1
|
Nix WA, Oberste MS, Pallansch MA. Sensitive, seminested PCR amplification of VP1 sequences for direct identification of all enterovirus serotypes from original clinical specimens. J Clin Microbiol 2006; 44:2698-704. [PMID: 16891480 PMCID: PMC1594621 DOI: 10.1128/jcm.00542-06] [Citation(s) in RCA: 670] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A reverse transcription-seminested PCR (RT-snPCR) assay was developed for the detection and identification of enterovirus (EV) RNA in clinical specimens. Three conserved protein motifs were identified by aligning the VP3 and VP1 sequences of prototype EV strains. Consensus degenerate primers were designed from a conserved VP3 motif and a distal VP1 motif for the first PCR. Consensus-degenerate hybrid oligonucleotide primers were designed from an internal VP1 motif and used with the same distal VP1 motif for the second, seminested PCR step. The primers were designed for broad target specificity and amplified all recognized and proposed EV serotypes and other antigenic variant strains tested. The VP1 RT-snPCR assay was slightly more sensitive than our in-house EV 5' nontranslated region RT-snPCR assay, detecting as few as 10 RNA copies per reaction. As an example application, the VP1 RT-snPCR assay was used to identify EVs in clinical specimens. A product of the expected size was successfully amplified and sequenced from cerebrospinal fluid; serum; stool suspensions; and nasopharyngeal, eye, and rectal swab specimens, allowing unambiguous identification of the infecting virus in all cases. The VP1 sequences derived from the RT-snPCR products allow rapid phylogenetic and molecular epidemiologic analysis of strains circulating during the EV season and comparison with EV sequences from past seasons or from different locations around the world.
Collapse
|
Journal Article |
19 |
670 |
2
|
Yozwiak NL, Skewes-Cox P, Stenglein MD, Balmaseda A, Harris E, DeRisi JL. Virus identification in unknown tropical febrile illness cases using deep sequencing. PLoS Negl Trop Dis 2012; 6:e1485. [PMID: 22347512 PMCID: PMC3274504 DOI: 10.1371/journal.pntd.0001485] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 12/07/2011] [Indexed: 02/06/2023] Open
Abstract
Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness. Dengue virus infection is a global health concern, affecting as many as 100 million people annually worldwide. A critical first step to proper treatment and control of any virus infection is a correct diagnosis. Traditional diagnostic tests for viruses depend on amplification of conserved portions of the viral genome, detection of the binding of antibodies to viral proteins, or replication of the virus in cell cultures. These methods have a major shortcoming: they are unable to detect divergent or novel viruses for which a priori sequence, serological, or cellular tropism information is not known. In our study, we use two approaches, microarrays and deep sequencing, to virus identification that are less susceptible to such shortcomings. We used these unbiased tools to search for viruses in blood collected from Nicaraguan children with clinical symptoms indicating dengue virus infection, but for whom current dengue virus detection assays yielded negative results. We were able to identify both known and divergent viruses in about one third of previously negative samples, demonstrating the utility of these approaches to detect viruses in cases of unknown dengue-like illness.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
138 |
3
|
Simmerman JM, Suntarattiwong P, Levy J, Jarman RG, Kaewchana S, Gibbons RV, Cowling BJ, Sanasuttipun W, Maloney SA, Uyeki TM, Kamimoto L, Chotipitayasunondh T. Findings from a household randomized controlled trial of hand washing and face masks to reduce influenza transmission in Bangkok, Thailand. Influenza Other Respir Viruses 2011; 5:256-67. [PMID: 21651736 PMCID: PMC4634545 DOI: 10.1111/j.1750-2659.2011.00205.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Evidence is needed on the effectiveness of non-pharmaceutical interventions (NPIs) to reduce influenza transmission. METHODOLOGY We studied NPIs in households with a febrile, influenza-positive child. Households were randomized to control, hand washing (HW), or hand washing plus paper surgical face masks (HW + FM) arms. Study nurses conducted home visits within 24 hours of enrollment and on days 3, 7, and 21. Respiratory swabs and serum were collected from all household members and tested for influenza by RT-PCR or serology. PRINCIPAL FINDINGS Between April 2008 and August 2009, 991 (16·5%) of 5995 pediatric influenza-like illness patients tested influenza positive. Four hundred and forty-two index children with 1147 household members were enrolled, and 221 (50·0%) were aged <6 years. Three hundred and ninety-seven (89·8%) households reported that the index patient slept in the parents' bedroom. The secondary attack rate was 21·5%, and 56/345 (16·3%; 95% CI 12·4-20·2%) secondary cases were asymptomatic. Hand-washing subjects reported 4·7 washing episodes/day, compared to 4·9 times/day in the HW + FM arm and 3·9 times/day in controls (P = 0·001). The odds ratios (ORs) for secondary influenza infection were not significantly different in the HW arm (OR = 1·20; 95% CI 0·76-1·88; P-0.442), or the HW + FM arm (OR = 1·16; 95% CI .0·74-1·82; P = 0.525). CONCLUSIONS Influenza transmission was not reduced by interventions to promote hand washing and face mask use. This may be attributable to transmission that occurred before the intervention, poor facemask compliance, little difference in hand-washing frequency between study groups, and shared sleeping arrangements. A prospective study design and a careful analysis of sociocultural factors could improve future NPI studies.
Collapse
|
Randomized Controlled Trial |
14 |
122 |
4
|
Ward KN, Leong HN, Thiruchelvam AD, Atkinson CE, Clark DA. Human herpesvirus 6 DNA levels in cerebrospinal fluid due to primary infection differ from those due to chromosomal viral integration and have implications for diagnosis of encephalitis. J Clin Microbiol 2007; 45:1298-304. [PMID: 17229866 PMCID: PMC1865851 DOI: 10.1128/jcm.02115-06] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prevalence and concentration of human herpesvirus 6 (HHV-6) DNA in the cerebrospinal fluid (CSF) of the immunocompetent in primary infection was compared with that in viral chromosomal integration. Samples from 510 individuals with suspected encephalitis, 200 young children and 310 older children and/or adults, and 12 other patients were tested. HHV-6 DNA concentration (log(10) copies/ml) was measured in CSF, serum, and whole blood using PCR. Serum HHV-6 immunoglobulin G antibody was measured by indirect immunofluorescence. Primary infection was defined by antibody seroconversion and/or a low concentration of HHV-6 DNA (<3.0 log(10) copies/ml) in a seronegative serum. Chromosomal integration was defined by a high concentration of viral DNA in serum (>/=3.5 log(10) copies/ml) or whole blood (>/=6.0 log(10) copies/ml). The prevalences of CSF HHV-6 DNA in primary infection and chromosomal integration were 2.5% and 2.0%, respectively, in the young children (<2 years) and 0% and 1.3%, respectively, in the older children and/or adults. The mean concentration of CSF HHV-6 DNA in 9 children with primary infection (2.4 log(10) copies/ml) was significantly lower than that of 21 patients with viral chromosomal integration (4.0 log(10) copies/ml). Only HHV-6B DNA was found in primary infection, whereas in viral integration, 4 patients had HHV-6A and 17 patients HHV-6B. Apart from primary infection, chromosomal integration is the most likely cause of HHV-6 DNA in the CSF of the immunocompetent. Our results show that any diagnosis of HHV-6 encephalitis or other type of active central nervous system infection should not be made without first excluding chromosomal HHV-6 integration by measuring DNA load in CSF, serum, and/or whole blood.
Collapse
MESH Headings
- Adult
- Antibodies, Viral/analysis
- Blood/virology
- Cerebrospinal Fluid/virology
- Child, Preschool
- Chromosomes/virology
- DNA, Viral/cerebrospinal fluid
- Encephalitis, Viral/diagnosis
- Encephalitis, Viral/virology
- Female
- Fluorescent Antibody Technique, Indirect
- Herpesvirus 6, Human/immunology
- Herpesvirus 6, Human/isolation & purification
- Herpesvirus 6, Human/physiology
- Humans
- Immunoglobulin G/analysis
- Infant
- Infant, Newborn
- Middle Aged
- Polymerase Chain Reaction
- Prevalence
- Roseolovirus Infections/diagnosis
- Roseolovirus Infections/virology
- Serum/virology
- Virus Integration
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
112 |
5
|
Xu H, Di B, Pan YX, Qiu LW, Wang YD, Hao W, He LJ, Yuen KY, Che XY. Serotype 1-specific monoclonal antibody-based antigen capture immunoassay for detection of circulating nonstructural protein NS1: Implications for early diagnosis and serotyping of dengue virus infections. J Clin Microbiol 2006; 44:2872-8. [PMID: 16891505 PMCID: PMC1594623 DOI: 10.1128/jcm.00777-06] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid diagnosis and serotyping of dengue virus (DV) infections are important for timely clinical management and epidemiological control in areas where multiple flaviviruses are endemic. However, the speed and accuracy of diagnosis must be balanced against test cost and availability, especially in developing countries. We developed a specific antigen capture enzyme-linked immunosorbent assay (ELISA) for early detection and serotyping of DV serotype 1 (DV1) by using well-characterized monoclonal antibodies (MAbs) specific to nonstructural protein 1 (NS1) of DV1. With this assay, a total of 462 serum specimens from clinically probable DV1-infected patients during the DV1 epidemic in Guangdong, China, in 2002 and 2003 were analyzed. DV1 NS1 was detectable in blood circulation from the first day up to day 18 after onset of symptoms, with a peak at days 6 to 10. The sensitivity of DV1 NS1 detection in serum specimens with reference to results from reverse transcriptase PCR was 82%, and the specificity was 98.9% with reference to 469 healthy blood donors. No cross-reactions with any of the other three DV serotypes or other closely related members of the genus Flavivirus (Japanese encephalitis virus and Yellow fever virus) were observed when tested with the clinical specimens or virus cultures. These findings suggest that the serotype-specific MAb-based NS1 antigen capture ELISA may be a valuable tool for early diagnosis and serotyping of DV infections, while also providing a standardized assay for the analysis of a great number of clinical samples with convenience and cost-effectiveness.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
92 |
6
|
Billam P, Huang FF, Sun ZF, Pierson FW, Duncan RB, Elvinger F, Guenette DK, Toth TE, Meng XJ. Systematic pathogenesis and replication of avian hepatitis E virus in specific-pathogen-free adult chickens. J Virol 2005; 79:3429-37. [PMID: 15731237 PMCID: PMC1075698 DOI: 10.1128/jvi.79.6.3429-3437.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Hepatitis E virus (HEV) is an important human pathogen. Due to the lack of a cell culture system and a practical animal model for HEV, little is known about its pathogenesis and replication. The discovery of a strain of HEV in chickens, designated avian HEV, prompted us to evaluate chickens as a model for the study of HEV. Eighty-five 60-week-old specific-pathogen-free chickens were randomly divided into three groups. Group 1 chickens (n=28) were each inoculated with 5 x 10(4.5) 50% chicken infectious doses of avian HEV by the oronasal route, group 2 chickens (n=29) were each inoculated with the same dose by the intravenous (i.v.) route, and group 3 chickens (n=28) were not inoculated and were used as controls. Two chickens from each group were necropsied at 1, 3, 5, 7, 10, 13, 16, 20, 24, 28, 35, and 42 days postinoculation (dpi), and the remaining chickens were necropsied at 56 dpi. Serum, fecal, and various tissue samples, including liver and spleen samples, were collected at each necropsy for pathological and virological testing. By 21 dpi, all oronasally and i.v. inoculated chickens had seroconverted. Fecal virus shedding was detected variably from 1 to 20 dpi for the i.v. group and from 10 to 56 dpi for the oronasal group. Avian HEV RNA was detected in serum, bile, and liver samples from both i.v. and oronasally inoculated chickens. Gross liver lesions, characterized by subcapsular hemorrhages or enlargement of the right intermediate lobe, were observed in 7 of 28 oronasally and 7 of 29 i.v. inoculated chickens. Microscopic liver lesions were mainly lymphocytic periphlebitis and phlebitis. The lesion scores were higher for oronasal (P=0.0008) and i.v. (P=0.0029) group birds than for control birds. Slight elevations of the plasma liver enzyme lactate dehydrogenase were observed in infected chickens. The results indicated that chickens are a useful model for studying HEV replication and pathogenesis. This is the first report of HEV transmission via its natural route in a homologous animal model.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
89 |
7
|
Lázaro CA, Chang M, Tang W, Campbell J, Sullivan DG, Gretch DR, Corey L, Coombs RW, Fausto N. Hepatitis C virus replication in transfected and serum-infected cultured human fetal hepatocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:478-89. [PMID: 17255316 PMCID: PMC1851861 DOI: 10.2353/ajpath.2007.060789] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the pathogenesis of hepatitis C requires the availability of tissue culture models that sustain viral replication and produce infectious particles. We report on the establishment of a culture system of nontransformed human fetal hepatocytes that supports hepatitis C virus (HCV) replication after transfection with full-length in vitro-transcribed genotype 1a HCV RNA without adaptive mutations and infection with patient sera of diverse HCV genotypes. Transfected and infected hepatocytes expressed HCV core protein and HCV negative-strand RNA. For at least 2 months, transfected or infected cultures released HCV into the medium at high levels and usually with a cyclical pattern. Viral replication had some cytotoxic effects on the cells, which produced interferon (IFN)-beta as a component of the antiviral response. Medium from transfected cells was able to infect naïve cultures in a Transwell system, and the infection was blocked by IFN-alpha and IFN-lambda. Viral particles analyzed by sucrose density centrifugation had a density of 1.17 g/ml. Immunogold labeling with antibody against HCV envelope protein E2 decorated the surface of the viral particles, as visualized by electron microscopy. This culture system may be used to study the responses of nontransformed human hepatocytes to HCV infection, to analyze serum infectivity, and to clone novel HCVs from infected patients.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
78 |
8
|
Edson D, Field H, McMichael L, Vidgen M, Goldspink L, Broos A, Melville D, Kristoffersen J, de Jong C, McLaughlin A, Davis R, Kung N, Jordan D, Kirkland P, Smith C. Routes of Hendra Virus Excretion in Naturally-Infected Flying-Foxes: Implications for Viral Transmission and Spillover Risk. PLoS One 2015; 10:e0140670. [PMID: 26469523 PMCID: PMC4607162 DOI: 10.1371/journal.pone.0140670] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/29/2015] [Indexed: 11/19/2022] Open
Abstract
Pteropid bats or flying-foxes (Chiroptera: Pteropodidae) are the natural host of Hendra virus (HeV) which sporadically causes fatal disease in horses and humans in eastern Australia. While there is strong evidence that urine is an important infectious medium that likely drives bat to bat transmission and bat to horse transmission, there is uncertainty about the relative importance of alternative routes of excretion such as nasal and oral secretions, and faeces. Identifying the potential routes of HeV excretion in flying-foxes is important to effectively mitigate equine exposure risk at the bat-horse interface, and in determining transmission rates in host-pathogen models. The aim of this study was to identify the major routes of HeV excretion in naturally infected flying-foxes, and secondarily, to identify between-species variation in excretion prevalence. A total of 2840 flying-foxes from three of the four Australian mainland species (Pteropus alecto, P. poliocephalus and P. scapulatus) were captured and sampled at multiple roost locations in the eastern states of Queensland and New South Wales between 2012 and 2014. A range of biological samples (urine and serum, and urogenital, nasal, oral and rectal swabs) were collected from anaesthetized bats, and tested for HeV RNA using a qRT-PCR assay targeting the M gene. Forty-two P. alecto (n = 1410) had HeV RNA detected in at least one sample, and yielded a total of 78 positive samples, at an overall detection rate of 1.76% across all samples tested in this species (78/4436). The rate of detection, and the amount of viral RNA, was highest in urine samples (>serum, packed haemocytes >faecal >nasal >oral), identifying urine as the most plausible source of infection for flying-foxes and for horses. Detection in a urine sample was more efficient than detection in urogenital swabs, identifying the former as the preferred diagnostic sample. The detection of HeV RNA in serum is consistent with haematogenous spread, and with hypothesised latency and recrudesence in flying-foxes. There were no detections in P. poliocephalus (n = 1168 animals; n = 2958 samples) or P. scapulatus (n = 262 animals; n = 985 samples), suggesting (consistent with other recent studies) that these species are epidemiologically less important than P. alecto in HeV infection dynamics. The study is unprecedented in terms of the individual animal approach, the large sample size, and the use of a molecular assay to directly determine infection status. These features provide a high level of confidence in the veracity of our findings, and a sound basis from which to more precisely target equine risk mitigation strategies.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
77 |
9
|
Klungthong C, Gibbons RV, Thaisomboonsuk B, Nisalak A, Kalayanarooj S, Thirawuth V, Nutkumhang N, Mammen MP, Jarman RG. Dengue virus detection using whole blood for reverse transcriptase PCR and virus isolation. J Clin Microbiol 2007; 45:2480-5. [PMID: 17522268 PMCID: PMC1951229 DOI: 10.1128/jcm.00305-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dengue is one of the most important diseases in the tropical and subtropical regions of the world, with an estimated 2.5 billion people being at risk. Detection of dengue virus infections has great importance for the clinical management of patients, surveillance, and clinical trial assessments. Traditionally, blood samples are collected in serum separator tubes, processed for serum, and then taken to the laboratory for analysis. The use of whole blood has the potential advantages of requiring less blood, providing quicker results, and perhaps providing better sensitivity during the acute phase of the disease. We compared the results obtained by reverse transcriptase PCR (RT-PCR) with blood drawn into tubes containing EDTA and those obtained by RT-PCR with blood samples in serum separator tubes from 108 individuals clinically suspected of being infected with dengue virus. We determined that the extraction of RNA from whole blood followed by RT-PCR resulted in a higher detection rate than the use of serum or plasma. Using a selection of these samples, we also found that our ability to detect virus by direct C6/36 cell culture and mosquito inoculation was enhanced by using whole blood but not to the same extent as that seen by the use of RT-PCR.
Collapse
|
Journal Article |
18 |
76 |
10
|
Sizmann D, Boeck C, Boelter J, Fischer D, Miethke M, Nicolaus S, Zadak M, Babiel R. Fully automated quantification of hepatitis C virus (HCV) RNA in human plasma and human serum by the COBAS® AmpliPrep/COBAS® TaqMan® System. J Clin Virol 2007; 38:326-33. [PMID: 17344093 DOI: 10.1016/j.jcv.2006.12.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 12/22/2006] [Indexed: 02/02/2023]
Abstract
BACKGROUND HCV RNA is commonly recognized as key parameter for reliable diagnosis and treatment monitoring of HCV infection. Determination of blood HCV RNA concentrations reduces the pre-seroconversion period in the diagnosis of HCV infection and supports management of interferon alpha-based therapies of chronic HCV infection. OBJECTIVES AND STUDY DESIGN The COBAS AmpliPrep/COBAS TaqMan HCV Test combines automated extraction of nucleic acids on the COBAS AmpliPrep Instrument with real-time PCR on the COBAS TaqMan Analyzer, thus greatly reducing hands-on time during sample preparation and amplification/detection. The test, which is calibrated to the 1st International HCV WHO Standard, was evaluated for sensitivity, dynamic range, precision, matrix equivalence, genotype inclusivity, interfering substances, diagnostic and analytical specificity, as well as for correlation with two other commercial tests for HCV RNA quantification. RESULTS The COBAS AmpliPrep/COBAS TaqMan HCV Test demonstrated a >6-log dynamic range of 43-6.90 E+7 IU/mL, a sensitivity (95% hit rate) of at least 15 IU/mL for HCV WHO Standard and a comparable quantification of genotypes 1-6. HCV quantification results were in good correlation with those obtained by the COBAS AMPLICOR HCV MONITOR Test v2.0 and the VERSANT HCV RNA 3.0 test. CONCLUSIONS The fully automated COBAS AmpliPrep/COBAS TaqMan HCV Test excellently accomplishes the requirements for highly sensitive detection and reliable quantification of HCV in clinical samples and thus improves therapy monitoring and management of HCV infection.
Collapse
|
|
18 |
65 |
11
|
Garrison AR, Giomarelli BG, Lear-Rooney CM, Saucedo CJ, Yellayi S, Krumpe LRH, Rose M, Paragas J, Bray M, Olinger GG, McMahon JB, Huggins J, O'Keefe BR. The cyanobacterial lectin scytovirin displays potent in vitro and in vivo activity against Zaire Ebola virus. Antiviral Res 2014; 112:1-7. [PMID: 25265598 PMCID: PMC4258435 DOI: 10.1016/j.antiviral.2014.09.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/18/2022]
Abstract
The cyanobacterial lectin scytovirin (SVN) binds with high affinity to mannose-rich oligosaccharides on the envelope glycoprotein (GP) of a number of viruses, blocking entry into target cells. In this study, we assessed the ability of SVN to bind to the envelope GP of Zaire Ebola virus (ZEBOV) and inhibit its replication. SVN interacted specifically with the protein's mucin-rich domain. In cell culture, it inhibited ZEBOV replication with a 50% virus-inhibitory concentration (EC50) of 50 nM, and was also active against the Angola strain of the related Marburg virus (MARV), with a similar EC50. Injected subcutaneously in mice, SVN reached a peak plasma level of 100 nm in 45 min, but was cleared within 4h. When ZEBOV-infected mice were given 30 mg/kg/day of SVN by subcutaneous injection every 6h, beginning the day before virus challenge, 9 of 10 animals survived the infection, while all infected, untreated mice died. When treatment was begun one hour or one day after challenge, 70-90% of mice survived. Quantitation of infectious virus and viral RNA in samples of serum, liver and spleen collected on days 2 and 5 postinfection showed a trend toward lower titers in treated than control mice, with a significant decrease in liver titers on day 2. Our findings provide further evidence of the potential of natural lectins as therapeutic agents for viral infections.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
65 |
12
|
de Deus N, Seminati C, Pina S, Mateu E, Martín M, Segalés J. Detection of hepatitis E virus in liver, mesenteric lymph node, serum, bile and faeces of naturally infected pigs affected by different pathological conditions. Vet Microbiol 2007; 119:105-14. [PMID: 16997512 DOI: 10.1016/j.vetmic.2006.08.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 08/04/2006] [Accepted: 08/23/2006] [Indexed: 11/25/2022]
Abstract
The objective of the present study was to detect hepatitis E virus (HEV) in different samples from naturally infected pigs and to characterise genetically the detected strains. Serum, bile, liver, lymph nodes and faeces of 69 animals from 1 week to 4 months of age with different pathological conditions were collected. Reverse transcriptase-polymerase chain reaction (RT-PCR) to detect HEV and histopathology of tissues was conducted. Positive RT-PCR samples were sequenced and phylogenetically analysed. HEV was detected in at least one sample in 26 out of 69 animals (37.7%). Bile was the most frequently positive sample, followed by mesenteric lymph nodes, liver, faeces and serum. HEV was detected in pigs of 1 (n = 7), 2 (n = 8) and 3 (n = 11) months of age. A total of 22 of 69 (31.9%) pigs had mild to moderate hepatitis and 15 of them were HEV RT-PCR positive in at least one of the tested samples. The highest sensitivity of viral detection was achieved using samples that cannot be obtained from live pigs, such as liver, mesenteric lymph node and bile. Phylogenetic analyses confirmed that all Spanish swine HEV strains detected belonged to genotype III. Therefore, genotype III strains are present in a relative high proportion of pigs between 1 and 3 months of age. Through this study, it cannot be ruled out if concomitant infections may influence the distribution of HEV in infected pigs.
Collapse
|
|
18 |
64 |
13
|
Chang LY, Chiang BL, Kao CL, Wu MH, Chen PJ, Berkhout B, Yang HC, Huang LM. Lack of association between infection with a novel human coronavirus (HCoV), HCoV-NH, and Kawasaki disease in Taiwan. J Infect Dis 2005; 193:283-6. [PMID: 16362893 PMCID: PMC7109937 DOI: 10.1086/498875] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022] Open
Abstract
We investigated whether infection with a novel human coronavirus (HCoV), called “New Haven coronavirus” (HCoV-NH)—which is similar to and likely represents the same species as another novel HCoV, HCoV-NL63—is associated with Kawasaki disease (KD) in Taiwan. Fifty-three patients with KD were enrolled in our study. Serum, peripheral-blood mononuclear cells, nasopharyngeal aspirates, throat swabs, and rectal swabs from these patients were assayed for HCoV-NL63 by real-time reverse-transcriptase (RT) polymerase chain reaction (PCR), and the throat swabs, nasopharyngeal aspirates, and rectal swabs were also assayed for HCoV-NH by RT-PCR. All PCR results were negative for both HCoV-NL63 and HCoV-NH; therefore, we did not find any association between HCoV-NH infection and KD in Taiwan
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
62 |
14
|
Grobben M, van der Straten K, Brouwer PJM, Brinkkemper M, Maisonnasse P, Dereuddre-Bosquet N, Appelman B, Lavell AHA, van Vught LA, Burger JA, Poniman M, Oomen M, Eggink D, Bijl TPL, van Willigen HDG, Wynberg E, Verkaik BJ, Figaroa OJA, de Vries PJ, Boertien TM, Bomers MK, Sikkens JJ, Le Grand R, de Jong MD, Prins M, Chung AW, de Bree GJ, Sanders RW, van Gils MJ. Cross-reactive antibodies after SARS-CoV-2 infection and vaccination. eLife 2021; 10:e70330. [PMID: 34812143 PMCID: PMC8610423 DOI: 10.7554/elife.70330] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Current SARS-CoV-2 vaccines are losing efficacy against emerging variants and may not protect against future novel coronavirus outbreaks, emphasizing the need for more broadly protective vaccines. To inform the development of a pan-coronavirus vaccine, we investigated the presence and specificity of cross-reactive antibodies against the spike (S) proteins of human coronaviruses (hCoV) after SARS-CoV-2 infection and vaccination. We found an 11- to 123-fold increase in antibodies binding to SARS-CoV and MERS-CoV as well as a 2- to 4-fold difference in antibodies binding to seasonal hCoVs in COVID-19 convalescent sera compared to pre-pandemic healthy donors, with the S2 subdomain of the S protein being the main target for cross-reactivity. In addition, we detected cross-reactive antibodies to all hCoV S proteins after SARS-CoV-2 vaccination in macaques and humans, with higher responses for hCoV more closely related to SARS-CoV-2. These findings support the feasibility of and provide guidance for development of a pan-coronavirus vaccine.
Collapse
|
research-article |
4 |
55 |
15
|
Julander JG, Smee DF, Morrey JD, Furuta Y. Effect of T-705 treatment on western equine encephalitis in a mouse model. Antiviral Res 2009; 82:169-71. [PMID: 19428608 DOI: 10.1016/j.antiviral.2009.02.201] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 11/18/2022]
Abstract
A mouse model of western equine encephalitis (WEE) was characterized for use in antiviral studies. Virus was detected in several tissues, most notably an average titer of 9.5+/-1.1 log(10) 50% cell culture infectious doses (CCID(50))/g tissue in the brains of infected animals. Signs of WEE included limb weakness, paralysis, involuntary spasms or extension of limbs, clenching of paws, hunching, ruffling of fur, and eye exudates, many of which are indicative of neurological disease. The pyrazinecarboxamide derivative, T-705, was found to be active in Vero cells against WEE virus (WEEV) with an 90% effective concentration (EC(90)) of 49microg/ml (selective index [SI]>20). Treatment with T-705 in this WEE mouse model resulted in significant improvement in survival and mean day to death after oral treatment administered twice a day for 7 days at a dose of 400mg/(kgd). Virus titer in the brain was not significantly reduced, despite a 1-log reduction in average brain titer in treated animals on 4dpi. Signs of disease were relatively mild in treated animals, but were not eliminated. Treatment with T-705 improved morbidity and mortality of WEEV-infected mice, further illustrating the broad-spectrum activity of T-705 in the treatment of RNA viruses.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
54 |
16
|
Mancuso R, Biffi R, Valli M, Bellinvia M, Tourlaki A, Athanasia T, Ferrucci S, Brambilla L, Delbue S, Ferrante P, Tinelli C, Clerici M. HHV8 a subtype is associated with rapidly evolving classic Kaposi's sarcoma. J Med Virol 2008; 80:2153-60. [PMID: 19040293 PMCID: PMC2596973 DOI: 10.1002/jmv.21322] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The link between human herpesvirus 8 (KSHV) and Kaposi's sarcoma (KS) has been proven, but many important aspects including risk factors, genetic predisposition to tumor development, transmission of KSHV, and the pathogenic potential of different genotypes remain to be elucidated. Possible associations between clinical parameters and antibody levels, viral load fluctuations, and viral genotype were analyzed by quantitative real-time PCR, an in-house developed IFA assay, and sequence analysis of ORF K1-VR1 in blood, serum and saliva of 38 subjects with classic KS (cKS). KSHV lytic antibodies were significantly increased in stage IV compared to stage I and II patients (p = 0.006 and p = 0.041, respectively). KSHV blood, serum, and saliva viral load was comparable in all stages. The highest viral loads were detected in saliva, and they decreased in stages III-IV compared to stages I-II patients. Higher concentrations of lytic antibodies and higher viral loads were observed in fast progressing cKS patients, in whom KSHV detection from blood was also more frequent. Type A KSHV strain was almost exclusively present in rapid progressors (12/17 cases), while C type was mainly present in slow progressing patients (6/7 cases). Finally, detection of type A KSHV strain associated with higher blood viral loads. KSHV lytic antibody levels and viral load can be used to monitor clinical evolution of cKS. Infection supported by KSHV A subtype is associated with more rapid progressive disease. Careful monitoring and aggressive therapeutic protocols should be considered in patients with KSHV A-supported infection.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
51 |
17
|
Flamand L, Gravel A, Boutolleau D, Alvarez-Lafuente R, Jacobson S, Malnati MS, Kohn D, Tang YW, Yoshikawa T, Ablashi D. Multicenter comparison of PCR assays for detection of human herpesvirus 6 DNA in serum. J Clin Microbiol 2008; 46:2700-6. [PMID: 18550745 PMCID: PMC2519497 DOI: 10.1128/jcm.00370-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 04/10/2008] [Accepted: 05/30/2008] [Indexed: 12/29/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) is a ubiquitous virus with which infections have been associated with pathologies ranging from delayed bone marrow engraftment to a variety of neurological diseases. The lack of a standardized assay that can be used to detect and estimate HHV-6 DNA contents in various clinical specimens can lead and has led to discordant results among investigators and on the potential association of HHV-6 to diseases. To identify the most reliable and sensitive assays, an identical set of 11 coded serum samples spiked with various quantities of the HHV-6A variant (range, 4 to 400,000 genome copies/ml) was sent to eight independent laboratories around the world. Each laboratory was asked to estimate the HHV-6 DNA content by use of its own protocols and assays. Among the various assays, three TaqMan-based real-time PCR assays yielded quantities that were closest to the quantity of HHV-6 that had been spiked. To provide better homogeneity between the results from the different laboratories working on HHV-6, we propose that investigators interested in quantifying HHV-6 in clinical samples adopt one of these assays.
Collapse
|
Comparative Study |
17 |
51 |
18
|
Khan S, Ullah R, Khan A, Ashraf R, Ali H, Bilal M, Saleem M. Analysis of hepatitis B virus infection in blood sera using Raman spectroscopy and machine learning. Photodiagnosis Photodyn Ther 2018; 23:89-93. [PMID: 29787817 DOI: 10.1016/j.pdpdt.2018.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022]
Abstract
This study presents the analysis of hepatitis B virus (HBV) infection in human blood serum using Raman spectroscopy combined with pattern recognition technique. In total, 119 confirmed samples of HBV infected sera, collected from Pakistan Atomic Energy Commission (PAEC) general hospital have been used for the current analysis. The differences between normal and HBV infected samples have been evaluated using support vector machine (SVM) algorithm. SVM model with two different kernels i.e. polynomial function and Gaussian radial basis function (RBF) have been investigated for the classification of normal blood sera from HBV infected sera based on Raman spectral features. Furthermore, the performance of the model with each kernel function has also been analyzed with two different implementations of optimization problem i.e. Quadratic programming and least square. 5-fold cross validation method has been used for the evaluation of the model. In the current study, best classification performance has been achieved for polynomial kernel of order-2. A diagnostic accuracy of about 98% with the precision of 97%, sensitivity of 100% and specificity of 95% has been achieved under these conditions.
Collapse
|
Journal Article |
7 |
49 |
19
|
Schilling S, Emmerich P, Klempa B, Auste B, Schnaith E, Schmitz H, Krüger DH, Günther S, Meisel H. Hantavirus disease outbreak in Germany: limitations of routine serological diagnostics and clustering of virus sequences of human and rodent origin. J Clin Microbiol 2007; 45:3008-14. [PMID: 17626170 PMCID: PMC2045283 DOI: 10.1128/jcm.02573-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 03/07/2007] [Accepted: 07/01/2007] [Indexed: 11/20/2022] Open
Abstract
In Europe, hemorrhagic fever with renal syndrome results mainly from infection with Puumala virus (PUUV) or Dobrava virus. For 31 patients from a hantavirus disease outbreak in Lower Bavaria, a district in southeast Germany, serodiagnosis was undertaken by enzyme-linked immunosorbent assay, immunofluorescence assay, and immunoblot analysis. In a few of these cases, however, PUUV-specific typing of antibodies by these standard assays failed and a virus neutralization assay under biosafety level 3 conditions was required to verify the infection by this virus type. PUUV RNA was amplified by reverse transcription-PCR from acute-phase sera of three patients and was found to be very closely related to virus sequences obtained from bank voles (Clethrionomys glareolus) trapped in the same area. These findings link the outbreak with a novel PUUV lineage, "Bavaria," circulating in the local rodent population. The Bavaria lineage associated with the outbreak is only distantly related to other PUUV lineages from Germany.
Collapse
|
research-article |
18 |
48 |
20
|
Ros C, Baltzer C, Mani B, Kempf C. Parvovirus uncoating in vitro reveals a mechanism of DNA release without capsid disassembly and striking differences in encapsidated DNA stability. Virology 2005; 345:137-47. [PMID: 16242744 DOI: 10.1016/j.virol.2005.09.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 08/09/2005] [Accepted: 09/08/2005] [Indexed: 11/28/2022]
Abstract
The uncoating mechanism of parvoviruses is unknown. Their capsid robustness and increasing experimental data would suggest an uncoating mechanism without capsid disassembly. We have developed an in vitro system to detect and quantify viral DNA externalization and applied the assay on two parvoviruses with important differences in capsid structure, human B19 and minute virus of mice (MVM). Upon briefly treating the capsids to increasing temperatures, the viral genome became accessible in its full-length in a growing proportion of virions. Capsid disassembly started at temperatures above 60 degrees C for B19 and 70 degrees C for MVM. For both viruses, the externalization followed an all-or-nothing mechanism, without transitions exposing only a particular genomic region. However, the heat-induced DNA accessibility was remarkably more pronounced in B19 than in MVM. This difference was also evident under conditions mimicking endosomal acidification (pH 6.5 to 5), which triggered the externalization of B19-DNA but not of MVM-DNA. The externalized ssDNA was a suitable template for the full second-strand synthesis. Immunoprecipitation with antibodies against conformational epitopes and quantitative PCR revealed that the DNA externalized by heat was mostly dissociated from its capsid, however, the low pH-induced DNA externalization of B19 was predominantly capsid-associated. These results provide new insights into parvovirus uncoating suggesting a mechanism by which the full-length viral genome is released without capsid disassembly. The remarkable instability of the encapsidated B19 DNA, which is easily released from its capsid, would also explain the faster heat inactivation of B19 when compared to other parvoviruses.
Collapse
|
Journal Article |
20 |
45 |
21
|
Rosseel T, Ozhelvaci O, Freimanis G, Van Borm S. Evaluation of convenient pretreatment protocols for RNA virus metagenomics in serum and tissue samples. J Virol Methods 2015; 222:72-80. [PMID: 26025457 DOI: 10.1016/j.jviromet.2015.05.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/28/2015] [Accepted: 05/22/2015] [Indexed: 12/27/2022]
Abstract
Viral metagenomic approaches are increasingly being used for viral discovery. Various strategies are applied to enrich viral sequences, but there is often a lack of knowledge about their effective influence on the viral discovery sensitivity. We evaluate some convenient and widely used approaches for RNA virus discovery in clinical samples in order to reveal their sensitivity and potential bias introduced by the enrichment or amplifications steps. An RNA virus was artificially spiked at a fixed titer in serum and lung tissue, respectively, low and high nucleic acid content matrices. For serum, a simple DNase treatment on the RNA extract gave the maximum gain in proportion of viral sequences (83×), and a subsequent ribosomal RNA removal nearly doubled once more the proportion of viral sequences. For lung tissue, a ribosomal RNA depletion step on the RNA extract had the biggest gain in proportion of viral sequences (32×). We show also that direct sequencing of cDNA is recommended above an extra random PCR amplification step, and a that the virion enrichment strategy (filtration and nuclease treatment) has a beneficial effect for sequencing-based virus discovery. Our findings provide sample-dependent guidelines for targeted virus discovery strategies.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
45 |
22
|
Xia H, Vijayaraghavan B, Belák S, Liu L. Detection and identification of the atypical bovine pestiviruses in commercial foetal bovine serum batches. PLoS One 2011; 6:e28553. [PMID: 22174836 PMCID: PMC3234271 DOI: 10.1371/journal.pone.0028553] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/10/2011] [Indexed: 12/02/2022] Open
Abstract
The recently emerging atypical bovine pestiviruses have been detected in commercial foetal bovine serum (FBS) of mainly South American origin so far. It is unclear how widely the viruses are presented in commercial FBS of different geographic origins. To further investigate the possible pestivirus contamination of commercially available FBS batches, 33 batches of FBS were obtained from ten suppliers and analysed in this study for the presence of both the recognised and the atypical bovine pestiviruses. All 33 batches of FBS were positive by real-time RT-PCR assays for at least one species of bovine pestiviruses. According to the certificate of analysis that the suppliers claimed for each batch of FBS, BVDV-1 was detected in all 11 countries and BVDV-2 was detected exclusively in the America Continent. The atypical pestiviruses were detected in 13 batches claimed to originate from five countries. Analysis of partial 5′UTR sequences showed a high similarity among these atypical bovine pestiviruses. This study has demonstrated, for the first time that commercial FBS batches of different geographic origins are contaminated not only with the recognised species BVDV-1 and BVDV-2, but also with the emerging atypical bovine pestiviruses.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
45 |
23
|
Zhang J, Liu Z, Zou Y, Zhang N, Wang D, Tu D, Yang L, Deng Z, Yang Y, Jiang P, Wang N. First molecular detection of porcine circovirus type 3 in dogs in China. Virus Genes 2017; 54:140-144. [PMID: 28983774 DOI: 10.1007/s11262-017-1509-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/16/2017] [Indexed: 11/26/2022]
Abstract
Porcine circovirus type 3 (PCV3) has recently been isolated from diseased pigs within the USA. The objective was to detect the presence of PCV3 in dogs. Nested polymerase chain reactions (PCR) with PCV3-specific primers for the capsid gene were used to detect PCV3 genomic DNA in serum samples from dogs (n = 44) in China. There was PCV3 DNA detected in 4 of 44 dogs [all were negative for PCV2 and canine circovirus (CanineCV)]. Based on sequence analysis, positive sequences were grouped into PCV3 genotypes. However, these isolates had close evolutionary relationships with FoxCV (KP941114) and CanineCV (JQ821392). Further investigations of the epidemiology, evolutionary biology, and pathobiology of PCV3 to dogs are warranted.
Collapse
|
Journal Article |
8 |
45 |
24
|
Jori F, Laval M, Maestrini O, Casabianca F, Charrier F, Pavio N. Assessment of Domestic Pigs, Wild Boars and Feral Hybrid Pigs as Reservoirs of Hepatitis E Virus in Corsica, France. Viruses 2016; 8:v8080236. [PMID: 27556478 PMCID: PMC4997598 DOI: 10.3390/v8080236] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022] Open
Abstract
In Corsica, extensive pig breeding systems allow frequent interactions between wild boars and domestic pigs, which are suspected to act as reservoirs of several zoonotic diseases including hepatitis E virus (HEV). In this context, 370 sera and 166 liver samples were collected from phenotypically characterized as pure or hybrid wild boars, between 2009 and 2012. In addition, serum and liver from 208 domestic pigs belonging to 30 farms were collected at the abattoir during the end of 2013. Anti-HEV antibodies were detected in 26% (21%–31.6%) of the pure wild boar, 43.5% (31%–56.7%) of hybrid wild boar and 88% (82.6%–91.9%) of the domestic pig sera. In addition, HEV RNA was detected in five wild boars, three hybrid wild boars and two domestic pig livers tested. Our findings provide evidence that both domestic pig and wild boar (pure and hybrid) act as reservoirs of HEV in Corsica, representing an important zoonotic risk for Corsican hunters and farmers but also for the large population of consumers of raw pig liver specialties produced in Corsica. In addition, hybrid wild boars seem to play an important ecological role in the dissemination of HEV between domestic pig and wild boar populations, unnoticed to date, that deserves further investigation.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
44 |
25
|
Leppik L, Gunst K, Lehtinen M, Dillner J, Streker K, de Villiers EM. In vivo and in vitro intragenomic rearrangement of TT viruses. J Virol 2007; 81:9346-56. [PMID: 17596318 PMCID: PMC1951432 DOI: 10.1128/jvi.00781-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The in vitro replication of the Torque teno virus (TT virus) tth8 full-length genome and particle formation in a Hodgkin's lymphoma-derived cell line after transfection with cloned viral DNA were demonstrated. Analyses of the transcription patterns of tth8 and tth7 TT virus isolates in a number of lymphoma and T-cell leukemia cell lines indicated differential additional splicing events and intragenomic rearrangement generating open reading frames which could not be deducted from the genomic sequence. We also demonstrated the presence of rearranged TT virus genomes in vivo in sera taken from pregnant mothers whose children later developed childhood leukemia, as well as sera from control mothers. Control experiments using religated cloned genomic tth8 DNA mixed with cellular DNA did not result in such subviral molecules. These subviral isolates ranged from 172 bp to full-length TT virus genomes. Possible in vivo selection for specific rearranged molecules was indicated by the presence of one isolate (561 bp) in 11 serum samples. It remains to be clarified whether selected rearranged subviral components resulting from specific TT virus types may contribute to the initiation of disease. These data demonstrate new features of TT viruses suggesting possible similarities to plant viruses of the family Geminiviridae, as well as raise questions about the documented plurality and diversity of anelloviruses.
Collapse
MESH Headings
- Cell Line, Tumor
- Child
- DNA Virus Infections/virology
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Female
- Genome, Viral
- Humans
- Infant
- Molecular Sequence Data
- Mothers
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Recombination, Genetic
- Sequence Analysis, DNA
- Serum/virology
- Torque teno virus/genetics
- Torque teno virus/isolation & purification
- Torque teno virus/physiology
- Transcription, Genetic
- Virus Replication
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
44 |