1
|
Holzhauser T, Wackermann O, Ballmer-Weber BK, Bindslev-Jensen C, Scibilia J, Perono-Garoffo L, Utsumi S, Poulsen LK, Vieths S. Soybean (Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. J Allergy Clin Immunol 2009; 123:452-8. [PMID: 18996574 DOI: 10.1016/j.jaci.2008.09.034] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 09/10/2008] [Accepted: 09/19/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND Soybean is considered an important allergenic food, but published data on soybean allergens are controversial. OBJECTIVE We sought to identify relevant soybean allergens and correlate the IgE-binding pattern to clinical characteristics in European patients with confirmed soy allergy. METHODS IgE-reactive proteins were identified from a soybean cDNA expression library, purified from natural soybean source, or expressed in Escherichia coli. The IgE reactivity in 30 sera from subjects with a positive double-blind, placebo-controlled soybean challenge (n = 25) or a convincing history of anaphylaxis to soy (n = 5) was analyzed by ELISA or CAP-FEIA. RESULTS All subunits of Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) were IgE-reactive: 53% (16/30) of the study subjects had specific IgE to at least 1 major storage protein, 43% (13/30) to Gly m 5 , and 36% (11/30) to Gly m 6. Gly m 5 was IgE-reactive in 5 of 5 and Gly m 6 in 3 of 5 children. IgE-binding to Gly m 5 or Gly m 6 was found in 86% (6/7) subjects with anaphylaxis to soy and in 55% (6/11) of subjects with moderate but only 33% (4/12) of subjects with mild soy-related symptoms. The odds ratio (P < .05) for severe versus mild allergic reactions in subjects with specific IgE to Gly m 5 or Gly m6 was 12/1. CONCLUSION Sensitization to the soybean allergens Gly m 5 or Gly m 6 is potentially indicative for severe allergic reactions to soy.
Collapse
|
|
16 |
214 |
2
|
Krishnan HB, Kim WS, Jang S, Kerley MS. All three subunits of soybean beta-conglycinin are potential food allergens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:938-43. [PMID: 19138084 DOI: 10.1021/jf802451g] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Soybeans are recognized as one of the "big 8" food allergens. IgE antibodies from soybean-sensitive patients recognize more than 15 soybean proteins. Among these proteins only the alpha-subunit of beta-conglycinin, but not the highly homologous alpha'- and beta-subunits, has been shown to be a major allergenic protein. The objective of this study was to examine if the alpha'- and beta-subunits of beta-conglycinin can also serve as potential allergens. Immunoblot analysis using sera collected from soybean-allergic patients revealed the presence of IgE antibodies that recognized several soy proteins including 72, 70, 52, 34, and 21 kDa proteins. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) analysis of trypsin-digested 72, 70, and 52 kDa proteins indicated that these proteins were the alpha'-, alpha-, and beta-subunits of beta-conglycinin, respectively. Additionally, purified alpha'-, alpha-, and beta-subunits of beta-conglycinin were recognized by IgE antibodies present in the soybean-allergic patients. The IgE reactivity to the beta-subunit of beta-conglycinin was not abolished when this glycoprotein was either deglycosylated using glycosidases or expressed as a recombinant protein in Escherichia coli . The results suggest that in addition to the previously recognized alpha-subunit of beta-conglycinin, the alpha'- and beta-subunits of beta-conglycinin also are potential food allergens.
Collapse
|
|
16 |
127 |
3
|
Chruszcz M, Maleki SJ, Majorek KA, Demas M, Bublin M, Solberg R, Hurlburt BK, Ruan S, Mattisohn CP, Breiteneder H, Minor W. Structural and immunologic characterization of Ara h 1, a major peanut allergen. J Biol Chem 2011; 286:39318-27. [PMID: 21917921 PMCID: PMC3234756 DOI: 10.1074/jbc.m111.270132] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/10/2011] [Indexed: 11/06/2022] Open
Abstract
Allergic reactions to peanuts and tree nuts are major causes of anaphylaxis in the United States. We compare different properties of natural and recombinant versions of Ara h 1, a major peanut allergen, through structural, immunologic, and bioinformatics analyses. Small angle x-ray scattering studies show that natural Ara h 1 forms higher molecular weight aggregates in solution. In contrast, the full-length recombinant protein is partially unfolded and exists as a monomer. The crystal structure of the Ara h 1 core (residues 170-586) shows that the central part of the allergen has a bicupin fold, which is in agreement with our bioinformatics analysis. In its crystalline state, the core region of Ara h 1 forms trimeric assemblies, while in solution the protein exists as higher molecular weight assemblies. This finding reveals that the residues forming the core region of the protein are sufficient for formation of Ara h 1 trimers and higher order oligomers. Natural and recombinant variants of proteins tested in in vitro gastric and duodenal digestion assays show that the natural protein is the most stable form, followed by the recombinant Ara h 1 core fragment and the full-length recombinant protein. Additionally, IgE binding studies reveal that the natural and recombinant allergens have different patterns of interaction with IgE antibodies. The molecular basis of cross-reactivity between vicilin allergens is also elucidated.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
80 |
4
|
Wang T, Qin GX, Sun ZW, Zhao Y. Advances of research on glycinin and β-conglycinin: a review of two major soybean allergenic proteins. Crit Rev Food Sci Nutr 2014; 54:850-62. [PMID: 24499064 DOI: 10.1080/10408398.2011.613534] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Being an important crop, soybean is widely used in the world and plays a vital role in human and animal nutrition. However, it contains several antinutritional factors (ANFs) including soybean agglutinin, soybean protease inhibitors, soybean allergenic proteins, etc., that may result in poor food utilization, decreased growth performance, and even disease. Among these ANFs, soybean allergenic proteins can lead to allergic reactions in human and animals, which has become a public problem all over the world, but our knowledge on it is still inadequate. This paper aims to provide an update on the characteristics, detection or exploration methods, and in vivo research models of soybean allergenic proteins; especially glycinin and β-conglycinin are deeply discussed. Through this review, we may have a better understanding on the advances of research on these two soybean allergenic proteins. Besides, the ingredient processing used to reduce the allergenicity of soybean is also reviewed.
Collapse
|
Review |
11 |
79 |
5
|
Jin T, Guo F, Chen YW, Howard A, Zhang YZ. Crystal structure of Ara h 3, a major allergen in peanut. Mol Immunol 2009; 46:1796-804. [PMID: 19251323 DOI: 10.1016/j.molimm.2009.01.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/15/2009] [Accepted: 01/25/2009] [Indexed: 11/23/2022]
Abstract
The prevalence of food allergy has increased dramatically in recent years. Tremendous research progress has been made in understanding the pathophysiological mechanisms of allergy and in identifying and characterizing food allergens. Peanut is a major food allergen source and Ara h 3 is a major peanut allergen. Using overlapping short peptides, several linear IgE-binding epitopes in Ara h 3 have been defined before. However, the structure of Ara h 3 of the native allergen is not clear and information on conformational epitopes is lacking. Structural characterization of allergens is required for understanding the allergenicity of food allergens and for the development of immunotherapeutic agents. Previously, we have reported the crystallization of Ara h 3 purified from raw peanut. Here we report the crystal structure of Ara h 3 at 1.73A resolution. Mapping of the previously defined linear epitopes on the crystal structure of Ara h 3 indicated that linear epitopes with more solvent exposure were those indicated by the literature to react with more patient sera. The structure of Ara h 3 may be used to assess the importance of conformational epitopes in further investigations.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Plant/chemistry
- Antigens, Plant/genetics
- Antigens, Plant/immunology
- Antigens, Plant/metabolism
- Arachis/chemistry
- Arachis/genetics
- Arachis/immunology
- Crystallography, X-Ray
- DNA, Complementary/isolation & purification
- Epitope Mapping
- Globulins/chemistry
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Protein Multimerization
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Seed Storage Proteins/chemistry
- Seed Storage Proteins/genetics
- Seed Storage Proteins/immunology
- Seed Storage Proteins/metabolism
- Sequence Homology, Amino Acid
- Soybean Proteins/chemistry
- Glycine max/chemistry
Collapse
|
Comparative Study |
16 |
77 |
6
|
Adachi A, Horikawa T, Shimizu H, Sarayama Y, Ogawa T, Sjolander S, Tanaka A, Moriyama T. Soybean beta-conglycinin as the main allergen in a patient with food-dependent exercise-induced anaphylaxis by tofu: food processing alters pepsin resistance. Clin Exp Allergy 2009; 39:167-73. [PMID: 19128355 DOI: 10.1111/j.1365-2222.2008.03148.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Food-dependent exercise-induced anaphylaxis (FDEIA) due to soybeans is a rare disorder. The allergen responsible for FDEIA due to soybeans has not yet been determined. OBJECTIVE We characterized the clinical features of a patient with FDEIA due to tofu, who was well tolerant to drinking soy milk. We then sought to identify the responsible soybean allergen(s) in that patient. We further studied whether different stabilities of the allergen(s) to pepsin digestion between two soybean products are related to their clinical allergenicity. METHODS Skin prick tests and provocation tests using soybean products were performed to detect the responsible food and other factors that induced the allergic symptoms. Specific IgE to various soybean allergens were examined by ImmunoCAP, ELISA and protein microarray assays. Immunoblotting for soybeans and soybean products using the patient's serum was also performed. Soybean products were serially digested by pepsin to disclose the stability of the allergens. RESULTS Provocation with ingestion of tofu and exercise induced the allergic symptoms, while ingestion of soy milk and exercise did not. Immunoblot analysis, ELISA and protein microarray assay revealed that beta-conglycinin mainly reacts with IgE antibodies in the patient's serum. By immunoblot analysis, beta-conglycinin in soy milk completely disappeared after pepsin digestion within 20 min, whereas beta-conglycinin in tofu was almost intact after more than 120 min of pepsin digestion. CONCLUSION We identified beta-conglycinin as the causative allergen in a patient with FDEIA induced by tofu. The difference in resistance to pepsin digestion between tofu and soy milk suggests that the presence of undigested allergens in the digestive tract is a prerequisite for the development of FDEIA.
Collapse
|
Case Reports |
16 |
59 |
7
|
Bässler OY, Weiss J, Wienkoop S, Lehmann K, Scheler C, Dölle S, Schwarz D, Franken P, George E, Worm M, Weckwerth W. Evidence for novel tomato seed allergens: IgE-reactive legumin and vicilin proteins identified by multidimensional protein fractionation-mass spectrometry and in silico epitope modeling. J Proteome Res 2009; 8:1111-22. [PMID: 19203290 DOI: 10.1021/pr800186d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tomato fruit and seed allergens were detected by IgE-immunoblotting using sera from 18 adult tomato-sensitized patients selected based on a positive history skin prick test (SPT) and specific Immunglobulin (Ig) E-levels. Isolated tomato seed total protein showed high SPT activity comparable or even higher than tomato fruit protein. For the molecular characterization of tomato seed allergens, a multidimensional protein fractionation strategy and LC-MS/MS was used. Two legumin- and vicilin-proteins were purified and showed strong IgE-reactivity in immunoblots. Individual patient sera exhibited varying IgE-sensitivity against the purified proteins. In silico structural modeling indicates high homology between epitopes of known walnut allergens and the detected IgE-crossreactive tomato proteins.
Collapse
|
|
16 |
38 |
8
|
Sun X, Shan X, Yan Z, Zhang Y, Guan L. Prediction and characterization of the linear IgE epitopes for the major soybean allergen β-conglycinin using immunoinformatics tools. Food Chem Toxicol 2013; 56:254-60. [PMID: 23454299 DOI: 10.1016/j.fct.2013.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/07/2013] [Accepted: 02/10/2013] [Indexed: 11/17/2022]
Abstract
The α subunit of β-conglycinin is a major allergen in soybean. The objective of this study was to predict and identify the linear immunoglobulin (Ig)E epitopes of the soybean α subunit of β-conglycinin. Three immunoinformatics tools were used to predict the potential epitopes and were confirmed by dot-blot inhibition using sera from soybean allergic subjects. As a result, 15 peptides were predicted and assembled by solid-phase synthesis. Eleven epitopes were identified by the dot-blot inhibition test. Moreover, peptide 3 had IgE binding capability with all sera(5/5) tested, while peptide 1, 4, 6, 8 and12 could bind to 4/5 of the sera samples. Secondary structure prediction of peptide 3 and circular dichroism test validated that the structure of peptide 3 was a random coil.
Collapse
|
|
12 |
37 |
9
|
Ramos ML, Huntley JJ, Maleki SJ, Ozias-Akins P. Identification and characterization of a hypoallergenic ortholog of Ara h 2.01. PLANT MOLECULAR BIOLOGY 2009; 69:325-335. [PMID: 19009240 DOI: 10.1007/s11103-008-9428-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 10/29/2008] [Indexed: 05/27/2023]
Abstract
Peanut (Arachis hypogaea L.), can elicit type I allergy becoming the most common cause of fatal food-induced anaphylactic reactions. Strict avoidance is the only effective means of dealing with this allergy. Ara h 2, a peanut seed storage protein, has been identified as the most potent peanut allergen and is recognized by approximately 90% of peanut hypersensitive individuals in the US. Because peanut has limited genetic variation, wild relatives are a good source of genetic diversity. After screening 30 Arachis duranensis accessions by EcoTILLing, we characterized five different missense mutations in ara d 2.01. None of these polymorphisms induced major conformational modifications. Nevertheless, a polymorphism in the immunodominant epitope #7 (S73T) showed a 56-99% reduction in IgE-binding activity and did not affect T cell epitopes, which must be retained for effective immunotherapy. The identification of natural hypoallergenic isoforms positively contributes to future immunological and therapeutic studies and peanut cultivar development.
Collapse
|
|
16 |
31 |
10
|
Peng C, Cao C, He M, Shu Y, Tang X, Wang Y, Zhang Y, Xia X, Li Y, Wu J. Soybean Glycinin- and β-Conglycinin-Induced Intestinal Damage in Piglets via the p38/JNK/NF-κB Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9534-9541. [PMID: 30139257 DOI: 10.1021/acs.jafc.8b03641] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
β-Conglycinin (7S) and glycinin (11S) are known to induce a variety of hypersensitivity reactions involving the skin, intestinal tract, and respiratory tract. The present study aimed to identify the mechanism underlying the development of allergy to soybean antigen proteins, using piglets as an animal model. Weaned "Duroc × Landrace × Yorkshire" piglets were fed a diet supplemented with 7S or 11S to investigate the signaling pathway involved in intestinal damage in piglets. Results showed that serum nitric oxide (NO), tumor necrosis factor-α (TNF-α), and caspase-3 levels were significantly higher in 7S- and 11S-fed piglets compared to those in suckling or weaned ones. mRNA, protein, and phosphorylation levels of nuclear factor-kappa B (NF-κB), p38, and Jun N-terminal kinase (JNK) were higher in 7S- and 11S-fed piglets than in suckling and weaned ones. Overall, our results indicate that 7S and 11S damaged the intestinal function in piglets through their impact on NF-κB, JNK, and p38 expression.
Collapse
|
|
7 |
31 |
11
|
Costa J, Silva I, Vicente AA, Oliveira MBPP, Mafra I. Pistachio nut allergy: An updated overview. Crit Rev Food Sci Nutr 2017; 59:546-562. [PMID: 28925724 DOI: 10.1080/10408398.2017.1379947] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pistachio nut (Pistacia vera) is highly appreciated for its organoleptic characteristics and potential health benefits. However, this tree nut is also responsible for triggering moderate to severe IgE-mediated reactions in allergic individuals. Currently, pistachio nut allergy has gained some special attention, mainly due to its intrinsic relation with cashew nut allergy. Like for other nuts, the prevalence of pistachio nut allergy seems to be increasing at a global scale. Until now, there are five allergenic proteins officially listed for pistachio nut (Pis v 1, Pis v 2, Pis v 3, Pis v 4 and Pis v 5). Relevant data on their biochemical classification has become available, enabling establishing a correlation with the respective clinical symptoms. The establishment of an effective allergen risk assessment is a key issue for the food industry, policy makers and regulatory agencies. Thus, the availability of fast, specific and sensitive methods to detect trace amounts of allergens in processed foods is crucial. In the specific case of pistachio nut, there are some protein- and DNA-based methods for its detection/quantification in foods, which can aid to verify label information. Accordingly, all relevant research advances on this topic were summarised, updated and critically discussed in this review.
Collapse
|
Review |
8 |
27 |
12
|
Osorio C, Wen N, Gemini R, Zemetra R, von Wettstein D, Rustgi S. Targeted modification of wheat grain protein to reduce the content of celiac causing epitopes. Funct Integr Genomics 2012; 12:417-438. [PMID: 22732824 DOI: 10.1007/s10142-012-0287-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/15/2012] [Accepted: 05/28/2012] [Indexed: 12/15/2022]
Abstract
The prolamin peptides in wheat gluten and in the homologous storage proteins of barley and rye cause painful chronic erasure of microvilli of the small intestine epithelium in celiac patients. If untreated, it can lead to chronic diarrhea, abdominal distension, osteoporosis, weight-loss due to malabsorption of nutrients, and anemia. In addition to congenital cases, life-long exposure to gluten proteins in bread and pasta can also induce development of celiac sprue in adults. To date, the only effective treatment is life-long strict abstinence from the staple food grains. Complete exclusion of dietary gluten is, however, difficult due to use of wheat in many foods, incomplete labeling and social constraints. Thus, finding alternative therapies for this most common foodborne disease remained an active area of research, which has led to many suggestions in last few years. The pros and cons associated with these therapies were reviewed in the present communication. As different celiac patients are immunogenic to different members of the undigestible proline/glutamine rich peptides of ~149 gliadins and low molecular weight glutenin subunits as well as the six high molecular weight glutenin subunits, an exhaustive digestion of the immunogenic peptides in the stomach, duodenum, jejunum, and ileum of celiacs is required. In view of the above, we evaluated the capacity of cereal grains to synthesize and store the enzymes prolyl endopeptidase from Flavobacterium meningosepticum and the barley cysteine endoprotease B2, which in combination are capable of detoxifying immunogenic gluten peptides in a novel treatment of celiac disease.
Collapse
|
Research Support, American Recovery and Reinvestment Act |
13 |
24 |
13
|
Villalta D, Conte M, Asero R, Da Re M, Stella S, Martelli P. Isolated IgE reactivity to native walnut vicilin-like protein (nJug r 2) on ISAC™ microarray is due to cross-reactive carbohydrate epitopes. Clin Chem Lab Med 2014; 51:1991-5. [PMID: 23585182 DOI: 10.1515/cclm-2013-0027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/27/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND The last version of the microarray-based testing ImmunoCAP ISAC 112™ includes the native walnut (Junglans regia) molecules 2S albumin (nJug r 1), vicilin (nJug r 2) and lipid transfer protein (nJug r 3). In view of the many unexpected cases of isolated positivity to nJug r 2 occurring in daily practice, we evaluated the association of these reactivities with clinical symptoms, as well as the relationship between sIgE and nJug r 2 and cross-reactive carbohydrate determinants (CCDs). METHODS Sera from 320 consecutive allergic outpatients tested by ImmuoCAP ISAC™ 112 were considered. The medical records of all nJug r 2 positive patients were reviewed to assess clinical symptoms related to walnut allergy. A linear regression analysis was performed to evaluate the correlation between nJug r 2 and CCDs (nMUXF3) sIgE values, and a CAP inhibition assay was carried out to confirm the possible cross-reactivity between CCDs and nJug r 2. RESULTS Thirty-seven out of 320 sera tested (11.6%) were positive to nJug r 2. Among them three (8.1%) and eight (21.6%) scored positive for nJug r 1 and nJug r 3 as well, respectively. Twenty-seven (73%) sera showed isolated nJug r 2 positivity. Only nJug r 1 reactors had symptoms referred to walnut allergy. Twenty-five/37 nJug r 2-positive sera (67.6%) showed a simultaneous positivity to nMUXF3 and a significant correlation (p<0.0001) between the IgE levels to nJug r 2 and nMUXF3 (r²=0.787). After incubation with nMUXF3 a complete inhibition of sIgE reactivity to both nMUXF3 and nJug r 2 was shown. CONCLUSIONS The unexpected isolated sIgE reactivity to nJug r 2 found by ImmunoCAP ISAC™ 112 is frequently related to reactivity to cross-reactive carbohydrate epitopes and it is lacking clinical significance.
Collapse
|
Journal Article |
11 |
23 |
14
|
Taliercio E, Loveless TM, Turano MJ, Kim SW. Identification of epitopes of the β subunit of soybean β-conglycinin that are antigenic in pigs, dogs, rabbits and fish. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:2289-94. [PMID: 24415270 DOI: 10.1002/jsfa.6556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/01/2013] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND β-Conglycinin (conglycinin) is one of the major seed storage proteins of soybean. Conglycinin is a 7S trimer composed of different combinations of β, α and α' subunits. All subunits of conglycinin have been reported to be allergenic in humans. The goal of this research is to identify epitopes of the β subunit of conglycinin that are antigenic in multiple animal species. RESULTS Sera from pigs, dogs, rabbits and hybrid striped bass that had antibodies against soybean conglycinin were identified by ELISA. Most of these sera recognized peptides that represent the β subunit of conglycinin. One antigenic region of the β subunit of conglycinin had considerable overlap among all species tested. One region that was similar to a peanut allergenic epitope in humans overlapped with a region that binds IgE from dogs. One region was antigenic in multiple rabbits and pigs, suggesting it may play a role in the response of pigs to soybean in the diet. CONCLUSION One region of the β subunit of conglycinin is an important antigen across species and abuts a region similar to the peanut allergen ARA h 1. A second region is particularly antigenic in pigs and rabbits. Variants of these antigenic regions of the β subunit of conglycinin may be useful in determining the role these regions play in the health of animals fed soybean. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
|
|
11 |
23 |
15
|
Downs ML, Semic-Jusufagic A, Simpson A, Bartra J, Fernandez-Rivas M, Rigby NM, Taylor SL, Baumert JL, Mills ENC. Characterization of low molecular weight allergens from English walnut (Juglans regia). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11767-75. [PMID: 25388987 DOI: 10.1021/jf504672m] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Although English walnut is a commonly allergenic tree nut, walnut allergens have been poorly characterized to date. The objective of this work was to characterize the natural, low molecular weight (LMW) allergens from walnut. A protocol was developed to purify LMW allergens (specifically 2S albumins) from English walnuts. In addition to 2S albumins, a series of peptides from the N-terminal region of the 7S seed storage globulin proprotein were also identified and characterized. These peptides comprised a four-cysteine motif (C-X-X-X-C-X10-12-C-X-X-X-C) repeated throughout the 7S N-terminal region. Upon IgE immunoblotting, 3/11 and 5/11 sera from walnut-allergic subjects showed IgE reactivity to the 7S N-terminal fragments and 2S albumin, respectively. The mature 7S protein and the newly described 7S N-terminal peptides represent two distinct types of allergens. Because the proteolytic processing of 7S globulins has not been elucidated in many edible plant species, similar protein fragments may be present in other nuts and seeds.
Collapse
|
|
11 |
23 |
16
|
Kroghsbo S, Bøgh KL, Rigby NM, Mills ENC, Rogers A, Madsen CB. Sensitization with 7S globulins from peanut, hazelnut, soy or pea induces IgE with different biological activities which are modified by soy tolerance. Int Arch Allergy Immunol 2011; 155:212-24. [PMID: 21282960 DOI: 10.1159/000321200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/08/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND It is not known why some foods sensitizing via the gastrointestinal tract are prevalent allergenic foods and others are not. Eating habits, processing, and the food matrix have been suggested to influence the allergenicity of a given food. Factors related to protein structure, such as stability to digestion, have also been suggested. 7S globulins from peanut, hazelnut, soy, and pea were studied to determine whether related proteins would induce a similar sensitization when removed from their 'normal' matrix. METHODS Brown Norway rats (soy tolerant or nontolerant) were immunized i.p. 3 times with 100 μg purified peanut, hazelnut, soy, or pea 7S without adjuvant. Sera were analyzed for specific antibodies by different ELISAs (IgG1, IgG2a, and IgE), inhibition ELISA, and rat basophilic leukemia cell assay. RESULTS The 4 related 7S globulins induced a response with an almost identical level of specific antibodies, but peanut 7S induced IgE of higher avidity than hazelnut and pea 7S which, again, had a higher avidity than IgE induced by soy 7S. Soy tolerance reduced the functionality of IgE without influencing antibody titers. CONCLUSIONS Although the 4 7S globulins are structurally related allergens, they induce antibodies with different antigen-binding characteristics. Peanut 7S induces IgE of a higher avidity than hazelnut and pea 7S which, again, has a higher avidity than IgE induced by soy 7S. We also show that soy tolerance influences the function of antibodies to peanut 7S. These findings may help explain how antibodies of different clinical significances can develop in different individuals sensitized to the same allergen.
Collapse
|
|
14 |
21 |
17
|
Peng C, Ding X, Zhu L, He M, Shu Y, Zhang Y, Li Y, Wang X, Feng S, Li J, Wu J. β-Conglycinin-Induced Intestinal Porcine Epithelial Cell Damage via the Nuclear Factor κB/Mitogen-Activated Protein Kinase Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9009-9021. [PMID: 31319030 DOI: 10.1021/acs.jafc.9b02784] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soybean allergy is a serious health risk to humans and animals; β-conglycinin is the primary antigenic protein in soybean. Intestinal porcine epithelial (IPEC-J2) cells were used as an in vitro physiological model of the intestinal epithelium to study the effects of different concentrations of soybean antigen protein β-conglycinin to identify the involved signaling pathways. The cells were divided into eight groups and either untreated or treated with different concentrations of β-conglycinin, pyrrolidine dithiocarbamate (PDTC), Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME), SP600125, and SB202190 either alone or in combination. The cells were incubated with 1, 5, and 10 mg·mL-1 β-conglycinin or 5 mg·mL-1 β-conglycinin and 1 μmol·L-1 nuclear factor κB (NF-κB) inhibitor (PDTC), inducible nitric oxide synthase inhibitor (l-NAME), c-Jun N-terminal kinase (JNK) inhibitor (SP600125), and p38 inhibitor (SB202190) for 24 h, separately; controls were left untreated. The mRNA, protein, and phosphorylation levels of NF-κB, p38, and JNK were higher in the treated groups than in the control group. β-Conglycinin decreased tight junction distribution, destroyed the cytoskeleton of IPEC-J2 cells, and caused cell death. After the addition of the inhibitors, β-conglycinin-induced IPEC-J2 cell damage was significantly reduced. β-Conglycinin caused damage to IPEC-J2 cells via the mitogen-activated protein kinase/NF-κB signaling pathway. The results of this study are crucial for exploring the mechanisms underlying allergic reactions caused by soybean antigen proteins.
Collapse
|
|
6 |
20 |
18
|
Rougé P, Culerrier R, Thibau F, Didier A, Barre A. A case of severe anaphylaxis to kidney bean: phaseolin (vicilin) and PHA (lectin) identified as putative allergens. Allergy 2011; 66:301-2. [PMID: 20804466 DOI: 10.1111/j.1398-9995.2010.02466.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
Case Reports |
14 |
20 |
19
|
Chen F, Ma H, Li Y, Wang H, Samad A, Zhou J, Zhu L, Zhang Y, He J, Fan X, Jin T. Screening of Nanobody Specific for Peanut Major Allergen Ara h 3 by Phage Display. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11219-11229. [PMID: 31408330 DOI: 10.1021/acs.jafc.9b02388] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Peanut allergy is a major health problem worldwide. Detection of food allergens is a critical aspect of food safety. The VHH domain of single chain antibody from camelids, also known as nanobody (Nb), showed its advantages in the development of biosensors because of its high stability, small molecular size, and ease of production. However, no nanobody specific to peanut allergens has been developed. In this study, we constructed a library with random triplets (NNK) in its CDR regions of a camel nanobody backbone. We screened the library with peanut allergy Ara h 3 and obtained several candidate nanobodies. One of the promising nanobodies, Nb16 was further biochemical characterization by gel filtration, isothermal titration calorimetry (ITC), cocrystallization, and Western blot in terms of its interaction with Ara h 3. Nb16 specifically binds to peanut major allergen Ara h 3 with a dissociation constant of 400 nM. Furthermore, we obtained the Ara h 3-Nb16 complex crystals. Structure analysis shows the packing mode is completely different between the Ara h 3-Nb16 complex crystal and the native Ara h 3 crystal. Structural determination of Ara h 3-Nb16 will provide the necessary information to understand the allergenicity of this important peanut allergen. The nanobody Nb16 may have application in the development of biosensors for peanut allergen detection.
Collapse
|
|
6 |
20 |
20
|
Bar-El Dadon S, Pascual CY, Eshel D, Teper-Bamnolker P, Ibáñez MDP, Reifen R. Vicilin and the basic subunit of legumin are putative chickpea allergens. Food Chem 2013; 138:13-8. [PMID: 23265449 DOI: 10.1016/j.foodchem.2012.10.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
IgE-mediated reactions to food allergens constitute a major health problem in industrialized countries. Chickpea is consumed in Mediterranean countries, and reportedly associated with IgE-mediated hypersensitivity reactions. However, the nature of allergic reactions to chickpea has not been characterized. A serum pool from paediatric patients allergic to chickpeas was used to detect IgE-binding proteins from chickpea seeds by immunoassay and immunoblot inhibition assay. Protein samples enriched in chickpea legumin and vicilin were obtained by anion exchange chromatography, and were identified by mass spectrometric analysis. IgE-immunoassays of globulin fractions from chickpeas revealed that vicilin (50 kDa) and the basic subunit of legumin (20 kDa) were bound by IgE from patient sera. Pea and lentil protein extracts strongly inhibited the IgE binding to chickpea globulin. We speculate that vicilin and the basic subunit of legumin are major chickpea allergens. Also, the globulin fraction of chickpea likely cross-reacts with the allergenic proteins of pea and lentil.
Collapse
|
|
12 |
19 |
21
|
Curciarello R, Smaldini PL, Candreva AM, González V, Parisi G, Cauerhff A, Barrios I, Blanch LB, Fossati CA, Petruccelli S, Docena GH. Targeting a cross-reactive Gly m 5 soy peptide as responsible for hypersensitivity reactions in a milk allergy mouse model. PLoS One 2014; 9:e82341. [PMID: 24416141 PMCID: PMC3886974 DOI: 10.1371/journal.pone.0082341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/29/2013] [Indexed: 11/18/2022] Open
Abstract
Background Cross-reactivity between soybean allergens and bovine caseins has been previously reported. In this study we aimed to map epitopes of the major soybean allergen Gly m 5 that are co-recognized by casein specific antibodies, and to identify a peptide responsible for the cross-reactivity. Methods Cow's milk protein (CMP)-specific antibodies were used in different immunoassays (immunoblotting, ELISA, ELISA inhibition test) to evaluate the in vitro recognition of soybean proteins (SP). Recombinant Gly m 5 (α), a truncated fragment containing the C-terminal domain (α-T) and peptides of α-T were obtained and epitope mapping was performed with an overlapping peptide assay. Bioinformatics tools were used for epitope prediction by sequence alignment, and for modelling the cross-recognized soy proteins and peptides. The binding of SP to a monoclonal antibody was studied by surface Plasmon resonance (SPR). Finally, the in vivo cross-recognition of SP was assessed in a mouse model of milk allergy. Results Both α and α-T reacted with the different CMP-specific antibodies. α-T contains IgG and IgE epitopes in several peptides, particularly in the peptide named PA. Besides, we found similar values of association and dissociation constants between the α-casein specific mAb and the different milk and soy components. The food allergy mouse model showed that SP and PA contain the cross-reactive B and T epitopes, which triggered hypersensitivity reactions and a Th2-mediated response on CMP-sensitized mice. Conclusions Gly m 5 is a cross-reactive soy allergen and the α-T portion of the molecule contains IgG and IgE immunodominant epitopes, confined to PA, a region with enough conformation to be bound by antibodies. These findings contribute to explain the intolerance to SP observed in IgE-mediated CMA patients, primarily not sensitised to SP, as well as it sets the basis to propose a mucosal immunotherapy for milk allergy using this soy peptide.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
18 |
22
|
Deak PE, Vrabel MR, Kiziltepe T, Bilgicer B. Determination of Crucial Immunogenic Epitopes in Major Peanut Allergy Protein, Ara h2, via Novel Nanoallergen Platform. Sci Rep 2017; 7:3981. [PMID: 28638052 PMCID: PMC5479826 DOI: 10.1038/s41598-017-04268-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
Current methods for detection and diagnosis of allergies do not provide epitope specific immunogenic information and hence lack critical information that could aid in the prediction of clinical responses. To address this issue, we developed a nanoparticle based platform, called nanoallergens that enable multivalent display of potential allergy epitopes for determining the immunogenicity of each IgE binding epitope. By synthesizing nanoallergens that present various epitopes from the major peanut allergen, Ara h2, we directly determined the immunogenicity of each epitope, alone and in combination with other epitopes, using patient sera. This information provided insights on which epitopes are most critical for physiological responses to Ara h2 and revealed the importance of both high and low affinity epitopes for allergic responses. We anticipate the nanoallergen platform to be used to provide information regarding allergic reactions and therefore potentially aid in more accurate diagnosis and design of personalized treatment options.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
18 |
23
|
Geng T, Stojšin D, Liu K, Schaalje B, Postin C, Ward J, Wang Y, Liu ZL, Li B, Glenn K. Natural Variability of Allergen Levels in Conventional Soybeans: Assessing Variation across North and South America from Five Production Years. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:463-472. [PMID: 27997188 DOI: 10.1021/acs.jafc.6b04542] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Soybean (Glycine max L. Merrill) is one of eight major allergenic foods with endogenous proteins identified as allergens. To better understand the natural variability of five soybean allergens (Gly m 4, Gly m 5, Gly m 6, Gly m Bd 28k, and Gly m Bd 30k), validated enzyme-linked immunosorbent assays (ELISAs) were developed. These ELISAs measured allergens in 604 soybean samples collected from locations in North and South America over five growing seasons (2009-2013/2014) and including 37 conventional varieties. Levels of these five allergens varied 5-19-fold. Multivariate statistical analyses and pairwise comparisons show that environmental factors have a larger effect on allergen levels than genetic factors. Therefore, from year to year, consumers are exposed to highly variable levels of allergens in soy-based foods, bringing into question whether quantitative comparison of endogenous allergen levels of new genetically modified soybean adds meaningful information to their overall safety risk assessment.
Collapse
|
|
8 |
17 |
24
|
Biscola V, de Olmos AR, Choiset Y, Rabesona H, Garro MS, Mozzi F, Chobert JM, Drouet M, Haertlé T, Franco BDGM. Soymilk fermentation by Enterococcus faecalis VB43 leads to reduction in the immunoreactivity of allergenic proteins β-conglycinin (7S) and glycinin (11S). Benef Microbes 2017; 8:635-643. [PMID: 28726509 DOI: 10.3920/bm2016.0171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Food allergies represent a serious problem affecting human health and soy proteins rank among the most allergenic proteins from food origin. The proteolytic enzymes produced by lactic acid bacteria (LAB) can hydrolyse the major allergens present in soybean, reducing their immunoreactivity. Many studies have reported the ability of LAB to ferment soy-based products; while the majority of them focus on the improvement of the sensory characteristics and functionality of soy proteins, a lack of information about the role of lactic fermentation in the reduction of immunoreactivity of these proteins exists. The aim of the present study was to evaluate the capability of the proteolytic strain Enterococcus faecalis VB43 to hydrolyse the main allergenic proteins present in soymilk and to determine the immunoreactivity of the obtained hydrolysates. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) results of fermented soymilk demonstrated complete hydrolysis of the β-subunit from β-conglycinin and the acidic polypeptide from glycinin. Reversed phase high performance liquid chromatography (RP-HPLC) analysis of the peptides released after hydrolysis revealed the appearance of new peptides and the disappearance of non-hydrolysed proteins, indicating extensive hydrolysis of the substrate. Results from competitive enzyme-linked immunosorbent assay (ELISA) tests clearly indicated a reduction in the immunoreactivity (more than one logarithmic unit) in the fermented sample as compared to the non-fermented control. Our results suggest that the soymilk fermented by E. faecalis VB43 may induce lower allergic responses in sensitive individuals. The strain E. faecalis VB43 may be considered as an excellent candidate to efficiently reduce the immunoreactivity of soymilk proteins.
Collapse
|
|
8 |
17 |
25
|
Zheng S, Qin G, Tian H, Sun Z. Role of soybean β-conglycinin subunits as potential dietary allergens in piglets. Vet J 2014; 199:434-8. [PMID: 24508322 DOI: 10.1016/j.tvjl.2013.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 11/16/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
β-Conglycinin, a major seed-storage protein in soybeans, is one of the primary antigenic proteins responsible for soybean-meal hypersensitivity in weaned piglets. The protein is a heterotrimer composed of subunits α, α' and β. It is currently unknown which of the β-conglycinin subunits are allergenic for piglets. The aim of this study was to identify potential allergenic subunits of β-conglycinin for soybean sensitive piglets and to characterise these subunits by immunoglobulin (Ig) G and E immunoblotting, ELISA, 'skin prick' and whole blood histamine-release testing. The IgG and IgE binding capabilities of the purified α, α' and β subunits of β-conglycinin were determined by immunoblot analysis and ELISA with sera from β-conglycinin sensitised piglets. Skin prick testing and whole blood histamine release testing were also performed to detect the activated effector cell response to specific allergens. Specific IgG and E antibodies were identified that recognised all three subunits of β-conglycinin in the sera of β-conglycinin sensitised piglets. All three subunits of β-conglycinin elicited positive skin test and specific histamine release responses from the whole blood of β-conglycinin sensitised piglets. These results suggest that all three β-conglycinin subunits are potential allergens for piglets.
Collapse
|
|
11 |
15 |