheat-rye 4R disomic addition line using sequential GISH (genomic in situ hybridization), mc-FISH (multicolor fluorescence in situ hybridization) and ND-FISH (non-denaturing FISH) with multiple probes, mc-GISH (multicolor GISH), rye chromosome arm-specific marker analysis and SLAF-seq (specific-locus amplified fragment sequencing) analysis. At the adult stage, WR35 exhibited high levels of resistance to the powdery mildew (Blumeria graminis f. sp. tritici, Bgt) and stripe rust (Puccinia striiformis f. sp. tritici, Pst) pathogens prevalent in China, and a highly virulent isolate of Rhizoctonia cerealis, the cause of wheat sharp eyespot. At the seedling stage, it was highly resistant to 22 of 23 Bgt isolates and four Pst races. Based on its disease responses to different pathogen isolates, WR35 may possess resistance gene(s) for powdery mildew, stripe rust and sharp eyespot, which differed from the known resistance genes from rye. In addition, WR35 was cytologically stable and produced high kernel number per spike. Therefore, WR35 with multi-disease resistances and desirable agronomic traits should serve as a promising bridging parent for wheat chromosome engineering breeding.
Collapse
|
|
6 |
45 |