1
|
Pankievicz VCS, do Amaral FP, Santos KFDN, Agtuca B, Xu Y, Schueller MJ, Arisi ACM, Steffens MBR, de Souza EM, Pedrosa FO, Stacey G, Ferrieri RA. Robust biological nitrogen fixation in a model grass-bacterial association. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:907-19. [PMID: 25645593 DOI: 10.1111/tpj.12777] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 05/18/2023]
Abstract
Nitrogen-fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen-13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen-limiting conditions when inoculated with an ammonium-excreting strain of Azospirillum brasilense. (11)C-labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen-starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen-sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production.
Collapse
|
|
10 |
109 |
2
|
Fahlgren N, Feldman M, Gehan MA, Wilson MS, Shyu C, Bryant DW, Hill ST, McEntee CJ, Warnasooriya SN, Kumar I, Ficor T, Turnipseed S, Gilbert KB, Brutnell TP, Carrington JC, Mockler TC, Baxter I. A Versatile Phenotyping System and Analytics Platform Reveals Diverse Temporal Responses to Water Availability in Setaria. MOLECULAR PLANT 2015; 8:1520-35. [PMID: 26099924 DOI: 10.1016/j.molp.2015.06.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/28/2015] [Accepted: 06/08/2015] [Indexed: 05/18/2023]
Abstract
Phenotyping has become the rate-limiting step in using large-scale genomic data to understand and improve agricultural crops. Here, the Bellwether Phenotyping Platform for controlled-environment plant growth and automated multimodal phenotyping is described. The system has capacity for 1140 plants, which pass daily through stations to record fluorescence, near-infrared, and visible images. Plant Computer Vision (PlantCV) was developed as open-source, hardware platform-independent software for quantitative image analysis. In a 4-week experiment, wild Setaria viridis and domesticated Setaria italica had fundamentally different temporal responses to water availability. While both lines produced similar levels of biomass under limited water conditions, Setaria viridis maintained the same water-use efficiency under water replete conditions, while Setaria italica shifted to less efficient growth. Overall, the Bellwether Phenotyping Platform and PlantCV software detected significant effects of genotype and environment on height, biomass, water-use efficiency, color, plant architecture, and tissue water status traits. All ∼ 79,000 images acquired during the course of the experiment are publicly available.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
108 |
3
|
Lata C, Mishra AK, Muthamilarasan M, Bonthala VS, Khan Y, Prasad M. Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.). PLoS One 2014; 9:e113092. [PMID: 25409524 PMCID: PMC4237383 DOI: 10.1371/journal.pone.0113092] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/18/2014] [Indexed: 02/04/2023] Open
Abstract
The APETALA2/ethylene-responsive element binding factor (AP2/ERF) family is one of the largest transcription factor (TF) families in plants that includes four major sub-families, namely AP2, DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and RAV (Related to ABI3/VP). AP2/ERFs are known to play significant roles in various plant processes including growth and development and biotic and abiotic stress responses. Considering this, a comprehensive genome-wide study was conducted in foxtail millet (Setaria italica L.). A total of 171 AP2/ERF genes were identified by systematic sequence analysis and were physically mapped onto nine chromosomes. Phylogenetic analysis grouped AP2/ERF genes into six classes (I to VI). Duplication analysis revealed that 12 (∼7%) SiAP2/ERF genes were tandem repeated and 22 (∼13%) were segmentally duplicated. Comparative physical mapping between foxtail millet AP2/ERF genes and its orthologs of sorghum (18 genes), maize (14 genes), rice (9 genes) and Brachypodium (6 genes) showed the evolutionary insights of AP2/ERF gene family and also the decrease in orthology with increase in phylogenetic distance. The evolutionary significance in terms of gene-duplication and divergence was analyzed by estimating synonymous and non-synonymous substitution rates. Expression profiling of candidate AP2/ERF genes against drought, salt and phytohormones revealed insights into their precise and/or overlapping expression patterns which could be responsible for their functional divergence in foxtail millet. The study showed that the genes SiAP2/ERF-069, SiAP2/ERF-103 and SiAP2/ERF-120 may be considered as potential candidate genes for further functional validation as well for utilization in crop improvement programs for stress resistance since these genes were up-regulated under drought and salinity stresses in ABA dependent manner. Altogether the present study provides new insights into evolution, divergence and systematic functional analysis of AP2/ERF gene family at genome level in foxtail millet which may be utilized for improving stress adaptation and tolerance in millets, cereals and bioenergy grasses.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
97 |
4
|
Grossmann K, Ehrhardt T. On the mechanism of action and selectivity of the corn herbicide topramezone: a new inhibitor of 4-hydroxyphenylpyruvate dioxygenase. PEST MANAGEMENT SCIENCE 2007; 63:429-39. [PMID: 17340675 DOI: 10.1002/ps.1341] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Topramezone is a new, highly selective herbicide of pyrazole structure for the post-emergence control of broadleaf and grass weeds in corn. The biokinetic properties and mode of action of topramezone were investigated in plants of Setaria faberi Herrm, Sorghum bicolor (L.) Moench, Solanum nigrum L. and the crop species corn (Zea mays L.). Within 2-5 days after treatment, topramezone caused strong photobleaching effects on the shoot, followed by plant death of sensitive weeds. The selectivity of topramezone between corn and the weed species has been quantified as above 1000-fold. By virtue of the plant symptoms and the reversal of the effects in Lemna paucicostata L. by adding homogentisate, it was hypothesized that topramezone blocks the formation of homogentisate, possibly through inhibition of 4-hydroxyphenylpyruvate dioxygenase (4-HPPD). Indeed, topramezone strongly inhibited 4-HPPD activity in vitro, with I(50) values of 15 and 23 nM for the enzyme isolated from S. faberi and recombinant enzyme of Arabidopsis thaliana L. respectively. The enzyme activity from corn was approximately 10 times less sensitive. After root and foliar application of [(14)C]topramezone, equivalent to field rates of 75 g ha(-1), the herbicide was rapidly absorbed and systemically translocated in the plant. Only marginal differences between leaf uptake and translocation of topramezone by the weeds and corn were found. Metabolism of foliar-applied [(14)C]topramezone was far more rapid in corn than in the weeds. A more rapid metabolism combined with a lower sensitivity of the 4-HPPD target enzyme contributes to the tolerance of corn to topramezone.
Collapse
|
|
18 |
78 |
5
|
Muthamilarasan M, Bonthala VS, Mishra AK, Khandelwal R, Khan Y, Roy R, Prasad M. C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses. Funct Integr Genomics 2014; 14:531-43. [PMID: 24915771 DOI: 10.1007/s10142-014-0383-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/27/2014] [Accepted: 06/01/2014] [Indexed: 01/05/2023]
Abstract
C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I-V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
69 |
6
|
Li C, Yue J, Wu X, Xu C, Yu J. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5415-27. [PMID: 25071221 PMCID: PMC4157718 DOI: 10.1093/jxb/eru302] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 05/06/2023]
Abstract
The DREB (dehydration-responsive element binding)-type transcription factors regulate the expression of stress-inducible genes by binding the DRE/CRT cis-elements in promoter regions. The upstream transcription factors that regulate the transcription of DREB transcription factors have not been clearly defined, although the function of DREB transcription factors in abiotic stress is known. In this study, an abscisic acid (ABA)-responsive DREB-binding protein gene (SiARDP) was cloned from foxtail millet (Setaria italica). The transcript level of SiARDP increased not only after drought, high salt, and low temperature stresses, but also after an ABA treatment in foxtail millet seedlings. Two ABA-responsive elements (ABRE1: ACGTGTC; ABRE2: ACGTGGC) exist in the promoter of SiARDP. Further analyses showed that two ABA-responsive element binding (AREB)-type transcription factors, SiAREB1 and SiAREB2, could physically bind to the ABRE core element in vitro and in vivo. The constitutive expression of SiARDP in Arabidopsis thaliana enhanced drought and salt tolerance during seed germination and seedling development, and overexpression of SiARDP in foxtail millet improved drought tolerance. The expression levels of target genes of SiARDP were upregulated in transgenic Arabidopsis and foxtail millet. These results reveal that SiARDP, one of the target genes of SiAREB, is involved in ABA-dependent signal pathways and plays a critical role in the abiotic stress response in plants.
Collapse
|
research-article |
11 |
67 |
7
|
Muthamilarasan M, Khandelwal R, Yadav CB, Bonthala VS, Khan Y, Prasad M. Identification and molecular characterization of MYB Transcription Factor Superfamily in C4 model plant foxtail millet (Setaria italica L.). PLoS One 2014; 9:e109920. [PMID: 25279462 PMCID: PMC4184890 DOI: 10.1371/journal.pone.0109920] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/06/2014] [Indexed: 02/02/2023] Open
Abstract
MYB proteins represent one of the largest transcription factor families in plants, playing important roles in diverse developmental and stress-responsive processes. Considering its significance, several genome-wide analyses have been conducted in almost all land plants except foxtail millet. Foxtail millet (Setaria italica L.) is a model crop for investigating systems biology of millets and bioenergy grasses. Further, the crop is also known for its potential abiotic stress-tolerance. In this context, a comprehensive genome-wide survey was conducted and 209 MYB protein-encoding genes were identified in foxtail millet. All 209 S. italica MYB (SiMYB) genes were physically mapped onto nine chromosomes of foxtail millet. Gene duplication study showed that segmental- and tandem-duplication have occurred in genome resulting in expansion of this gene family. The protein domain investigation classified SiMYB proteins into three classes according to number of MYB repeats present. The phylogenetic analysis categorized SiMYBs into ten groups (I - X). SiMYB-based comparative mapping revealed a maximum orthology between foxtail millet and sorghum, followed by maize, rice and Brachypodium. Heat map analysis showed tissue-specific expression pattern of predominant SiMYB genes. Expression profiling of candidate MYB genes against abiotic stresses and hormone treatments using qRT-PCR revealed specific and/or overlapping expression patterns of SiMYBs. Taken together, the present study provides a foundation for evolutionary and functional characterization of MYB TFs in foxtail millet to dissect their functions in response to environmental stimuli.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
60 |
8
|
Lata C, Jha S, Dixit V, Sreenivasulu N, Prasad M. Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars [Setaria italica (L.)]. PROTOPLASMA 2011; 248:817-28. [PMID: 21197597 DOI: 10.1007/s00709-010-0257-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/15/2010] [Indexed: 05/04/2023]
Abstract
Foxtail millet (Setaria italica L.) known as a relatively drought-tolerant crop across the world is grown in arid and semi-arid regions. To the best of our knowledge, no systematic study on drought tolerance screening of foxtail millet germplasm being a drought-tolerant crop has been reported so far. To explore genetic diversity of drought-induced oxidative stress tolerance in foxtail millet, we employed lipid peroxidation measure to assess membrane integrity under stress as biochemical marker to screen 107 cultivars and classified the genotypes as highly tolerant, tolerant, sensitive, and highly sensitive. From this comprehensive screening, four cultivars showing differential response to dehydration tolerance were selected to understand the physiological and biochemical basis of tolerance mechanisms. The dehydration-tolerant cultivars (IC-403579 and Prasad) showed considerably lower levels of lipid peroxidation and electrolyte leakage as compared with dehydration-sensitive cultivars (IC-480117 and Lepakshi), indicating better cell membrane integrity in tolerant cultivars. Correspondingly, tolerant genotypes maintained higher activity of catalase (EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), and glutathione reductase (GR; EC 1.6.4.2) across different time-course period of polyethylene glycol (PEG) treatments in comparison to sensitive ones. The above biochemical results were further validated through quantitative real-time PCR analysis of APX and GR, whose transcripts were substantially induced by PEG treatments in tolerant cultivars. These results suggest that tolerant cultivars possess wider array of antioxidant machinery with efficient ascorbate-glutathione pathway to cope with drought-induced oxidative stress.
Collapse
|
|
14 |
49 |
9
|
Ceasar SA, Hodge A, Baker A, Baldwin SA. Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica). PLoS One 2014; 9:e108459. [PMID: 25251671 PMCID: PMC4177549 DOI: 10.1371/journal.pone.0108459] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
Phosphorus (P) is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet) is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi) and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae) were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12) in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet.
Collapse
|
research-article |
11 |
49 |
10
|
Dong P, Tu X, Li H, Zhang J, Grierson D, Li P, Zhong S. Tissue-specific Hi-C analyses of rice, foxtail millet and maize suggest non-canonical function of plant chromatin domains. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:201-217. [PMID: 30920762 DOI: 10.1111/jipb.12809] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Chromatins are not randomly packaged in the nucleus and their organization plays important roles in transcription regulation, which is best studied in the mammalian models. Using in situ Hi-C, we have compared the 3D chromatin architectures of rice mesophyll and endosperm, foxtail millet bundle sheath and mesophyll, and maize bundle sheath, mesophyll and endosperm tissues. We found that their global A/B compartment partitions are stable across tissues, while local A/B compartment has tissue-specific dynamic associated with differential gene expression. Plant domains are largely stable across tissues, while new domain border formations are often associated with transcriptional activation in the region. Genes inside plant domains are not conserved across species, and lack significant co-expression behavior unlike those in mammalian TADs. Although we only observed chromatin loops between gene islands in the large genomes, the maize loop gene pairs' syntenic orthologs have shorter physical distances in small genome monocots, suggesting that loops instead of domains might have conserved biological function. Our study showed that plants' chromatin features might not have conserved biological functions as the mammalian ones.
Collapse
|
|
5 |
47 |
11
|
Ceasar SA, Baker A, Ignacimuthu S. Functional characterization of the PHT1 family transporters of foxtail millet with development of a novel Agrobacterium-mediated transformation procedure. Sci Rep 2017; 7:14064. [PMID: 29070807 PMCID: PMC5656669 DOI: 10.1038/s41598-017-14447-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/10/2017] [Indexed: 11/15/2022] Open
Abstract
Phosphate is an essential nutrient for plant growth and is acquired from the environment and distributed within the plant in part through the action of phosphate transporters of the PHT1 family. Foxtail millet (Setaria italica) is an orphan crop essential to the food security of many small farmers in Asia and Africa and is a model system for other millets. A novel Agrobacterium-mediated transformation and direct plant regeneration procedure was developed from shoot apex explants and used to downregulate expression of 3 members of the PHT1 phosphate transporter family SiPHT1;2 SiPHT1;3 and SiPHT1;4. Transformants were recovered with close to 10% efficiency. The downregulation of individual transporters was confirmed by RT-PCR. Downregulation of individual transporters significantly reduced the total and inorganic P contents in shoot and root tissues and increased the number of lateral roots and root hairs showing they have non-redundant roles. Downregulation of SiPHT1;2 had the strongest effect on total and inorganic P in shoot and root tissues. Complementation experiments in S. cerevisiae provide evidence for the ability of SiPHT1;1, 1;2, 1;3, 1;7 and 1;8 to function as high affinity Pi transporters. This work will aid development of improved millet varieties for global food security.
Collapse
|
research-article |
8 |
40 |
12
|
Sachdev N, Goomer S, Singh LR. Foxtail millet: a potential crop to meet future demand scenario for alternative sustainable protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:831-842. [PMID: 32767555 DOI: 10.1002/jsfa.10716] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Foxtail millet (Setaria italica), an annual grass plant, produces seeds that possess health-promoting properties owing to its unique protein composition containing a high content of essential amino acids. The mature foxtail seeds mainly consist of proline-rich, alcohol-soluble proteins (prolamin) called setarins, comprising about 60% of the total protein, with less content of disulfide cross-linked proteins than with other cereal and millets. Protein fractionation schemes are an important tool and provide preliminary information on the nature of foxtail proteins for their applications in the field of agriculture, food pharma, and bio-based materials. Variation in the methods of preparation can influence the composition, structure, and nutritional quality of the protein concentrate. Moreover, foxtail protein or its hydrolysate has shown several bioactive effects that can be explored further for the management of chronic diseases in humans. Additionally, owing to its low cost and excellent functional properties of flour and protein concentrate, foxtail millet can be considered as good candidate for replacing animal protein foods. Furthermore, there is huge potential for successfully developing low-cost, protein-rich functional food products helpful in the prevention and management of lifestyle-related chronic diseases. © 2020 Society of Chemical Industry.
Collapse
|
Review |
4 |
39 |
13
|
Mishra AK, Puranik S, Bahadur RP, Prasad M. The DNA-binding activity of an AP2 protein is involved in transcriptional regulation of a stress-responsive gene, SiWD40, in foxtail millet. Genomics 2012; 100:252-63. [PMID: 22771384 DOI: 10.1016/j.ygeno.2012.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/12/2012] [Accepted: 06/25/2012] [Indexed: 11/20/2022]
Abstract
A differentially expressed transcript, encoding a putative WD protein (Setaria italica WD40; SiWD40), was identified in foxtail millet. Tertiary structure modeling revealed that its C-terminus possesses eight blade β-propeller architecture. Its N-terminal has three α-helices and two 3(10)-helices and was highly induced by different abiotic stresses. The SiWD40:GFP fusion protein was nuclear localized. Promoter analysis showed the presence of many cis-acting elements, including two dehydration responsive elements (DRE). A stress-responsive SiAP2 domain containing protein could specifically bind to these elements in the SiWD40 promoter. Thus, for the first time, we report that DREs probably regulate expression of SiWD40 during environmental stress. Molecular docking analysis revealed that the circumference of the β-propeller structure was involved in an interaction with a SiCullin4 protein, supporting the adaptability of SiWD40 to act as a scaffold. Our study thus provides a vital clue for near future research on the stress-regulation of WD proteins.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
37 |
14
|
Heimann L, Horst I, Perduns R, Dreesen B, Offermann S, Peterhansel C. A Common histone modification code on C4 genes in maize and its conservation in Sorghum and Setaria italica. PLANT PHYSIOLOGY 2013; 162:456-69. [PMID: 23564230 PMCID: PMC3641223 DOI: 10.1104/pp.113.216721] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/04/2013] [Indexed: 05/19/2023]
Abstract
C4 photosynthesis evolved more than 60 times independently in different plant lineages. Each time, multiple genes were recruited into C4 metabolism. The corresponding promoters acquired new regulatory features such as high expression, light induction, or cell type-specific expression in mesophyll or bundle sheath cells. We have previously shown that histone modifications contribute to the regulation of the model C4 phosphoenolpyruvate carboxylase (C4-Pepc) promoter in maize (Zea mays). We here tested the light- and cell type-specific responses of three selected histone acetylations and two histone methylations on five additional C4 genes (C4-Ca, C4-Ppdk, C4-Me, C4-Pepck, and C4-RbcS2) in maize. Histone acetylation and nucleosome occupancy assays indicated extended promoter regions with regulatory upstream regions more than 1,000 bp from the transcription initiation site for most of these genes. Despite any detectable homology of the promoters on the primary sequence level, histone modification patterns were highly coregulated. Specifically, H3K9ac was regulated by illumination, whereas H3K4me3 was regulated in a cell type-specific manner. We further compared histone modifications on the C4-Pepc and C4-Me genes from maize and the homologous genes from sorghum (Sorghum bicolor) and Setaria italica. Whereas sorghum and maize share a common C4 origin, C4 metabolism evolved independently in S. italica. The distribution of histone modifications over the promoters differed between the species, but differential regulation of light-induced histone acetylation and cell type-specific histone methylation were evident in all three species. We propose that a preexisting histone code was recruited into C4 promoter control during the evolution of C4 metabolism.
Collapse
|
research-article |
12 |
35 |
15
|
Li W, Tang S, Zhang S, Shan J, Tang C, Chen Q, Jia G, Han Y, Zhi H, Diao X. Gene mapping and functional analysis of the novel leaf color gene SiYGL1 in foxtail millet [Setaria italica (L.) P. Beauv]. PHYSIOLOGIA PLANTARUM 2016; 157:24-37. [PMID: 26559175 DOI: 10.1111/ppl.12405] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/17/2015] [Accepted: 09/27/2015] [Indexed: 05/04/2023]
Abstract
Setaria italica and its wild ancestor Setaria viridis are emerging as model systems for genetics and functional genomics research. However, few systematic gene mapping or functional analyses have been reported in these promising C4 models. We herein isolated the yellow-green leaf mutant (siygl1) in S. italica using forward genetics approaches. Map-based cloning revealed that SiYGL1, which is a recessive nuclear gene encoding a magnesium-chelatase D subunit (CHLD), is responsible for the mutant phenotype. A single Phe to Leu amino acid change occurring near the ATPase-conserved domain resulted in decreased chlorophyll (Chl) accumulation and modified chloroplast ultrastructure. However, the mutation enhanced the light-use efficiency of the siygl1 mutant, suggesting that the mutated CHLD protein does not completely lose its original activity, but instead, gains novel features. A transcriptional analysis of Chl a oxygenase revealed that there is a strong negative feedback control of Chl b biosynthesis in S. italica. The SiYGL1 mRNA was expressed in all examined tissues, with higher expression observed in the leaves. Comparison of gene expression profiles in wild-type and siygl1 mutant plants indicated that SiYGL1 regulates a subset of genes involved in photosynthesis (rbcL and LHCB1), thylakoid development (DEG2) and chloroplast signaling (SRP54CP). These results provide information regarding the mutant phenotype at the transcriptional level. This study demonstrated that the genetic material of a Setaria species could be ideal for gene discovery investigations using forward genetics approaches and may help to explain the molecular mechanisms associated with leaf color variation.
Collapse
|
|
9 |
30 |
16
|
Yu Y, Hu H, Doust AN, Kellogg EA. Divergent gene expression networks underlie morphological diversity of abscission zones in grasses. THE NEW PHYTOLOGIST 2020; 225:1799-1815. [PMID: 31372996 PMCID: PMC7003853 DOI: 10.1111/nph.16087] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/19/2019] [Indexed: 05/19/2023]
Abstract
Abscission is a process in which plants shed their parts, and is mediated by a particular set of cells, the abscission zone (AZ). In grasses (Poaceae), the position of the AZ differs among species, raising the question of whether its anatomical structure and genetic control are conserved. The ancestral position of the AZ was reconstructed. A combination of light microscopy, transmission electron microscopy, RNA-Seq analyses and RNA in situ hybridisation were used to compare three species, two (weedy rice and Brachypodium distachyon) with the AZ in the ancestral position and one (Setaria viridis) with the AZ in a derived position below a cluster of flowers (spikelet). Rice and Brachypodium are more similar anatomically than Setaria. However, the cell wall properties and the transcriptome of rice and Brachypodium are no more similar to each other than either is to Setaria. The set of genes expressed in the studied tissues is generally conserved across species, but the precise developmental and positional patterns of expression and gene networks are almost entirely different. Transcriptional regulation of AZ development appears to be extensively rewired among the three species, leading to distinct anatomical and morphological outcomes.
Collapse
|
research-article |
5 |
30 |
17
|
Hu S, Yuan J, Gao J, Wu Y, Meng X, Tong P, Chen H. Antioxidant and Anti-Inflammatory Potential of Peptides Derived from In Vitro Gastrointestinal Digestion of Germinated and Heat-Treated Foxtail Millet ( Setaria italica) Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9415-9426. [PMID: 32786864 DOI: 10.1021/acs.jafc.0c03732] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study aimed at identifying antioxidant and anti-inflammatory peptides derived from the in vitro gastrointestinal digestion of germinated and heated (microwave and boiling) foxtail millet. The protein digest fraction containing low-molecular-weight peptides (<3 kDa) and the most hydrophobic subfraction (F4) abundant in random coil structure were responsible for the bioactivity. Then, seven novel peptides were identified using liquid chromatography with tandem mass spectrometry (LC-MS/MS) from the most potent F4 subfraction derived from boiled germinated millet. All seven synthesized peptides significantly (p < 0.05) reduced reactive oxygen species production and increased glutathione content and superoxide dismutase activity in Caco-2 cells, whereas two peptides (EDDQMDPMAK and QNWDFCEAWEPCF) were superior in inhibiting nitric oxide, tumor necrosis factor-α (reduced to 42.29 and 44.07%, respectively), and interleukin-6 (reduced to 56.59 and 43.45%, respectively) production in a RAW 264.7 cell model. This study is the first to report about the potential role of germinated and heated foxtail millet as a source of dual antioxidant and anti-inflammatory peptides.
Collapse
|
|
5 |
29 |
18
|
Sudhakar C, Veeranagamallaiah G, Nareshkumar A, Sudhakarbabu O, Sivakumar M, Pandurangaiah M, Kiranmai K, Lokesh U. Polyamine metabolism influences antioxidant defense mechanism in foxtail millet (Setaria italica L.) cultivars with different salinity tolerance. PLANT CELL REPORTS 2015; 34:141-56. [PMID: 25348337 DOI: 10.1007/s00299-014-1695-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Polyamines can regulate the expression of antioxidant enzymes and impart plants tolerance to abiotic stresses. A comparative analysis of polyamines, their biosynthetic enzymes at kinetic and at transcriptional level, and their role in regulating the induction of antioxidant defense enzymes under salt stress condition in two foxtail millet (Setaria italica L.) cultivars, namely Prasad, a salt-tolerant, and Lepakshi, a salt-sensitive cultivar was conducted. Salt stress resulted in elevation of free polyamines due to increase in the activity of spermidine synthase and S-adenosyl methionine decarboxylase enzymes in cultivar Prasad compared to cultivar Lepakshi under different levels of NaCl stress. These enzyme activities were further confirmed at the transcript level via qRT-PCR analysis. The cultivar Prasad showed a greater decrease in diamine oxidase and polyamine oxidase activity, which results in the accumulation of polyamine pools over cultivar Lepakshi. Generation of free radicals, such as O 2 (·-) and H2O2, was also analyzed quantitatively. A significant increase in O 2 (·-) and H2O2 in the cultivar Lepakshi compared with cultivar Prasad was recorded in overall pool sizes. Further, histochemical staining showed lesser accumulation of O 2 (·-) and of H2O2 in the leaves of cultivar Prasad than cultivar Lepakshi. Our results also suggest the ability of polyamine oxidation in regulating the induction of antioxidative defense enzymes, which involve in the elimination of toxic levels of O 2 (·-) and H2O2, such as Mn-superoxide dismutase, catalase and ascorbate peroxidase. The contribution of polyamines in modulating antioxidative defense mechanism in NaCl stress tolerance is discussed.
Collapse
|
|
10 |
28 |
19
|
Simões MS, Carvalho GG, Ferreira SS, Hernandes-Lopes J, de Setta N, Cesarino I. Genome-wide characterization of the laccase gene family in Setaria viridis reveals members potentially involved in lignification. PLANTA 2020; 251:46. [PMID: 31915928 DOI: 10.1007/s00425-020-03337-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/02/2020] [Indexed: 05/23/2023]
Abstract
Five laccase genes are potentially involved in developmental lignification in the model C4 grass Setaria viridis and their different tissue specificities suggest subfunctionalization events. Plant laccases are copper-containing glycoproteins involved in monolignol oxidation and, therefore, their activity is essential for lignin polymerization. Although these enzymes belong to large multigene families with highly redundant members, not all of them are thought to be involved in lignin metabolism. Here, we report on the genome-wide characterization of the laccase gene family in the model C4 grass Setaria viridis and further identification of the members potentially involved in monolignol oxidation. A total of 52 genes encoding laccases (SvLAC1 to SvLAC52) were found in the genome of S. viridis, and phylogenetic analyses showed that these genes were heterogeneously distributed among the characteristic six subclades of the family and are under relaxed selective constraints. The observed expansion in the total number of genes in this species was mainly caused by tandem duplications within subclade V, which accounts for 68% of the whole family. Comparative phylogenetic analyses showed that the expansion of subclade V is specifically observed for the Paniceae tribe within the Panicoideae subfamily in grasses. Five SvLAC genes (SvLAC9, SvLAC13, SvLAC15, SvLAC50, and SvLAC52) fulfilled the criteria established to identify lignin-related candidates: (1) phylogenetic proximity to previously characterized lignin-related laccases from other species, (2) similar expression pattern to that observed for lignin biosynthetic genes in the S. viridis elongating internode, and (3) high expression in S. viridis tissues undergoing active lignification. In addition, in situ hybridization experiments not only confirmed that these selected SvLAC genes were expressed in lignifying cells, but also that their expression showed different tissue specificities, suggesting subfunctionalization events within the family. These five laccase genes are strong candidates to be involved in lignin polymerization in S. viridis and might be good targets for lignin bioengineering strategies.
Collapse
|
|
5 |
26 |
20
|
Alonso-Cantabrana H, Cousins AB, Danila F, Ryan T, Sharwood RE, von Caemmerer S, Furbank RT. Diffusion of CO 2 across the Mesophyll-Bundle Sheath Cell Interface in a C 4 Plant with Genetically Reduced PEP Carboxylase Activity. PLANT PHYSIOLOGY 2018; 178:72-81. [PMID: 30018172 PMCID: PMC6130029 DOI: 10.1104/pp.18.00618] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/10/2018] [Indexed: 05/22/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC), localized to the cytosol of the mesophyll cell, catalyzes the first carboxylation step of the C4 photosynthetic pathway. Here, we used RNA interference to target the cytosolic photosynthetic PEPC isoform in Setaria viridis and isolated independent transformants with very low PEPC activities. These plants required high ambient CO2 concentrations for growth, consistent with the essential role of PEPC in C4 photosynthesis. The combination of estimating direct CO2 fixation by the bundle sheath using gas-exchange measurements and modeling C4 photosynthesis with low PEPC activity allowed the calculation of bundle sheath conductance to CO2 diffusion (gbs ) in the progeny of these plants. Measurements made at a range of temperatures suggested no or negligible effect of temperature on gbs depending on the technique used to calculate gbs Anatomical measurements revealed that plants with reduced PEPC activity had reduced cell wall thickness and increased plasmodesmata (PD) density at the mesophyll-bundle sheath (M-BS) cell interface, whereas we observed little difference in these parameters at the mesophyll-mesophyll cell interface. The increased PD density at the M-BS interface was largely driven by an increase in the number of PD pit fields (cluster of PDs) rather than an increase in PD per pit field or the size of pit fields. The correlation of gbs with bundle sheath surface area per leaf area and PD area per M-BS area showed that these parameters and cell wall thickness are important determinants of gbs It is intriguing to speculate that PD development is responsive to changes in C4 photosynthetic flux.
Collapse
|
research-article |
7 |
25 |
21
|
Xu J, Li Y, Ma X, Ding J, Wang K, Wang S, Tian Y, Zhang H, Zhu XG. Whole transcriptome analysis using next-generation sequencing of model species Setaria viridis to support C4 photosynthesis research. PLANT MOLECULAR BIOLOGY 2013; 83:77-87. [PMID: 23512102 DOI: 10.1007/s11103-013-0025-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/03/2013] [Indexed: 05/08/2023]
Abstract
Setaria viridis is an emerging model species for genetic studies of C4 photosynthesis. Many basic molecular resources need to be developed to support for this species. In this paper, we performed a comprehensive transcriptome analysis from multiple developmental stages and tissues of S. viridis using next-generation sequencing technologies. Sequencing of the transcriptome from multiple tissues across three developmental stages (seed germination, vegetative growth, and reproduction) yielded a total of 71 million single end 100 bp long reads. Reference-based assembly using Setaria italica genome as a reference generated 42,754 transcripts. De novo assembly generated 60,751 transcripts. In addition, 9,576 and 7,056 potential simple sequence repeats (SSRs) covering S. viridis genome were identified when using the reference based assembled transcripts and the de novo assembled transcripts, respectively. This identified transcripts and SSR provided by this study can be used for both reverse and forward genetic studies based on S. viridis.
Collapse
MESH Headings
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Chromosomes, Plant/metabolism
- Gene Expression Profiling/methods
- Gene Expression Regulation, Plant
- Genes, Plant
- Genome, Plant
- Germination
- Microsatellite Repeats
- Models, Molecular
- Molecular Sequence Annotation
- Multigene Family
- Photosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Reproduction
- Seeds/genetics
- Seeds/metabolism
- Setaria Plant/genetics
- Setaria Plant/growth & development
- Setaria Plant/metabolism
- Transcriptome
Collapse
|
|
12 |
22 |
22
|
Aidoo MK, Bdolach E, Fait A, Lazarovitch N, Rachmilevitch S. Tolerance to high soil temperature in foxtail millet (Setaria italica L.) is related to shoot and root growth and metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:73-81. [PMID: 27149034 DOI: 10.1016/j.plaphy.2016.04.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 05/20/2023]
Abstract
Roots play important roles in regulating whole-plant carbon and water relations in response to extreme soil temperature. Three foxtail millet (Setaria italica L.) lines (448-Ames 21521, 463-P1391643 and 523-P1219619) were subjected to two different soil temperatures (28 and 38 °C). The gas exchange, chlorophyll fluorescence, root morphology and central metabolism of leaves and roots were studied at the grain-filling stage. High soil temperature (38 °C) significantly influenced the shoot transpiration, stomatal conductance, photosynthesis, root growth and metabolism of all lines. The root length and area were significantly reduced in lines 448 and 463 in response to the stress, while only a small non-specific reduction was observed in line 523 in response to the treatment. The shift of root metabolites in response to high soil temperature was also genotype specific. In response to high soil temperature, glutamate, proline and pyroglutamate were reduced in line 448, and alanine, aspartate, glycine, pyroglutamate, serine, threonine and valine were accumulated in line 463. In the roots of line 523, serine, threonine, valine, isomaltose, maltose, raffinose, malate and itaconate were accumulated. Root tolerance to high soil temperature was evident in line 523, in its roots growth potential, lower photosynthesis and stomatal conductance rates, and effective utilization and assimilation of membrane carbon and nitrogen, coupled with the accumulation of protective metabolites.
Collapse
|
|
9 |
22 |
23
|
Kumar K, Muthamilarasan M, Bonthala VS, Roy R, Prasad M. Unraveling 14-3-3 proteins in C4 panicoids with emphasis on model plant Setaria italica reveals phosphorylation-dependent subcellular localization of RS splicing factor. PLoS One 2015; 10:e0123236. [PMID: 25849294 PMCID: PMC4388342 DOI: 10.1371/journal.pone.0123236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/01/2015] [Indexed: 11/18/2022] Open
Abstract
14-3-3 proteins are a large multigenic family of regulatory proteins ubiquitously found in eukaryotes. In plants, 14-3-3 proteins are reported to play significant role in both development and response to stress stimuli. Therefore, considering their importance, genome-wide analyses have been performed in many plants including Arabidopsis, rice and soybean. But, till date, no comprehensive investigation has been conducted in any C4 panicoid crops. In view of this, the present study was performed to identify 8, 5 and 26 potential 14-3-3 gene family members in foxtail millet (Si14-3-3), sorghum (Sb14-3-3) and maize (Zm14-3-3), respectively. In silico characterization revealed large variations in their gene structures; segmental and tandem duplications have played a major role in expansion of these genes in foxtail millet and maize. Gene ontology annotation showed the participation of 14-3-3 proteins in diverse biological processes and molecular functions, and in silico expression profiling indicated their higher expression in all the investigated tissues. Comparative mapping was performed to derive the orthologous relationships between 14-3-3 genes of foxtail millet and other Poaceae members, which showed a higher, as well as similar percentage of orthology among these crops. Expression profiling of Si14-3-3 genes during different time-points of abiotic stress and hormonal treatments showed a differential expression pattern of these genes, and sub-cellular localization studies revealed the site of action of Si14-3-3 proteins within the cells. Further downstream characterization indicated the interaction of Si14-3-3 with a nucleocytoplasmic shuttling phosphoprotein (SiRSZ21A) in a phosphorylation-dependent manner, and this demonstrates that Si14-3-3 might regulate the splicing events by binding with phosphorylated SiRSZ21A. Taken together, the present study is a comprehensive analysis of 14-3-3 gene family members in foxtail millet, sorghum and maize, which provides interesting information on their gene structure, protein domains, phylogenetic and evolutionary relationships, and expression patterns during abiotic stresses and hormonal treatments, which could be useful in choosing candidate members for further functional characterization. In addition, demonstration of interaction between Si14-3-3 and SiRSZ21A provides novel clues on the involvement of 14-3-3 proteins in the splicing events.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
21 |
24
|
Tian B, Qiao Z, Zhang L, Li H, Pei Y. Hydrogen sulfide and proline cooperate to alleviate cadmium stress in foxtail millet seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:293-299. [PMID: 27771582 DOI: 10.1016/j.plaphy.2016.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/09/2016] [Accepted: 10/09/2016] [Indexed: 05/22/2023]
Abstract
Hydrogen sulfide (H2S) and some functional amino acids in crops have been involved in the defense system against heavy-metal pollution. Here we report the relationships and functions of H2S and proline to cadmium (Cd) stress. Sodium hydrosulfide (NaHS) pretreatment decreased the electrolytic leakage and the malondialdehyde and hydrogen peroxide contents while enhancing photosynthesis in Cd-treated seedlings. Furthermore, pretreatment with NaHS markedly exacerbated Cd-induced alterations in proline content, the activities of proline-5-carboxylate reductase (P5CR) and proline dehydrogenase (PDH), and the transcript levels of P5CR and PDH. When endogenous H2S was scavenged or inhibited by various H2S modulators, the Cd-induced increase in endogenous proline was weakened. Combined pretreatment with H2S and proline was moderately higher in the Cd-stressed growth status, stomata movements and oxidative damage of seedlings compared to a single treatment with H2S or proline. These results suggest that H2S and proline cooperate to alleviate Cd-damage in foxtail millet.
Collapse
|
|
9 |
19 |
25
|
Singh RK, Shweta S, Muthamilarasan M, Rani R, Prasad M. Study on aquaporins of Setaria italica suggests the involvement of SiPIP3;1 and SiSIP1;1 in abiotic stress response. Funct Integr Genomics 2019; 19:587-596. [PMID: 30759293 DOI: 10.1007/s10142-018-00653-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 12/17/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022]
Abstract
Aquaporins are versatile proteins involved in several biological as well as molecular functions, and they have been extensively studied in various plant systems. Increasing evidences indicate their role in biotic and abiotic stresses, and therefore, studying these proteins in a naturally stress-tolerant crop would provide further insights into the roles of this important protein family. Given this, the present study was performed in foxtail millet (Setaria italica), a model plant for studying biofuel, stress tolerance, and C4 photosynthetic traits. The study identified 12 plasma membrane intrinsic proteins (PIPs), 11 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), and 3 small basic intrinsic proteins (SIPs) in foxtail millet. The identified proteins and their corresponding genes were characterized using in silico approaches such as chromosomal localization, analysis of gene and protein properties, phylogenetic analysis, promoter analysis, and RNA-seq-derived expression profiling. The candidate genes identified through these analyses were studied for their expression in response to abiotic stresses (dehydration, salinity, and heat) as well as hormone treatments (abscisic acid, methyl jasmonate, and salicylic acid) in two contrasting cultivars of foxtail millet. The study showed that SiPIP3;1 and SiSIP1;1 were differentially expressed in both the cultivars in response to stress and hormone treatments. Overexpression of these genes in a heterologous yeast system also demonstrated that the transgenic cells were able to tolerate dehydration as well as salt stress which suggests the involvement of these proteins in the tolerance mechanism. Overall, the present study provides insights into structure and organization of the aquaporin gene family in foxtail millet and highlights the potential candidate genes for further functional characterizations.
Collapse
|
Journal Article |
6 |
19 |