1
|
Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC. A role for CD95 ligand in preventing graft rejection. Nature 1995; 377:630-2. [PMID: 7566174 DOI: 10.1038/377630a0] [Citation(s) in RCA: 843] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Testis is a remarkable immune-privileged site, long known for its ability to support allogeneic and xenogeneic tissue transplants. Here we have investigated the molecular basis for testis immune privilege. Testis grafts derived from mice that can express functional CD95 (Fas or Apo-1) ligand survived indefinitely when transplanted under the kidney capsule of allogeneic animals, whereas testis grafts derived from mutant gld mice, which express non-functional ligand, were rejected. Further analysis of testis showed that CD95 ligand messenger RNA is constitutively expressed by testicular Sertoli cells, and that Sertoli cells from normal mice, but not gld mice, were accepted when transplanted into allogeneic recipients. CD95 ligand expression in the testis probably acts by inducing apoptotic cell death of CD95-expressing, recipient T cells activated in response to graft antigens. These findings indicate that CD95 ligand could be used to create immune-privileged tissue for a variety of transplant uses.
Collapse
|
|
30 |
843 |
2
|
Abstract
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium into the basal and the apical (adluminal) compartments. Meiosis I and II, spermiogenesis, and spermiation all take place in a specialized microenvironment behind the BTB in the apical compartment, but spermatogonial renewal and differentiation and cell cycle progression up to the preleptotene spermatocyte stage take place outside of the BTB in the basal compartment of the epithelium. However, the BTB is not a static ultrastructure. Instead, it undergoes extensive restructuring during the seminiferous epithelial cycle of spermatogenesis at stage VIII to allow the transit of preleptotene spermatocytes at the BTB. Yet the immunological barrier conferred by the BTB cannot be compromised, even transiently, during the epithelial cycle to avoid the production of antibodies against meiotic and postmeiotic germ cells. Studies have demonstrated that some unlikely partners, namely adhesion protein complexes (e.g., occludin-ZO-1, N-cadherin-β-catenin, claudin-5-ZO-1), steroids (e.g., testosterone, estradiol-17β), nonreceptor protein kinases (e.g., focal adhesion kinase, c-Src, c-Yes), polarity proteins (e.g., PAR6, Cdc42, 14-3-3), endocytic vesicle proteins (e.g., clathrin, caveolin, dynamin 2), and actin regulatory proteins (e.g., Eps8, Arp2/3 complex), are working together, apparently under the overall influence of cytokines (e.g., transforming growth factor-β3, tumor necrosis factor-α, interleukin-1α). In short, a "new" BTB is created behind spermatocytes in transit while the "old" BTB above transiting cells undergoes timely degeneration, so that the immunological barrier can be maintained while spermatocytes are traversing the BTB. We also discuss recent findings regarding the molecular mechanisms by which environmental toxicants (e.g., cadmium, bisphenol A) induce testicular injury via their initial actions at the BTB to elicit subsequent damage to germ-cell adhesion, thereby leading to germ-cell loss, reduced sperm count, and male infertility or subfertility. Moreover, we also critically evaluate findings in the field regarding studies on drug transporters in the testis and discuss how these influx and efflux pumps regulate the entry of potential nonhormonal male contraceptives to the apical compartment to exert their effects. Collectively, these findings illustrate multiple potential targets are present at the BTB for innovative contraceptive development and for better delivery of drugs to alleviate toxicant-induced reproductive dysfunction in men.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
634 |
3
|
|
Comment |
30 |
203 |
4
|
Meinhardt A, Hedger MP. Immunological, paracrine and endocrine aspects of testicular immune privilege. Mol Cell Endocrinol 2011; 335:60-8. [PMID: 20363290 DOI: 10.1016/j.mce.2010.03.022] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 03/26/2010] [Indexed: 02/06/2023]
Abstract
Protection of the spermatogenic cells from the host immune response is fundamental to male fertility. Significantly, this protection extends to the tolerance of foreign tissue grafts placed within the testicular environment, a phenomenon that is called 'immune privilege'. This privilege of the testis appears to involve several levels of immune control, encompassing the normal mechanisms of immune tolerance, antigen sequestration behind the blood-testis barrier, reduced immune activation, localised immunosuppression and antigen-specific immunoregulation. Central to these regulatory processes are the somatic cells of the testis, particularly the Sertoli cells, and testicular secretions, including androgens, cytokines, peptides and bioactive lipids. Failure of these protective mechanisms, which may be precipitated by trauma, inflammation or infection, or as the consequence of genetic factors, can lead to androgen deficiency, infertility and autoimmunity.
Collapse
|
Review |
14 |
185 |
5
|
Korbutt GS, Elliott JF, Rajotte RV. Cotransplantation of allogeneic islets with allogeneic testicular cell aggregates allows long-term graft survival without systemic immunosuppression. Diabetes 1997; 46:317-22. [PMID: 9000711 DOI: 10.2337/diab.46.2.317] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We prepared single-cell suspensions of Lewis rat ¿RT1(1/l)¿ testicular cells and cultured these in vitro for 48 h under conditions that promoted the formation of cellular aggregates. In the absence of systemic immunosuppression, the transplantation of a sufficient quantity of these aggregates (containing 11 x 10(6) cells, (75% Sertoli cells), together with 2,000 purified Lewis rat islets, reversed the diabetic state for >95 days in 100% (5/5) of the chemically diabetic Wistar-Furth ¿RT1(u/u)¿ recipients. Similar grafts consisting of islets alone or islets plus 50% fewer testicular cell aggregates survived for only 10 days. Functioning composite allografts harvested from normoglycemic animals at approximately 100 days showed healthy beta-cells in close association with Fas ligand-expressing Sertoli cells. Because no gene therapy protocol is required, the transplantation of composite grafts consisting of purified human allogeneic islets plus human allogeneic testicular cell aggregates can be applied in clinical islet transplantation as soon as it has been proven in a large animal model.
Collapse
|
|
28 |
148 |
6
|
Valdés-González RA, Dorantes LM, Garibay GN, Bracho-Blanchet E, Mendez AJ, Dávila-Pérez R, Elliott RB, Terán L, White DJG. Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study. Eur J Endocrinol 2005; 153:419-27. [PMID: 16131605 DOI: 10.1530/eje.1.01982] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Porcine islets of Langerhans for xenotransplantation into humans have been proposed as a solution to the shortage of human donors. Rejection is one of the main constraints. This study presents the results of a clinical trial using a novel method for transplanting and immunoprotecting porcine islets in type 1 diabetic patients. DESIGN A 4-year follow up of a clinical trial involving 12 patients, with no immunosuppressive drugs at any point. Eleven age matched untransplanted diabetics served as controls. METHODS We have developed a procedure for protecting neonatal porcine islets by combining them with Sertoli cells and placing them in a novel subcutaneous autologous collagen-covered device. RESULTS In the patients in the treatment group, no complications arose and no porcine endogenous retrovirus infection was detected. Half of the patients showed a significant reduction in insulin requirements compared with both their pre transplant levels and controls, and this reduction was maintained for up to 4 years. Two patients became insulin-independent for several months. Porcine insulin was detected in three patients' sera following glucose stimulation up to 4 years post transplant. Three years post transplant, one of four devices was removed from four patients, and the presence of insulin-positive cells in the transplant was demonstrated by immunohistology in all 4 patients. CONCLUSIONS Long-term cell survival with concurrent positive effects on metabolic control are possible by this technique.
Collapse
|
Clinical Trial |
20 |
144 |
7
|
Abstract
Immune responses within the testis are regulated in a manner that provides protection for the developing male germ cells, while permitting qualitatively normal inflammatory responses and protection against infection. The large population of resident-type macrophages in the testis is strongly implicated in mediating this specialised immunological environment. Several studies in the rat have shown that testicular macrophages retain their cytotoxic and phagocytic capacity, but have greatly diminished pro-inflammatory function and even exhibit immunosuppressive activity. While the local mechanisms that control the phenotype of the testicular macrophage population are unknown, evidence points to the influence of the testicular somatic cells, the Sertoli and Leydig cells. A smaller but significant population of macrophages that lack expression of resident macrophage markers, is also found in the rat testis. The functional role of these macrophages remains to be defined, but they most likely represent circulating monocytes or newly-arrived testicular macrophages, and, therefore, may contribute to sustaining inflammatory responses within the testis. Further investigation of the immune-related functions of these different macrophage subsets, and the testicular somatic cells, during immunological and inflammatory events should provide a better understanding of how the testicular immune environment is maintained and regulated.
Collapse
|
Review |
23 |
126 |
8
|
Sanberg PR, Borlongan CV, Saporta S, Cameron DF. Testis-derived Sertoli cells survive and provide localized immunoprotection for xenografts in rat brain. Nat Biotechnol 1996; 14:1692-5. [PMID: 9634853 DOI: 10.1038/nbt1296-1692] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transplantation of neural tissue into the mammalian central nervous system has become an alternative treatment for neurodegenerative disorders such as Parkinson's disease. Logistical and ethical problems in the clinical use of human fetal neural grafts as a source of dopamine for Parkinson's disease patients has hastened a search for successful ways to use animal dopaminergic cells for human transplantation. The present study demonstrates that transplanted testis-derived Sertoli cells into adult rat brains survive. Furthermore, when cotransplanted with bovine adrenal chromaffin cells (xenograft), Sertoli cells produce localized immunoprotection, suppress microglial response and allow the bovine cells to survive in the rat brain without continuous systemic immunosuppressive drugs. These novel features support Sertoli cells as a viable graft source for facilitating the use of xenotransplantation for Parkinson's disease and suggest their use as facilitators, (i.e., localized immunosuppression) for cell transplantation in general.
Collapse
|
|
29 |
114 |
9
|
Shiratsuchi A, Umeda M, Ohba Y, Nakanishi Y. Recognition of phosphatidylserine on the surface of apoptotic spermatogenic cells and subsequent phagocytosis by Sertoli cells of the rat. J Biol Chem 1997; 272:2354-8. [PMID: 8999945 DOI: 10.1074/jbc.272.4.2354] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In a primary co-culture of spermatogenic and Sertoli cells of the rat, many spermatogenic cells die by apoptosis and are subsequently engulfed by Sertoli cells. We investigated the mechanism of this phagocytosis reaction. Testicular cells from 20-day-old rats were cultured, and spermatogenic cells and Sertoli cells were separated. When the recovered spermatogenic cells were maintained without Sertoli cells, the viability of the cells decreased and they became more susceptible to phagocytosis by Sertoli cells. Phagocytosis was severely impaired when liposomes containing acidic phospholipids, such as phosphatidylserine, phosphatidylinositol, and cardiolipin, were included in the reaction, whereas those consisting of neutral phospholipids showed little effect. Such anionic liposomes were more efficiently engulfed by Sertoli cells than were the other neutral liposomes. Also, the number of spermatogenic cells that exposed phosphatidylserine to the surface increased when cells were maintained in single culture. The results indicate that upon induction of spermatogenic cell apoptosis, phosphatidylserine and probably other acidic phospholipids, which are normally localized in the inner leaflet of the plasma membrane, translocate to the outer leaflet and serve as a signal for phagocytosis by Sertoli cells.
Collapse
|
|
28 |
104 |
10
|
Riccioli A, Starace D, Galli R, Fuso A, Scarpa S, Palombi F, De Cesaris P, Ziparo E, Filippini A. Sertoli cells initiate testicular innate immune responses through TLR activation. THE JOURNAL OF IMMUNOLOGY 2007; 177:7122-30. [PMID: 17082629 DOI: 10.4049/jimmunol.177.10.7122] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TLRs play a crucial role in early host defense against invading pathogens. In the seminiferous epithelium, Sertoli cells are the somatic nurse cells that mechanically segregate germ cell autoantigens by means of the blood-tubular barrier and create a microenvironment that protects germ cells from both interstitial and ascending invading pathogens. The objective of this study was to examine TLR expression and their functional responses to specific agonists in mouse Sertoli cells. We measured the expression of TLR2, TLR4, TLR5, and TLR6 mRNAs and confirmed by FACS analysis the presence of proteins TLR2 and TLR5 on which we focused our study. Stimulation of Sertoli cells with macrophage-activating lipopeptide-2, agonist of TLR2/TLR6, and with flagellin, agonist of TLR5, induces augmented secretion of the chemokine MCP-1. To assess the functional significance of MCP-1 production following TLR stimulation, conditioned medium from either macrophage-activating lipopeptide-2 or flagellin-treated Sertoli cells was tested for in vitro chemotaxis assay, and a significant increase of macrophage migration was observed in comparison with unstimulated conditioned medium. Moreover, we studied the role of NF-kappaB and of MAPKs in regulating TLR-mediated MCP-1 secretion by using inhibitors specific for each transduction pathway and we demonstrated a pivotal role of the IkappaB/NF-kappaB and JNK systems. In addition, TLR2/TLR6 and TLR5 stimulation induces increased ICAM-1 expression in Sertoli cells. Collectively, this study demonstrates the novel ability of Sertoli cells to potentially respond to a wide variety of bacteria through TLR stimulation.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
101 |
11
|
Millette CF, Bellvé AR. Temporal expression of membrane antigens during mouse spermatogenesis. J Biophys Biochem Cytol 1977; 74:86-97. [PMID: 68961 PMCID: PMC2109864 DOI: 10.1083/jcb.74.1.86] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The temporal expression of cell surface antigens during mammalian spermatogenesis has been investigated using isolated populations of mouse germ cells. Spermatogenic cells at advanced stages of differentiation, including pachytene primary spermatocytes, round spermatids, and residual bodies of Regaud and mature spermatozoa, contain common antigenic membrane components which are not detected before the pachytene stage of the first meiotic prophase. These surface constituents are not detected on isolated populations of primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene primary spermatocytes, or leptotene and zygotene primary spermatocytes. These results have been demonstrated by immunofluorescence microscopy, by complement-mediated cytotoxicity, and by quantitative measurements of immunoglobulin (Ig) receptors on the plasma membrane of all cell populations examined. The cell surface antigens detected on germ cells are not found on mouse thymocytes, erythrocytes, or peripheral blood lymphocytes as determined by immunofluorescence and by cytotoxicity assays. Furthermore, absorption of antisera with kidney and liver tissue does not reduce the reactivity of the antibody preparations with spermatogenic cells, indicating that these antigenic determinants are specific to germ cells. This represents the first direct evidence for the ordered temporal appearance of plasma membrane antigens specific to particular classes of mouse spermatogenic cells. It appears that at late meiotic prophase, coincident with the production of pachytene primary spermatocytes, a variety of new components are inserted into the surface membranes of developing germ cells. The further identification and biochemical characterization of these constituents should facilitate an understanding of mammalian spermatogenesis at the molecular level.
Collapse
|
research-article |
48 |
97 |
12
|
Johnson JA, Grande JP, Roche PC, Kumar R. Immunohistochemical detection and distribution of the 1,25-dihydroxyvitamin D3 receptor in rat reproductive tissues. Histochem Cell Biol 1996; 105:7-15. [PMID: 8824901 DOI: 10.1007/bf01450873] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vitamin D3, via its active metabolite 1,25-dihydroxyvitamin D3, plays a critical part in male and female reproduction in the rat. 1,25-Dihydroxyvitamin D3 activity is mediated by an intracellular receptor (VDR). VDR distribution in reproductive tissue has not been studied using antibodies against the receptor. We developed a polyclonal antibody against the VDR and used it to examine VDR distribution in male and female rat reproductive tissues. In rat testes, VDR epitopes were observed in seminiferous tubules, specifically in spermatogonia, Sertoli cells and spermatocytes. Spermatozoa stained faintly. Epithelial cells of the epididymis, seminal vesicles and prostate also expressed VDR epitopes. In the female rat reproductive tract, immunostaining for VDR was seen in ovarian follicles, specifically in granulosa cells. Weaker VDR immunostaining was observed in follicular thecal cells and in the ovarian stroma and germinal epithelium. Corpus luteal cells stained intensely for VDR. Epithelium of fallopian tubes and the uterus also contained VDR epitopes. Both nuclear and cytoplasmic VDR immunostaining was observed in male and female rat reproductive tissues. We conclude that the VDR is widely distributed in male and female reproductive tissues and that it is likely to mediate actions of 1,25-dihydroxyvitamin D3 in the tissues.
Collapse
|
|
29 |
87 |
13
|
Tung KSK, Harakal J, Qiao H, Rival C, Li JCH, Paul AGA, Wheeler K, Pramoonjago P, Grafer CM, Sun W, Sampson RD, Wong EWP, Reddi PP, Deshmukh US, Hardy DM, Tang H, Cheng CY, Goldberg E. Egress of sperm autoantigen from seminiferous tubules maintains systemic tolerance. J Clin Invest 2017; 127:1046-1060. [PMID: 28218625 DOI: 10.1172/jci89927] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022] Open
Abstract
Autoimmune responses to meiotic germ cell antigens (MGCA) that are expressed on sperm and testis occur in human infertility and after vasectomy. Many MGCA are also expressed as cancer/testis antigens (CTA) in human cancers, but the tolerance status of MGCA has not been investigated. MGCA are considered to be uniformly immunogenic and nontolerogenic, and the prevailing view posits that MGCA are sequestered behind the Sertoli cell barrier in seminiferous tubules. Here, we have shown that only some murine MGCA are sequestered. Nonsequestered MCGA (NS-MGCA) egressed from normal tubules, as evidenced by their ability to interact with systemically injected antibodies and form localized immune complexes outside the Sertoli cell barrier. NS-MGCA derived from cell fragments that were discarded by spermatids during spermiation. They egressed as cargo in residual bodies and maintained Treg-dependent physiological tolerance. In contrast, sequestered MGCA (S-MGCA) were undetectable in residual bodies and were nontolerogenic. Unlike postvasectomy autoantibodies, which have been shown to mainly target S-MGCA, autoantibodies produced by normal mice with transient Treg depletion that developed autoimmune orchitis exclusively targeted NS-MGCA. We conclude that spermiation, a physiological checkpoint in spermatogenesis, determines the egress and tolerogenicity of MGCA. Our findings will affect target antigen selection in testis and sperm autoimmunity and the immune responses to CTA in male cancer patients.
Collapse
|
Journal Article |
8 |
84 |
14
|
Riccioli A, Filippini A, De Cesaris P, Barbacci E, Stefanini M, Starace G, Ziparo E. Inflammatory mediators increase surface expression of integrin ligands, adhesion to lymphocytes, and secretion of interleukin 6 in mouse Sertoli cells. Proc Natl Acad Sci U S A 1995; 92:5808-12. [PMID: 7541137 PMCID: PMC41590 DOI: 10.1073/pnas.92.13.5808] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The expression of the cell adhesion molecules ICAM-1, ICAM-2, and VCAM-1 and the secretion of the cytokine interleukin 6 have been measured in mouse Sertoli cells cultured in vitro. Cytometric analysis revealed that, in basal conditions, low levels of ICAM-1 and VCAM-1 were present on the surface of the cells, whereas treatment with interleukin 1, tumor necrosis factor alpha, lipopolysaccharide, or interferon gamma induced, with different kinetics, increases in their expression. ICAM-2 was not detectable in basal conditions, nor was it inducible. Electron microscopic analysis and binding experiments using 51Cr-labeled lymphocytes demonstrated that increased expression of ICAM-1 and VCAM-1 on the surface of Sertoli cells, induced by inflammatory mediators, determines an augmented adhesion between the two cell types. The same stimuli, with the exception of interferon gamma, produced a rapid and remarkable increment of interleukin 6 production by Sertoli cells. These results suggest the presence of both direct and paracrine mechanisms of interaction between Sertoli and immune-competent cells, possibly involved in the control of immune reactions in the testis. Such mechanisms are of interest for the understanding of autoimmune pathologies of the testis and, if confirmed in humans, they could be involved in the sexual transmission of human immunodeficiency virus infection.
Collapse
|
research-article |
30 |
76 |
15
|
Riccioli A, Starace D, D'Alessio A, Starace G, Padula F, De Cesaris P, Filippini A, Ziparo E. TNF-alpha and IFN-gamma regulate expression and function of the Fas system in the seminiferous epithelium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:743-9. [PMID: 10878347 DOI: 10.4049/jimmunol.165.2.743] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sertoli cells have long been considered to be involved in the regulation of the immune response in the testis. More recently, the Fas system has been implicated in the maintenance of the immune privilege in the testis as well as in the regulation of germ cell apoptosis. However, the control of Fas and Fas ligand (FasL) expression in the testis remains unknown. In the present study, we demonstrate that cultured mouse Sertoli cells constitutively express a low level of membrane-bound Fas protein, but not a soluble form of Fas. Sertoli cells stimulated with TNF-alpha and IFN-gamma markedly increase the expression of both soluble and membrane-bound Fas in a dose-dependent manner. The up-regulated membrane-bound Fas protein is functionally active because it induces a significant level of Sertoli cell death in the presence of Neuro-2a FasL+ effector cells. Interestingly, the soluble form of Fas, which is induced by the same cytokines but has an antiapoptotic effect, is also functional. In fact, conditioned media from TNF-alpha-stimulated Sertoli cell cultures inhibit Neuro-2a FasL+-induced cell death. Taken together, our data suggest a possible regulatory role of TNF-alpha and IFN-gamma on Fas-mediated apoptosis in the testis through disruption of the balance between different forms of Fas.
Collapse
|
|
25 |
75 |
16
|
Hirst CE, Buzza MS, Sutton VR, Trapani JA, Loveland KL, Bird PI. Perforin-independent expression of granzyme B and proteinase inhibitor 9 in human testis and placenta suggests a role for granzyme B-mediated proteolysis in reproduction. Mol Hum Reprod 2001; 7:1133-42. [PMID: 11719590 DOI: 10.1093/molehr/7.12.1133] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Granzyme B (graB) plays a pivotal role in cytotoxic lymphocyte granule-mediated apoptosis through cleavage of intracellular proteins in target cells. Proteinase inhibitor-9 (PI-9) is a potent inhibitor of graB and is highly expressed in cytotoxic lymphocytes. Here, we show by immunohistochemistry that PI-9 is also abundantly expressed in human testicular Sertoli cells and placental syncytial trophoblasts. Postulating that PI-9 protects these tissues from graB-producing auto- or allo-reactive cytotoxic lymphocytes, we also stained sections for graB. Unexpectedly, graB was observed in non-cytotoxic cells in both tissues. In the adult human testis, graB was present in spermatogenic cells within the seminiferous tubule, and this was verified by in-situ hybridization and reverse transcription-polymerase chain reaction (RT-PCR). Immunohistochemical analysis of term placentae demonstrated graB in syncytial trophoblasts, and this was confirmed by RT-PCR on primary trophoblasts from term placenta. Perforin, which is co-produced with graB by activated cytotoxic lymphocytes and is required for graB release into the target cell, was not detected in either testis or placenta. We postulate that, in these organs, graB has a perforin-independent role, involving hydrolysis of extracellular matrix components. In the testis, graB may facilitate migration of developing germ cells, while in the placenta, it may contribute to extracellular matrix remodelling during parturition.
Collapse
|
|
24 |
74 |
17
|
Sipione S, Simmen KC, Lord SJ, Motyka B, Ewen C, Shostak I, Rayat GR, Dufour JM, Korbutt GS, Rajotte RV, Bleackley RC. Identification of a Novel Human Granzyme B Inhibitor Secreted by Cultured Sertoli Cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:5051-8. [PMID: 17015688 DOI: 10.4049/jimmunol.177.8.5051] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sertoli cells have long since been recognized for their ability to suppress the immune system and protect themselves as well as other cell types from harmful immune reaction. However, the exact mechanism or product produced by Sertoli cells that affords this immunoprotection has never been fully elucidated. We examined the effect of mouse Sertoli cell-conditioned medium on human granzyme B-mediated killing and found that there was an inhibitory effect. We subsequently found that a factor secreted by Sertoli cells inhibited killing through the inhibition of granzyme B enzymatic activity. SDS-PAGE analysis revealed that this factor formed an SDS-insoluble complex with granzyme B. Immunoprecipitation and mass spectroscopic analysis of the complex identified a proteinase inhibitor, serpina3n, as a novel inhibitor of human granzyme B. We cloned serpina3n cDNA, expressed it in Jurkat cells, and confirmed its inhibitory action on granzyme B activity. Our studies have led to the discovery of a new inhibitor of granzyme B and have uncovered a new mechanism used by Sertoli cells for immunoprotection.
Collapse
|
|
19 |
71 |
18
|
De Cesaris P, Filippini A, Cervelli C, Riccioli A, Muci S, Starace G, Stefanini M, Ziparo E. Immunosuppressive molecules produced by Sertoli cells cultured in vitro: biological effects on lymphocytes. Biochem Biophys Res Commun 1992; 186:1639-46. [PMID: 1510687 DOI: 10.1016/s0006-291x(05)81596-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the present study we have analyzed the proteins secreted in vitro by murine Sertoli cells to identify immunosuppressive factors. Our data show that Sertoli cells secrete molecules capable to inhibit proliferation of lymphocytes activated in vitro. Cytophluorimetric analysis indicates that treated cells are arrested in the G1 phase of cell cycle. The inhibitory activity is specific for both B or T lymphocytes but not for other non-lymphoid cells and is associated to proteins, heat and freeze stable, with Mr of more than 30 kDa. Lymphocytes treated with Sertoli immunosuppressive proteins drastically reduce the secretion of interleukin-2.
Collapse
|
|
33 |
64 |
19
|
Chen Y, Wang J, Zhang Q, Xiang Z, Li D, Han X. Microcystin-leucine arginine exhibits immunomodulatory roles in testicular cells resulting in orchitis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:964-975. [PMID: 28765008 DOI: 10.1016/j.envpol.2017.07.081] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/06/2017] [Accepted: 07/24/2017] [Indexed: 05/14/2023]
Abstract
Microcystin-leucine arginine (MC-LR) causes testicular inflammation and hinders spermatogenesis. However, the molecular mechanisms underlying the immune responses to MC-LR in the testis have not been elucidated in detail. In this study, we show that MC-LR induced immune responses in Sertoli cells (SC), germ cells (GC), and Leydig cells (LC) via activating phosphatidylinositol 3-kinase (PI3K)/AKT/nuclear factor kappa B (NF-κB), resulting in the production of pro-inflammatory cytokines and chemokines including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and chemokine (C-X-C motif) ligand 10 (CXCL10). The observed effects were attributed to reduced activity of protein phosphatases 2A (PP2A) as a result of binding of MC-LR to the catalytic subunit of PP2A in SC and GC. By contrast, innate immune responses were triggered by Toll-like receptor 2 (TLR2) in LC because MC-LR could not enter into the LC and subsequently inhibit the PP2A activity. PI3K/AKT/NF-κB were also activated in SC, GC, and LC in vivo, with the enrichment of TNF-α, IL-6, MCP-1, and CXCL10 in the testis. Following chronic exposure, MC-LR-treated mice exhibited decreased sperm counts and abnormal sperm morphology. Our data demonstrate that MC-LR can activate innate immune responses in testicular cells, which provides novel insights to explore the mechanism associated with MC-LR-induced orchitis.
Collapse
|
|
8 |
59 |
20
|
Korbutt GS, Suarez-Pinzon WL, Power RF, Rajotte RV, Rabinovitch A. Testicular Sertoli cells exert both protective and destructive effects on syngeneic islet grafts in non-obese diabetic mice. Diabetologia 2000; 43:474-80. [PMID: 10819241 DOI: 10.1007/s001250051331] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS Testicular Sertoli cells protect allogeneic islet grafts from rejection after transplantation into animals with chemically induced diabetes. The aims of this study were to determine whether Sertoli cells can protect syngeneic islets from autoimmune destruction after transplantation into non-obese diabetic (NOD) mice and, if so, whether protection is due to Sertoli cell expression of Fas ligand (FasL), believed to be the mechanism that protects against allograft rejection. METHODS We compared the survival of syngeneic islets transplanted under the renal capsule of nonobese diabetic mice, alone and together with purified Sertoli cells prepared from testes of newborn nonobese diabetic mice. Additionally, we examined the composition of the islet and Sertoli cell co-transplants by immunohistochemistry to determine whether islet graft survival correlated with Sertoli cell expression of Fas ligand. RESULTS Sertoli cell doses of 1, 2 and 4 x 10(6) cells produced a dose-dependent prolongation of median islet graft survival from 11 days (islets alone) to 32 days (islets + 4 x 10(6) Sertoli cells); addition of 8 x 10(6) Sertoli cells to the islet grafts decreased, however, median survival to 8 days. Immunohistochemical analysis of the islet and Sertoli cell co-transplants showed a correlation between Fas ligand expression by Sertoli cells and graft infiltration by neutrophilic leucocytes, leading to islet beta-cell destruction and diabetes recurrence. CONCLUSION/INTERPRETATION Sertoli cells exert opposing effects on survival of syngeneic islet grafts in nonobese diabetic mice: Fas ligand-dependent neutrophil infiltration and graft destruction, and Fas ligand-independent protection of the graft from autoimmune destruction.
Collapse
|
|
25 |
57 |
21
|
Wyatt CR, Law L, Magnuson JA, Griswold MD, Magnuson NS. Suppression of lymphocyte proliferation by proteins secreted by cultured Sertoli cells. J Reprod Immunol 1988; 14:27-40. [PMID: 3199389 DOI: 10.1016/0165-0378(88)90033-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Secreted proteins from cultured rat Sertoli cells were assessed for effects on phytolectin-stimulated rat splenic lymphocytes. Sertoli cell proteins (SCP) suppressed DNA, RNA and protein synthesis in stimulated rat splenic lymphocytes whether added at 0, 4, 24 and 48 h after culture initiation. SCP preparations were not toxic to cells. SCP suppressive activity was heat stable but was not associated with the carbohydrate component of SCP preparations. SCP also suppressed the proliferation of lymphoid and non-lymphoid cell lines from several different animal species but did not inhibit proliferation-independent lysis of YAC-1 target cells by rat natural killer cells. These results suggest that Sertoli cells synthesize inhibitory factors that might be secreted into seminal plasma. Furthermore, our results demonstrate that one mode of action of these factors is suppression of cell proliferation.
Collapse
|
|
37 |
54 |
22
|
Francavilla S, D'Abrizio P, Rucci N, Silvano G, Properzi G, Straface E, Cordeschi G, Necozione S, Gnessi L, Arizzi M, Ulisse S. Fas and Fas ligand expression in fetal and adult human testis with normal or deranged spermatogenesis. J Clin Endocrinol Metab 2000; 85:2692-700. [PMID: 10946867 DOI: 10.1210/jcem.85.8.6723] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In mice, the Fas/Fas ligand (FasL) system has been shown to be involved in germ cell apoptosis. In the present study we evaluated the expression of Fas and Fas ligand (FasL) in fetal and adult human testis. Semiquantitative RT-PCR demonstrated the expression of Fas and FasL messenger ribonucleic acids in adult testis, but not in fetal testis (20-22 weeks gestation). In situ RT-PCR and immunohistochemistry experiments on adult human testis demonstrated the expression of FasL messenger ribonucleic acid and protein in Sertoli and Leydig cells, whereas the expression of Fas was confined to the Leydig cells and sporadic degenerating spermatocytes. The number of Fas-positive germ cells per 100 Sertoli cell nuclei was increased in 10 biopsies with postmeiotic germ cell arrest compared to 10 normal testis biopsies (mean, 3.82 +/- 0.45 vs. 2.02 +/- 0.29; P = 0.0001), but not in 10 biopsies with meiotic germ cell arrest (mean, 1.56 +/- 1.07). Fas and FasL proteins were not expressed in cases of idiopathic hypogonadotropic hypogonadism. Together, these findings may suggest that Fas/FasL expression in the human testis is developmentally regulated and under gonadotropin control. The increased germ cell expression of Fas in patients with postmeiotic germ cell arrest suggests that the Fas/FasL system may be involved in the quality control mechanism of the produced gametes.
Collapse
|
|
25 |
53 |
23
|
Sluka P, O'Donnell L, Bartles JR, Stanton PG. FSH regulates the formation of adherens junctions and ectoplasmic specialisations between rat Sertoli cells in vitro and in vivo. J Endocrinol 2006; 189:381-95. [PMID: 16648304 DOI: 10.1677/joe.1.06634] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Spermatogenesis is dependent on the ability of Sertoli cells to form mature junctions that maintain a unique environment within the seminiferous epithelium. Adjacent Sertoli cells form a junctional complex that includes classical adherens junctions and testis-specific ectoplasmic specialisations (ES). The regulation of inter-Sertoli cell junctions by the two main endocrine regulators of spermatogenesis, FSH and testosterone, is unclear. This study aimed to investigate the effects of FSH and testosterone on inter-Sertoli cell adherens junctions (as determined by immunolocalisation of cadherin, catenin and actin) and ES junctions (as determined by immunolocalisation of espin, actin and vinculin) in cultured immature Sertoli cells and GnRH-immunised adult rat testes given FSH or testosterone replacement in vivo. When hormones were absent in vitro, adherens junctions formed as discrete puncta between interdigitating, finger-like projections of Sertoli cells, but ES junctions were not present. The adherens junction puncta included actin filaments that were oriented perpendicularly to the Sertoli cell plasma membrane, but were not associated with the intermediate filament protein vimentin. When FSH was added in vitro, ES junctions formed, and adjacent adherens junction puncta fused into extensive adherens junction belts. After hormone suppression in vivo, ES junctions were absent, while FSH replacement restored ES junctions, as confirmed by electron microscopy and confocal analysis of ES-associated proteins. Testosterone alone did not affect adherens junctions or ES in vitro or in vivo. We conclude that FSH can regulate the formation of ES junctions and stimulate the organisation and orientation of extensive adherens junctions in Sertoli cells.
Collapse
|
|
19 |
53 |
24
|
Buttyan R, Olsson CA, Pintar J, Chang C, Bandyk M, Ng PY, Sawczuk IS. Induction of the TRPM-2 gene in cells undergoing programmed death. Mol Cell Biol 1989; 9:3473-81. [PMID: 2477686 PMCID: PMC362394 DOI: 10.1128/mcb.9.8.3473-3481.1989] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RNA and protein products encoded by the testosterone-repressed prostate message-2 gene (TRPM-2) are induced to high levels, coordinate with the onset of cell death, in numerous rodent models of inducible tissue damage. These models include cell death initiated by hormonal stimuli (prostate regression), pressure insult (renal atrophy after ureteral obstruction), developmental stimuli (necrosis of interdigital tissue), and cytotoxic injury (chemotherapeutic regression of a tumor). Sequence analysis of cDNA encoding TRPM-2 revealed its close homology with a product referred to as SGP-2 or clusterin expressed constitutively by Sertoli cells; however, the immunologically related polypeptides expressed in regressing tissues differ in molecular mass from the forms secreted by the testis. Although the function(s) of the products encoded by the TRPM-2 gene remains unclear, their presence provides a remarkable and early indicator of programmed cell death in many types of mammalian cells.
Collapse
|
research-article |
36 |
48 |
25
|
Gachelin G, Fellous M, Guenet JL, Jacob F. Developmental expression of an early embryonic antigen common to mouse spermatozoa and cleavage embryos, and to human spermatozoa: its expression during spermatogenesis. Dev Biol 1976; 50:310-20. [PMID: 946960 DOI: 10.1016/0012-1606(76)90154-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
|
49 |
44 |