1
|
Paneni F, Mocharla P, Akhmedov A, Costantino S, Osto E, Volpe M, Lüscher TF, Cosentino F. Gene silencing of the mitochondrial adaptor p66(Shc) suppresses vascular hyperglycemic memory in diabetes. Circ Res 2012; 111:278-89. [PMID: 22693349 DOI: 10.1161/circresaha.112.266593] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Hyperglycemic memory may explain why intensive glucose control has failed to improve cardiovascular outcomes in patients with diabetes. Indeed, hyperglycemia promotes vascular dysfunction even after glucose normalization. However, the molecular mechanisms of this phenomenon remain to be elucidated. OBJECTIVE The present study investigated the role of mitochondrial adaptor p66(Shc) in this setting. METHODS AND RESULTS In human aortic endothelial cells (HAECs) exposed to high glucose and aortas of diabetic mice, activation of p66(Shc) by protein kinase C βII (PKCβII) persisted after returning to normoglycemia. Persistent p66(Shc) upregulation and mitochondrial translocation were associated with continued reactive oxygen species (ROS) production, reduced nitric oxide bioavailability, and apoptosis. We show that p66(Shc) gene overexpression was epigenetically regulated by promoter CpG hypomethylation and general control nonderepressible 5-induced histone 3 acetylation. Furthermore, p66(Shc)-derived ROS production maintained PKCβII upregulation and PKCβII-dependent inhibitory phosphorylation of endothelial nitric oxide synthase at Thr-495, leading to a detrimental vicious cycle despite restoration of normoglycemia. Moreover, p66(Shc) activation accounted for the persistent elevation of the advanced glycated end product precursor methylglyoxal. In vitro and in vivo gene silencing of p66(Shc), performed at the time of glucose normalization, blunted ROS production, restored endothelium-dependent vasorelaxation, and attenuated apoptosis by limiting cytochrome c release, caspase 3 activity, and cleavage of poly (ADP-ribose) polymerase. CONCLUSIONS p66(Shc) is the key effector driving vascular hyperglycemic memory in diabetes. Our study provides molecular insights for the progression of diabetic vascular complications despite glycemic control and may help to define novel therapeutic targets.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
199 |
2
|
Wang JM, Tao J, Chen DD, Cai JJ, Irani K, Wang Q, Yuan H, Chen AF. MicroRNA miR-27b rescues bone marrow-derived angiogenic cell function and accelerates wound healing in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 2014; 34:99-109. [PMID: 24177325 PMCID: PMC5533613 DOI: 10.1161/atvbaha.113.302104] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Vascular precursor cells with angiogenic potentials are important for tissue repair, which is impaired in diabetes mellitus. MicroRNAs are recently discovered key regulators of gene expression, but their role in vascular precursor cell-mediated angiogenesis in diabetes mellitus is unknown. We tested the hypothesis that the microRNA miR-27b rescues impaired bone marrow-derived angiogenic cell (BMAC) function in vitro and in vivo in type 2 diabetic mice. APPROACH AND RESULTS BMACs from adult male type 2 diabetic db/db and from normal littermate db/+ mice were used. miR-27b expression was decreased in db/db BMACs. miR-27b mimic improved db/db BMAC function, including proliferation, adhesion, tube formation, and delayed apoptosis, but it did not affect migration. Elevated thrombospondin-1 (TSP-1) protein in db/db BMACs was suppressed on miR-27b mimic transfection. Inhibition of miR-27b in db/+ BMACs reduced angiogenesis, which was reversed by TSP-1 small interfering RNA (siRNA). miR-27b suppressed the pro-oxidant protein p66(shc) and mitochondrial oxidative stress, contributing to its protection of BMAC function. miR-27b also suppressed semaphorin 6A to improve BMAC function in diabetes mellitus. Luciferase binding assay suggested that miR-27b directly targeted TSP-1, TSP-2, p66(shc), and semaphorin 6A. miR-27b improved topical cell therapy of diabetic BMACs on diabetic skin wound closure, with a concomitant augmentation of wound perfusion and capillary formation. Normal BMAC therapy with miR-27b inhibition demonstrated reduced efficacy in wound closure, perfusion, and capillary formation. Local miR-27b delivery partly improved wound healing in diabetic mice. CONCLUSIONS miR-27b rescues impaired BMAC angiogenesis via TSP-1 suppression, semaphorin 6A expression, and p66shc-dependent mitochondrial oxidative stress and improves BMAC therapy in wound healing in type 2 diabetic mice.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- CD36 Antigens/deficiency
- CD36 Antigens/genetics
- CD47 Antigen/genetics
- CD47 Antigen/metabolism
- Case-Control Studies
- Cells, Cultured
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/therapy
- Disease Models, Animal
- Female
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/blood
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Mitochondria/metabolism
- Neovascularization, Physiologic
- Oligoribonucleotides/pharmacology
- Oxidative Stress
- RNA Interference
- Semaphorins/genetics
- Semaphorins/metabolism
- Shc Signaling Adaptor Proteins/genetics
- Shc Signaling Adaptor Proteins/metabolism
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Stem Cells/metabolism
- Stem Cells/pathology
- Thrombospondin 1/genetics
- Thrombospondin 1/metabolism
- Thrombospondins/genetics
- Thrombospondins/metabolism
- Time Factors
- Transfection
- Wound Healing
Collapse
|
Research Support, N.I.H., Extramural |
11 |
126 |
3
|
Yuan Y, Chen Y, Zhang P, Huang S, Zhu C, Ding G, Liu B, Yang T, Zhang A. Mitochondrial dysfunction accounts for aldosterone-induced epithelial-to-mesenchymal transition of renal proximal tubular epithelial cells. Free Radic Biol Med 2012; 53:30-43. [PMID: 22608985 DOI: 10.1016/j.freeradbiomed.2012.03.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/27/2012] [Accepted: 03/26/2012] [Indexed: 11/19/2022]
Abstract
Epithelial-mesenchymal transition (EMT) plays a pivotal role in the pathogenesis of renal tubulointerstitial fibrosis. We previously demonstrated that aldosterone (Aldo)-induced EMT is dependent on mitochondrial-derived oxidative stress. This study investigated whether mitochondrial dysfunction (MtD) is involved in the pathogenesis of EMT and whether peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a major regulator of oxidative metabolism and mitochondrial function, prevents EMT by improving MtD. Aldo decreased PGC-1α expression while increasing its acetylation and induced MtD, as evidenced by oxidative stress, mitochondrial membrane potential collapse, mitochondrial DNA damage, and mitochondrial complex activity reduction. Aldo time-dependently induced p66Shc phosphorylation and expression. Mineralocorticoid receptor antagonist eplerenone and p66Shc short interfering RNA prevented Aldo-induced MtD and EMT, as evidenced by downregulation of α-smooth muscle actin and upregulation of E-cadherin. Mitochondrial DNA depletion by ethidium bromide or mitochondrial transcription factor A inhibitory RNA (RNAi) induced MtD, further promoting EMT. RNAi-mediated suppression of PGC-1α induced MtD and EMT, whereas overexpression of PGC-1α prevented Aldo-induced MtD and inhibited EMT. Similarly, overexpression of silent mating type information regulation 2 homolog 1 (SIRT1), a gene upstream of PGC-1α, or the SIRT1 activator resveratrol restored Aldo-induced MtD and EMT by upregulating PGC-1α. These findings, which implicate a role for MtD in EMT and suggest that SIRT1 and PGC-1α coordinate to improve mitochondrial function and EMT, may guide us in therapeutic strategies for renal tubulointerstitial fibrosis.
Collapse
MESH Headings
- Aldosterone/pharmacology
- Blotting, Western
- Cadherins/genetics
- Cadherins/metabolism
- Cells, Cultured
- DNA Damage/drug effects
- DNA, Mitochondrial/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Epithelial-Mesenchymal Transition/drug effects
- Heat-Shock Proteins/antagonists & inhibitors
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Humans
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Membrane Potential, Mitochondrial/drug effects
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Oxidative Stress/drug effects
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Phosphorylation/drug effects
- Protein Processing, Post-Translational
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Shc Signaling Adaptor Proteins/antagonists & inhibitors
- Shc Signaling Adaptor Proteins/genetics
- Shc Signaling Adaptor Proteins/metabolism
- Sirtuin 1
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation
Collapse
|
|
13 |
90 |
4
|
Kim CS, Kim YR, Naqvi A, Kumar S, Hoffman TA, Jung SB, Kumar A, Jeon BH, McNamara DM, Irani K. Homocysteine promotes human endothelial cell dysfunction via site-specific epigenetic regulation of p66shc. Cardiovasc Res 2011; 92:466-75. [PMID: 21933910 PMCID: PMC3211975 DOI: 10.1093/cvr/cvr250] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/01/2011] [Accepted: 09/14/2011] [Indexed: 12/31/2022] Open
Abstract
AIMS Hyperhomocysteinaemia is an independent risk factor for atherosclerotic vascular disease and is associated with vascular endothelial dysfunction. Homocysteine modulates cellular methylation reactions. P66shc is a protein that promotes oxidative stress whose expression is governed by promoter methylation. We asked if homocysteine induces endothelial p66shc expression via hypomethylation of CpG dinucleotides in the p66shc promoter, and whether p66shc mediates homocysteine-stimulated endothelial cell dysfunction. METHODS AND RESULTS Homocysteine stimulates p66shc transcription in human endothelial cells and hypomethylates specific CpG dinucleotides in the human p66shc promoter. Knockdown of p66shc inhibits the increase in reactive oxygen species, and decrease in nitric oxide, elicited by homocysteine in endothelial cells and prevents homocysteine-induced up-regulation of endothelial intercellular adhesion molecule-1. In addition, knockdown of p66shc mitigates homocysteine-induced adhesion of monocytes to endothelial cells. Inhibition of DNA methyltransferase activity or knockdown of DNA methyltransferase 3b abrogates homocysteine-induced up-regulation of p66shc. Comparison of plasma homocysteine in humans with coronary artery disease shows a significant difference between those with highest and lowest p66shc promoter CpG methylation in peripheral blood leucocytes. CONCLUSION Homocysteine up-regulates human p66shc expression via hypomethylation of specific CpG dinucleotides in the p66shc promoter, and this mechanism is important in homocysteine-induced endothelial cell dysfunction.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
80 |
5
|
Guo J, Gertsberg Z, Ozgen N, Steinberg SF. p66Shc links alpha1-adrenergic receptors to a reactive oxygen species-dependent AKT-FOXO3A phosphorylation pathway in cardiomyocytes. Circ Res 2009; 104:660-9. [PMID: 19168439 PMCID: PMC2861587 DOI: 10.1161/circresaha.108.186288] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
p66Shc is an adapter protein that is induced by hypertrophic stimuli and has been implicated as a major regulator of reactive oxygen species (ROS) production and cardiovascular oxidative stress responses. This study implicates p66Shc in an alpha(1)-adrenergtic receptor (alpha(1)-AR) pathway that requires the cooperative effects of protein kinase (PK)Cepsilon and PKCdelta and leads to AKT-FOXO3a phosphorylation in cardiomyocytes. alpha(1)-ARs promote p66Shc-YY(239/240) phosphorylation via a ROS-dependent mechanism that is localized to caveolae and requires epidermal growth factor receptor (EGFR) and PKCepsilon activity. alpha(1)-ARs also increase p66Shc-S(36) phosphorylation via an EGFR transactivation pathway involving PKCdelta. p66Shc links alpha(1)-ARs to an AKT signaling pathway that selectively phosphorylates/inactivates FOXO transcription factors and downregulates the ROS-scavenging protein manganese superoxide dismutase (MnSOD); the alpha(1)-AR-p66Shc-dependent pathway involving AKT does not regulate GSK3. Additional studies show that RNA interference-mediated downregulation of endogenous p66Shc leads to the derepression of FOXO3a-regulated genes such as MnSOD, p27Kip1, and BIM-1. p66Shc downregulation also increases proliferating cell nuclear antigen expression and induces cardiomyocyte hypertrophy, suggesting that p66Shc exerts an antihypertrophic action in neonatal cardiomyocytes. The novel alpha(1)-AR- and ROS-dependent pathway involving p66Shc identified in this study is likely to contribute to cardiomyocyte remodeling and the evolution of heart failure.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibiotics, Antineoplastic/toxicity
- Apoptosis
- Cardiomegaly/metabolism
- Caveolae/metabolism
- Cell Enlargement
- Cells, Cultured
- Doxorubicin/toxicity
- ErbB Receptors/metabolism
- Forkhead Box Protein O3
- Forkhead Transcription Factors/metabolism
- Glycogen Synthase Kinase 3/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Norepinephrine/metabolism
- Oxidative Stress/drug effects
- Phosphorylation
- Protein Kinase C-delta/metabolism
- Protein Kinase C-epsilon/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- RNA, Small Interfering/metabolism
- Rats
- Rats, Wistar
- Reactive Oxygen Species/metabolism
- Receptors, Adrenergic, alpha-1/metabolism
- Shc Signaling Adaptor Proteins/genetics
- Shc Signaling Adaptor Proteins/metabolism
- Signal Transduction/drug effects
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Time Factors
- Transduction, Genetic
Collapse
|
Research Support, N.I.H., Extramural |
16 |
78 |
6
|
Pani G, Koch OR, Galeotti T. The p53-p66shc-Manganese Superoxide Dismutase (MnSOD) network: a mitochondrial intrigue to generate reactive oxygen species. Int J Biochem Cell Biol 2008; 41:1002-5. [PMID: 18992840 DOI: 10.1016/j.biocel.2008.10.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 10/04/2008] [Accepted: 10/14/2008] [Indexed: 02/01/2023]
Abstract
Once considered as a mere by-product of respiration, mitochondrial generation of reactive oxygen species (ROS) has recently emerged as a genetically controlled phenomenon, involved in complex intracellular signal transduction cascades that directly regulate cell survival and death in responses to environmental stressors. These cascades are involved in the pathogenesis of several major age-related diseases, such as cancer and neurodegeneration, and also appear to somehow regulate the "normal" ageing process. The present short review summarizes recent discoveries on mitochondrial reactive oxygen species regulation by p53, a tumor suppressor protein and p66shc, a protein implicated in the life-span determination. It also outlines the emerging network whereby these molecules cross-talk with each other and with the mitochondrial antioxidant system, namely MnSOD (SOD2), another life-span determining protein, to regulate oxidative stress in the organelle. This molecular circuit, which comprises two genetic determinants of longevity and a major tumor suppressor gene, also provides a theoretical framework connecting senescence and cancer.
Collapse
|
Review |
17 |
75 |
7
|
Fadini GP, Albiero M, Menegazzo L, Boscaro E, Pagnin E, Iori E, Cosma C, Lapolla A, Pengo V, Stendardo M, Agostini C, Pelicci PG, Giorgio M, Avogaro A. The redox enzyme p66Shc contributes to diabetes and ischemia-induced delay in cutaneous wound healing. Diabetes 2010; 59:2306-14. [PMID: 20566667 PMCID: PMC2927954 DOI: 10.2337/db09-1727] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The redox enzyme p66Shc produces hydrogen peroxide and triggers proapoptotic signals. Genetic deletion of p66Shc prolongs life span and protects against oxidative stress. In the present study, we evaluated the role of p66Shc in an animal model of diabetic wound healing. RESEARCH DESIGN AND METHODS Skin wounds were created in wild-type (WT) and p66Shc(-/-) control and streptozotocin-induced diabetic mice with or without hind limb ischemia. Wounds were assessed for collagen content, thickness and vascularity of granulation tissue, apoptosis, reepithelialization, and expression of c-myc and beta-catenin. Response to hind limb ischemia was also evaluated. RESULTS Diabetes delayed wound healing in WT mice with reduced granulation tissue thickness and vascularity, increased apoptosis, epithelial expression of c-myc, and nuclear localization of beta-catenin. These nonhealing features were worsened by hind limb ischemia. Diabetes induced p66Shc expression and activation; wound healing was significantly faster in p66Shc(-/-) than in WT diabetic mice, with or without hind limb ischemia, at 1 and 3 months of diabetes duration and in both SV129 and C57BL/6 genetic backgrounds. Deletion of p66Shc reversed nonhealing features, with increased collagen content and granulation tissue thickness, and reduced apoptosis and expression of c-myc and beta-catenin. p66Shc deletion improved response to hind limb ischemia in diabetic mice in terms of tissue damage, capillary density, and perfusion. Migration of p66Shc(-/-) dermal fibroblasts in vitro was significantly faster than WT fibroblasts under both high glucose and hypoxia. CONCLUSIONS p66Shc is involved in the delayed wound-healing process in the setting of diabetes and ischemia. Thus, p66Shc may represent a potential therapeutic target against this disabling diabetes complication.
Collapse
|
research-article |
15 |
73 |
8
|
Giorgio M, Berry A, Berniakovich I, Poletaeva I, Trinei M, Stendardo M, Hagopian K, Ramsey JJ, Cortopassi G, Migliaccio E, Nötzli S, Amrein I, Lipp HP, Cirulli F, Pelicci PG. The p66Shc knocked out mice are short lived under natural condition. Aging Cell 2012; 11:162-8. [PMID: 22081964 DOI: 10.1111/j.1474-9726.2011.00770.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Deletion of the p66(Shc) gene results in lean and healthy mice, retards aging, and protects from aging-associated diseases, raising the question of why p66(Shc) has been selected, and what is its physiological role. We have investigated survival and reproduction of p66(Shc)-/- mice in a population living in a large outdoor enclosure for a year, subjected to food competition and exposed to winter temperatures. Under these conditions, deletion of p66(Shc) was strongly counterselected. Laboratory studies revealed that p66(Shc)-/- mice have defects in fat accumulation, thermoregulation, and reproduction, suggesting that p66(Shc) has been evolutionarily selected because of its role in energy metabolism. These findings imply that the health impact of targeting aging genes might depend on the specific energetic niche and caution should be exercised against premature conclusions regarding gene functions that have only been observed in protected laboratory conditions.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
64 |
9
|
Mehlitz A, Banhart S, Mäurer AP, Kaushansky A, Gordus AG, Zielecki J, MacBeath G, Meyer TF. Tarp regulates early Chlamydia-induced host cell survival through interactions with the human adaptor protein SHC1. J Cell Biol 2010; 190:143-57. [PMID: 20624904 PMCID: PMC2911661 DOI: 10.1083/jcb.200909095] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 06/14/2010] [Indexed: 12/28/2022] Open
Abstract
Many bacterial pathogens translocate effector proteins into host cells to manipulate host cell functions. Here, we used a protein microarray comprising virtually all human SRC homology 2 (SH2) and phosphotyrosine binding domains to comprehensively and quantitatively assess interactions between host cell proteins and the early phase Chlamydia trachomatis effector protein translocated actin-recruiting phosphoprotein (Tarp), which is rapidly tyrosine phosphorylated upon host cell entry. We discovered numerous novel interactions between human SH2 domains and phosphopeptides derived from Tarp. The adaptor protein SHC1 was among Tarp's strongest interaction partners. Transcriptome analysis of SHC1-dependent gene regulation during infection indicated that SHC1 regulates apoptosis- and growth-related genes. SHC1 knockdown sensitized infected host cells to tumor necrosis factor-induced apoptosis. Collectively, our findings reveal a critical role for SHC1 in early C. trachomatis-induced cell survival and suggest that Tarp functions as a multivalent phosphorylation-dependent signaling hub that is important during the early phase of chlamydial infection.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
61 |
10
|
Feng W, Li HC, Xu K, Chen YF, Pan LY, Mei Y, Cai H, Jiang YM, Chen T, Feng DX. SHCBP1 is over-expressed in breast cancer and is important in the proliferation and apoptosis of the human malignant breast cancer cell line. Gene 2016; 587:91-7. [PMID: 27129942 DOI: 10.1016/j.gene.2016.04.046] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/16/2016] [Accepted: 04/22/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND SHC SH2-binding protein 1, a member of Src homolog and collagen homolog (Shc) family, has been recently identified in different contexts in unbiased screening assays. It has been reported to be over-expressed in several malignant cancers. METHODS Immunohistochemistry of SHCBP1 on 128 breast cancer tissues and adjacent normal tissues were used to evaluate the prognostic significance of SHCBP1. Survival analyses were performed by Kaplan-Meier method. CRISPR/CAS9 method was used to knockout SHCBP1 expression. CRISPR/CAS9 technology was used to knockout SHCBP1 in 2 breast cancer cell lines. MTT assay, BrdU assay, colony formation assay, cell cycle assay and apoptosis analysis in MCF-7 and MDA-MB-231 cell lines were carried out to evaluate the effects of SHCBP1 on breast cancer in vitro. RESULTS Immunohistochemical analysis revealed SHCBP1 was significantly up-regulated in breast cancer tissues compared with adjacent normal tissues (82 of 128, 64%). Over-expressed SHCBP1 was correlated with advanced clinical stage and poorer survival. Ablation of SHCBP1 inhibited the proliferation in vitro. SHCBP1 knockout increased cyclin-dependent kinase inhibitor p21, and decreased the Cyclin B1 and CDK1. CONCLUSION Our study suggests SHCBP1 is dysregulated expressed in breast cancer and plays a critical role in cancer progression, which can be a potential prognosis predictor of breast cancer.
Collapse
|
Journal Article |
9 |
58 |
11
|
Li X, Xu Z, Du W, Zhang Z, Wei Y, Wang H, Zhu Z, Qin L, Wang L, Niu Q, Zhao X, Girard L, Gong Y, Ma Z, Sun B, Yao Z, Minna JD, Terada LS, Liu Z. Aiolos promotes anchorage independence by silencing p66Shc transcription in cancer cells. Cancer Cell 2014; 25:575-89. [PMID: 24823637 PMCID: PMC4070880 DOI: 10.1016/j.ccr.2014.03.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/06/2014] [Accepted: 03/19/2014] [Indexed: 01/06/2023]
Abstract
Anchorage of tissue cells to their physical environment is an obligate requirement for survival that is lost in mature hematopoietic and in transformed epithelial cells. Here we find that a lymphocyte lineage-restricted transcription factor, Aiolos, is frequently expressed in lung cancers and predicts markedly reduced patient survival. Aiolos decreases expression of a large set of adhesion-related genes, disrupting cell-cell and cell-matrix interactions. Aiolos also reconfigures chromatin structure within the SHC1 gene, causing isoform-specific silencing of the anchorage reporter p66(Shc) and blocking anoikis in vitro and in vivo. In lung cancer tissues and single cells, p66(Shc) expression inversely correlates with that of Aiolos. Together, these findings suggest that Aiolos functions as an epigenetic driver of lymphocyte mimicry in metastatic epithelial cancers.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
56 |
12
|
Tomilov AA, Ramsey JJ, Hagopian K, Giorgio M, Kim KM, Lam A, Migliaccio E, Lloyd KC, Berniakovich I, Prolla TA, Pelicci P, Cortopassi GA. The Shc locus regulates insulin signaling and adiposity in mammals. Aging Cell 2011; 10:55-65. [PMID: 21040401 DOI: 10.1111/j.1474-9726.2010.00641.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Longevity of a p66Shc knockout strain (ShcP) was previously attributed to increased stress resistance and altered mitochondria. Microarrays of ShcP tissues indicated alterations in insulin signaling. Consistent with this observation, ShcP mice were more insulin sensitive and glucose tolerant at organismal and tissue levels, as was a novel p66Shc knockout (ShcL). Increasing and decreasing Shc expression in cell lines decreased and increased insulin sensitivity, respectively - consistent with p66Shc's function as a repressor of insulin signaling. However, differences between the two p66Shc knockout strains were also observed. ShcL mice were fatter and susceptible to fatty diets, and their fat was more insulin sensitive than controls. On the other hand, ShcP mice were leaner and resisted fatty diets, and their adipose was less insulin sensitive than controls. ShcL and ShcP strains are both highly inbred on the C57Bl/6 background, so we investigated gene expression at the Shc locus, which encodes three isoforms, p66, p52, and p46. Isoform p66 is absent in both strains; thus, the remaining difference to which to attribute the 'lean' phenotype is expression of the other two isoforms. ShcL mice have a precise deletion of p66Shc and normal expression of p52 and p46Shc isoforms in all tissues; thus, a simple deletion of p66Shc results in a 'fat' phenotype. However, ShcP mice in addition to p66Shc deletion have a fourfold increase in p46Shc expression in white fat. Thus, p46Shc overexpression in fat, rather than p66Shc deletion, is the likely cause of decreased adiposity and reduced insulin sensitivity in the fat of ShcP mice, which has implications for the longevity of the strain.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
53 |
13
|
Ma Z, Liu Z, Wu RF, Terada LS. p66(Shc) restrains Ras hyperactivation and suppresses metastatic behavior. Oncogene 2010; 29:5559-67. [PMID: 20676142 PMCID: PMC3045677 DOI: 10.1038/onc.2010.326] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/17/2010] [Accepted: 05/25/2010] [Indexed: 02/08/2023]
Abstract
Normal tissue cells survive and proliferate only while anchored to solid substrate. Conversely, transformed cells both survive and proliferate following detachment, having lost attachment context through unclear mechanisms. p66(Shc) is a focal adhesion-associated protein that reports cell attachment through a RhoA-dependent mechanosensory test. We find that human small cell lung cancer (SCLC) cells and mouse Lewis lung carcinoma (LLC), which display aggressive metastatic behavior, lack both p66(Shc) and retinoblastoma (pRB) and bypass anoikis. Re-expression of p66(Shc) in these cells restores anoikis and provides striking protection from metastasis by LLC cells in vivo. Notably, knockdown of p66(Shc) in normal epithelial cells leads to unrestrained Ras activation, preventing anoikis through downstream suppression of RhoA but blocking proliferation in a pRB-dependent manner, thus mimicking oncogenic Ras. Conversely, LLC and SCLC cells display constitutive Ras activation necessary to bypass anoikis, which is reversed by re-expression of p66(Shc). p66(Shc) therefore coordinates Ras-dependent control of proliferation and anchorage sensation, which can be defeated in the evolution of highly metastatic tumors by combined loss of both p66(Shc) and pRB.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
49 |
14
|
Husain M, Meggs LG, Vashistha H, Simoes S, Griffiths KO, Kumar D, Mikulak J, Mathieson PW, Saleem MA, Del Valle L, Pina-Oviedo S, Wang JY, Seshan SV, Malhotra A, Reiss K, Singhal PC. Inhibition of p66ShcA longevity gene rescues podocytes from HIV-1-induced oxidative stress and apoptosis. J Biol Chem 2009; 284:16648-16658. [PMID: 19383602 PMCID: PMC2713565 DOI: 10.1074/jbc.m109.008482] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 04/15/2009] [Indexed: 11/06/2022] Open
Abstract
Glomerular visceral epithelial cells (podocytes) play a critical role in the pathogenesis of human immunodeficiency virus (HIV)-associated nephropathy. A key question concerns the mechanism(s) by which the HIV-1 genome alters the phenotype of the highly specialized, terminally differentiated podocytes. Here, using an in vitro system of conditionally immortalized differentiated human podocytes (CIDHPs), we document a pivotal role for the p66ShcA protein in HIV-1-induced reactive oxygen species generation and CIDHP apoptosis. CIDHP transfected with truncated HIV-1 construct (NL4-3) exhibit increased reactive oxygen species metabolism, DNA strand breaks, and a 5-fold increase in apoptosis, whereas the opposite was true for NL4-3/CIDHP co-transfected with mu-36p66ShcA (micro-36) dominant negative expression vector or isoform-specific p66-small interfering RNA. Phosphorylation at Ser-36 of the wild type p66ShcA protein, required for p66ShcA redox function and inhibition of the potent stress response regulator Foxo3a, was unchanged in micro-36/NL4-3/CIDHP but increased in NL4-3/CIDHP. Acute knockdown of Foxo3a by small interfering RNA induced a 50% increase in micro-36/NL4-3/CIDHP apoptosis, indicating that Foxo3a-dependent responses promote the survival phenotype in micro-36 cells. We conclude that inhibition of p66ShcA redox activity prevents generation of HIV-1 stress signals and activation of the CIDHP apoptosis program.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
45 |
15
|
Jain S, Knoten A, Hoshi M, Wang H, Vohra B, Heuckeroth RO, Milbrandt J. Organotypic specificity of key RET adaptor-docking sites in the pathogenesis of neurocristopathies and renal malformations in mice. J Clin Invest 2010; 120:778-90. [PMID: 20160347 PMCID: PMC2827965 DOI: 10.1172/jci41619] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 01/06/2010] [Indexed: 01/01/2023] Open
Abstract
The receptor tyrosine kinase ret protooncogene (RET) is implicated in the pathogenesis of several diseases and in several developmental defects, particularly those in neural crest-derived structures and the genitourinary system. In order to further elucidate RET-mediated mechanisms that contribute to these diseases and decipher the basis for specificity in the pleiotropic effects of RET, we characterized development of the enteric and autonomic nervous systems in mice expressing RET9 or RET51 isoforms harboring mutations in tyrosine residues that act as docking sites for the adaptors Plcgamma, Src, Shc, and Grb2. Using this approach, we found that development of the genitourinary system and the enteric and autonomic nervous systems is dependent on distinct RET-stimulated signaling pathways. Thus, mutation of RET51 at Y1062, a docking site for multiple adaptor proteins including Shc, caused distal colon aganglionosis reminiscent of Hirschsprung disease (HSCR). On the other hand, this mutation in RET9, which encodes an isoform that lacks the Grb2 docking site present in RET51, produced severe abnormalities in multiple organs. Mutations that abrogate RET-Plcgamma binding, previously shown to produce features reminiscent of congenital anomalies of kidneys or urinary tract (CAKUT) syndrome, produced only minor abnormalities in the nervous system. Abrogating RET51-Src binding produced no major defects in these systems. These studies provide insight into the basis of organotypic specificity and redundancy in RET signaling within these unique systems and in diseases such as HSCR and CAKUT.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
43 |
16
|
Krause K, Karger S, Sheu SY, Aigner T, Kursawe R, Gimm O, Schmid KW, Dralle H, Fuhrer D. Evidence for a role of the amyloid precursor protein in thyroid carcinogenesis. J Endocrinol 2008; 198:291-9. [PMID: 18480379 DOI: 10.1677/joe-08-0005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have recently found an increased expression of amyloid precursor protein (APP) in cold thyroid nodules that are difficult to classify as a truly benign thyroid neoplasm or a lesion with the potential for further dedifferentiation. Since differences in APP activity have been found in other human cancers, we asked whether thyroid carcinogenesis might be associated with an altered APP expression and function. APP regulation was studied in vitro in differentiated (FRTL-5) and dedifferentiated follicular thyroid carcinomas (FTC-133) thyroid cells after specific inhibition or activation of the cAMP-PKA, the PI3K/AKT or the protein kinase c (PKC) cascades. In vivo analysis of APP expression and downstream signalling was performed in benign and malignant thyroid tissues. We found that upregulation of APP expression and sAPP secretion is induced by TSH in differentiated thyroid cells and by insulin in thyroid cancer cells. PKC is a strong activator of APP cleavage and in FTC-133 confers prolonged release of the APP ectodomain. FTC-133 but not FRTL-5 cells show a prominent cell surface expression of the APP ectodomain, which has been suggested to function as an autocrine growth factor. Thyroid cancers are characterized by APP upregulation, increased membrane targeting of the APP ectodomain and significantly increased mRNA levels of the APP scaffold proteins JIP1, ShcA and Fe65.
Collapse
|
|
17 |
41 |
17
|
Muthusamy BP, Budi EH, Katsuno Y, Lee MK, Smith SM, Mirza AM, Akhurst RJ, Derynck R. ShcA Protects against Epithelial-Mesenchymal Transition through Compartmentalized Inhibition of TGF-β-Induced Smad Activation. PLoS Biol 2015; 13:e1002325. [PMID: 26680585 PMCID: PMC4682977 DOI: 10.1371/journal.pbio.1002325] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a normal cell differentiation event during development and contributes pathologically to carcinoma and fibrosis progression. EMT often associates with increased transforming growth factor-β (TGF-β) signaling, and TGF-β drives EMT, in part through Smad-mediated reprogramming of gene expression. TGF-β also activates the Erk MAPK pathway through recruitment and Tyr phosphorylation of the adaptor protein ShcA by the activated TGF-β type I receptor. We found that ShcA protects the epithelial integrity of nontransformed cells against EMT by repressing TGF-β-induced, Smad-mediated gene expression. p52ShcA competed with Smad3 for TGF-β receptor binding, and down-regulation of ShcA expression enhanced autocrine TGF-β/Smad signaling and target gene expression, whereas increased p52ShcA expression resulted in decreased Smad3 binding to the TGF-β receptor, decreased Smad3 activation, and increased Erk MAPK and Akt signaling. Furthermore, p52ShcA sequestered TGF-β receptor complexes to caveolin-associated membrane compartments, and reducing ShcA expression enhanced the receptor localization in clathrin-associated membrane compartments that enable Smad activation. Consequently, silencing ShcA expression induced EMT, with increased cell migration, invasion, and dissemination, and increased stem cell generation and mammosphere formation, dependent upon autocrine TGF-β signaling. These findings position ShcA as a determinant of the epithelial phenotype by repressing TGF-β-induced Smad activation through differential partitioning of receptor complexes at the cell surface. The adaptor protein ShcA protects epithelial cells from transitioning toward a mesenchymal phenotype by controlling partitioning of the TGF-β receptor and repressing downstream Smad2/3 activation. TGF-β family proteins control cell differentiation and various cell functions. Increased TGF-β signaling, acting through heteromeric receptor complexes, contributes to carcinoma progression and fibrosis. TGF-β drives epithelial–mesenchymal transdifferentiation (EMT), which enables cell migration and invasion. Upon TGF-β binding, “type I” receptors activate, through phosphorylation, Smad2 and Smad3 that control target gene transcription. In EMT, Smad complexes activate the expression of EMT “master” transcription factors and cooperate with these to repress the epithelial phenotype and activate mesenchymal gene expression. TGF-β receptors also activate Erk MAPK signaling, involving association of the adaptor protein ShcA and Tyr phosphorylation of ShcA by type I receptors. We now show that the predominant ShcA isoform, p52ShcA, competes with Smad2/3 for binding to type I TGF-β receptors, thus repressing Smad2/3 activation in response to TGF-β and localizing the receptors to caveolar compartments. Consequently, decreased ShcA expression enhanced TGF-β receptor localization in clathrin compartments and autocrine Smad2/3 signaling, repressed the epithelial phenotype, and promoted EMT. The changes following decreased ShcA expression resulted in increased cell migration and invasion, as well as increased stem cell generation, dependent upon autocrine TGF-β signaling. These findings position ShcA as a determinant of the epithelial phenotype by repressing TGF-β-induced Smad activation through differential partitioning of receptor complexes at the cell surface.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
38 |
18
|
Yuan Y, Wang H, Wu Y, Zhang B, Wang N, Mao H, Xing C. P53 Contributes to Cisplatin Induced Renal Oxidative Damage via Regulating P66shc and MnSOD. Cell Physiol Biochem 2015; 37:1240-56. [PMID: 26431211 DOI: 10.1159/000430247] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Cisplatin is widely used to treat malignancies. However, its major limitation is the development of dose-dependent nephrotoxicity. The precise mechanisms of cisplatin-induced kidney damage remain unclear. Previous study demonstrated the central role of mitochondrial ROS (mtROS) in the pathogenesis of cisplatin nephrotoxicity. The purpose of this study was to explore the mechanism of mtROS regulation in cisplatin nephrotoxicity. METHODS p53, MnSOD and p66shc were detected at mRNA and protein levels by qPCR and western blot in HK2 cells. mtROS levels were determined by DCFDA and MitoSOX staining. Cell viability and cell apoptosis were accessed by CCK-8 assay, TUNEL assay and flow cytometry, respectivesly. siRNAs were used to knock down p53 and p66shc expression and subsequent changes were observed. In vivo assays using a mouse model of cisplatin-induced acute kidney injury were used to validate the in vitro results. RESULTS In HK2 cells, cisplatin exposure decreased the MnSOD and increased the expression of p53 and p66shc. MnTBAP, a MnSOD mimic, blocked cisplatin-induced the generation of mtROS and cell injury. P66shc and p53 siRNAs rendered renal cells resistant to cisplatin-induced mtROS production and cell death. Furthermore, knockdown of p53 restored MnSOD and inhibiting p66shc. Consistent with these results, we revealed that p53 inhibitor reduced cisplatin-induced oxidative stress and apoptosis by regulating MnSOD and p66shc in the kidney of cisplatin-treated mice. CONCLUSION Our study identifies activation of p53 signalling as a potential strategy for reducing the nephrotoxicity associated with cisplatin treatments and, as a result, broadens the therapeutic window of this chemotherapeutic agent.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
36 |
19
|
Akhmedov A, Montecucco F, Braunersreuther V, Camici GG, Jakob P, Reiner MF, Glanzmann M, Burger F, Paneni F, Galan K, Pelli G, Vuilleumier N, Belin A, Vallée JP, Mach F, Lüscher TF. Genetic deletion of the adaptor protein p66Shc increases susceptibility to short-term ischaemic myocardial injury via intracellular salvage pathways. Eur Heart J 2015; 36:516-26a. [PMID: 25336219 DOI: 10.1093/eurheartj/ehu400] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS Several intracellular mediators have been implicated as new therapeutic targets against myocardial ischaemia and reperfusion injury. However, clinically effective salvage pathways remain undiscovered. Here, we focused on the potential role of the adaptor protein p66(Shc) as a regulator of myocardial injury in a mouse model of cardiac ischaemia and reperfusion. METHODS AND RESULTS Adult male p66(Shc) deficient (p66(Shc) (-/-)) and C57Bl/6 wild-type (WT) mice were exposed to 30, 45, or 60 min of ischaemia and reperfusion (5, 15 min, or 24 h). Infarct size, systemic and intracardiac inflammation and oxidants, as well as cytosolic and mitochondrial apoptotic pathways were investigated. Following 30, but not 45 or 60 min of ischaemia, genetic p66(Shc) deficiency was associated with larger infarcts. In WT mice, in vivo p66(Shc) knock down by siRNA with transient protein deficiency confirmed these findings. P66(Shc) inhibition was not associated with any modification in post-infarction inflammation, oxidative burst nor cardiac vessel density or structure. However, in p66(Shc) (-/-) mice activation of the protective and anti-apoptotic Reperfusion Injury Salvage Kinases and Survivor Activating Factor Enhancement pathways were blunted and mitochondrial swelling and cellular apoptosis via the caspase-3 pathway increased compared with WT. CONCLUSIONS Genetic deletion of p66(Shc) increased susceptibility to myocardial injury in response to short-term ischaemia and reperfusion in mice. Still, additional studies are needed for assessing the role of this pathway in acute coronary syndrome patients.
Collapse
|
|
10 |
32 |
20
|
Qi W, Huang X, Neumann-Haefelin E, Schulze E, Baumeister R. Cell-nonautonomous signaling of FOXO/DAF-16 to the stem cells of Caenorhabditis elegans. PLoS Genet 2012; 8:e1002836. [PMID: 22916022 PMCID: PMC3420913 DOI: 10.1371/journal.pgen.1002836] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/04/2012] [Indexed: 11/25/2022] Open
Abstract
In Caenorhabditis elegans (C. elegans), the promotion of longevity by the transcription factor DAF-16 requires reduced insulin/IGF receptor (IIR) signaling or the ablation of the germline, although the reason for the negative impact of germ cells is unknown. FOXO/DAF-16 activity inhibits germline proliferation in both daf-2 mutants and gld-1 tumors. In contrast to its function as a germline tumor suppressor, we now provide evidence that somatic DAF-16 in the presence of IIR signaling can also result in tumorigenic activity, which counteracts robust lifespan extension. In contrast to the cell-autonomous IIR signaling, which is required for larval germline proliferation, activation of DAF-16 in the hypodermis results in hyperplasia of the germline and disruption of the surrounding basement membrane. SHC-1 adaptor protein and AKT-1 kinase antagonize, whereas AKT-2 and SGK-1 kinases promote, this cell-nonautonomous DAF-16 function. Our data suggest that a functional balance of DAF-16 activities in different tissues determines longevity and reveals a novel, cell-nonautonomous role of FOXO/DAF-16 to affect stem cells. Previous studies have shown that DAF–16/FOXO transcription factor promotes longevity and stress resistance and inhibits tumor progression in the absence of insulin signaling. Here we show that active DAF-16 in the epidermis can shorten lifespan by promoting a tumorous germline phenotype. In contrast to the known inhibitory effect of insulin signaling upon DAF-16, an active insulin and PI3K signaling are required for DAF-16–mediated signaling to the germline. In addition, AKT-1– and SHC-1–mediated JNK signaling antagonize AKT-2 and SGK-1 to affect the reproductive system. This is to our knowledge the first report about a detrimental effect of DAF-16 on lifespan. Furthermore it emphasizes that DAF-16 activity is highly dependent on the cellular context and communication between different tissues.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
30 |
21
|
Borkowska A, Sielicka-Dudzin A, Herman-Antosiewicz A, Halon M, Wozniak M, Antosiewicz J. P66Shc mediated ferritin degradation--a novel mechanism of ROS formation. Free Radic Biol Med 2011; 51:658-63. [PMID: 21616139 DOI: 10.1016/j.freeradbiomed.2011.04.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/18/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
Abstract
Diallyl trisulfide (DATS) has been shown to induce the formation of reactive oxygen species (ROS) in prostate cancer cells, which was accompanied by a decrease in the ferritin protein level and an increase in the labile iron pool (LIP). However, the mechanism of the ferritin degradation has not been fully elucidated. In this paper we demonstrate that DATS-induced ROS formation depends on p66Shc. In cells stably expressing a dominant negative mutant of p66Shc (p66ShcS36A), DATS did not induce ROS formation. In addition, in cells expressing p66ShcS36A neither an increase in ferritin H degradation nor an increase in LIP were observed. Cells stably expressing p66ShcS36A also possess higher levels of ferritin H compared to PC-3 cells transfected with an empty vector. Moreover, DATS-induced G2/M arrest is completely abrogated in cells expressing p66ShcS36A. Mouse embryonic fibroblasts (MEFs) derived from wild-type (WT) or p66Shc knockout mouse have been used to evaluate if p66Shc involvement in DATS-induced signaling is cell specific. DATS induced G2/M arrest in WT MEFs but had no effect in the p66Shc(-/-) cell line. Moreover, increases in LIP and ROS formation were significantly attenuated in p66Shc(-/-) MEFs treated with DATS.
Collapse
|
|
14 |
30 |
22
|
Laviola L, Orlando MR, Incalza MA, Caccioppoli C, Melchiorre M, Leonardini A, Cignarelli A, Tortosa F, Labarbuta R, Martemucci S, Pacelli C, Cocco T, Perrini S, Natalicchio A, Giorgino F. TNFα signals via p66(Shc) to induce E-Selectin, promote leukocyte transmigration and enhance permeability in human endothelial cells. PLoS One 2013; 8:e81930. [PMID: 24349153 PMCID: PMC3857848 DOI: 10.1371/journal.pone.0081930] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 10/29/2013] [Indexed: 12/27/2022] Open
Abstract
Endothelial cells participate in inflammatory events leading to atherogenesis by regulating endothelial cell permeability via the expression of VE-Cadherin and β-catenin and leukocyte recruitment via the expression of E-Selectins and other adhesion molecules. The protein p66Shc acts as a sensor/inducer of oxidative stress and may promote vascular dysfunction. The objective of this study was to investigate the role of p66Shc in tumor necrosis factor TNFα-induced E-Selectin expression and function in human umbilical vein endothelial cells (HUVEC). Exposure of HUVEC to 50 ng/ml TNFα resulted in increased leukocyte transmigration through the endothelial monolayer and E-Selectin expression, in association with augmented phosphorylation of both p66Shc on Ser36 and the stress kinase c-Jun NH2-terminal protein kinase (JNK)-1/2, and higher intracellular reactive oxygen species (ROS) levels. Overexpression of p66Shc in HUVEC resulted in enhanced p66Shc phosphorylation on Ser36, increased ROS and E-Selectin levels, and amplified endothelial cell permeability and leukocyte transmigration through the HUVEC monolayer. Conversely, overexpression of a phosphorylation-defective p66Shc protein, in which Ser36 was replaced by Ala, did not augment ROS and E-Selectin levels, nor modify cell permeability or leukocyte transmigration beyond those found in wild-type cells. Moreover, siRNA-mediated silencing of p66Shc resulted in marked reduction of E-Selectin expression and leukocyte transmigration. In conclusion, p66Shc acts as a novel intermediate in the TNFα pathway mediating endothelial dysfunction, and its action requires JNK-dependent phosphorylation of p66Shc on Ser36.
Collapse
|
Journal Article |
12 |
29 |
23
|
Natalicchio A, De Stefano F, Perrini S, Laviola L, Cignarelli A, Caccioppoli C, Quagliara A, Melchiorre M, Leonardini A, Conserva A, Giorgino F. Involvement of the p66Shc protein in glucose transport regulation in skeletal muscle myoblasts. Am J Physiol Endocrinol Metab 2009; 296:E228-37. [PMID: 18957618 DOI: 10.1152/ajpendo.90347.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The p66(Shc) protein isoform regulates MAP kinase activity and the actin cytoskeleton turnover, which are both required for normal glucose transport responses. To investigate the role of p66(Shc) in glucose transport regulation in skeletal muscle cells, L6 myoblasts with antisense-mediated reduction (L6/p66(Shc)as) or adenovirus-mediated overexpression (L6/p66(Shc)adv) of the p66(Shc) protein were examined. L6/(Shc)as myoblasts showed constitutive activation of ERK-1/2 and disruption of the actin network, associated with an 11-fold increase in basal glucose transport. GLUT1 and GLUT3 transporter proteins were sevenfold and fourfold more abundant, respectively, and were localized throughout the cytoplasm. Conversely, in L6 myoblasts overexpressing p66(Shc), basal glucose uptake rates were reduced by 30% in parallel with a approximately 50% reduction in total GLUT1 and GLUT3 transporter levels. Inhibition of the increased ERK-1/2 activity with PD98059 in L6/(Shc)as cells had a minimal effect on increased GLUT1 and GLUT3 protein levels, but restored the actin cytoskeleton, and reduced the abnormally high basal glucose uptake by 70%. In conclusion, p66(Shc) appears to regulate the glucose transport system in skeletal muscle myoblasts by controlling, via MAP kinase, the integrity of the actin cytoskeleton and by modulating cellular expression of GLUT1 and GLUT3 transporter proteins via ERK-independent pathways.
Collapse
|
|
16 |
28 |
24
|
Ciciliot S, Albiero M, Menegazzo L, Poncina N, Scattolini V, Danesi A, Pagnin E, Marabita M, Blaauw B, Giorgio M, Trinei M, Foletto M, Prevedello L, Nitti D, Avogaro A, Fadini GP. p66Shc deletion or deficiency protects from obesity but not metabolic dysfunction in mice and humans. Diabetologia 2015; 58:2352-60. [PMID: 26122877 DOI: 10.1007/s00125-015-3667-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS Oxygen radicals generated by p66Shc drive adipogenesis, but contradictory data exist on the role of p66Shc in the development of obesity and the metabolic syndrome. We herein explored the relationships among p66Shc, adipose tissue remodelling and glucose metabolism using mouse models and human adipose tissue samples. METHODS In wild-type (WT), leptin-deficient (ob/ob), p66Shc(-/-) and p66Shc(-/-) ob/ob mice up to 30 weeks of age, we analysed body weight, subcutaneous and visceral adipose tissue histopathology, glucose tolerance and insulin sensitivity, and liver and muscle fat accumulation. A group of mice on a high fat diet (HFD) was also analysed. A parallel study was conducted on adipose tissue collected from patients undergoing elective surgery. RESULTS We found that p66Shc(-/-) mice were slightly leaner than WT mice, and p66Shc(-/-) ob/ob mice became less obese than ob/ob mice. Despite their lower body weight, p66Shc(-/-) mice accumulated ectopic fat in the liver and muscles, and were glucose intolerant and insulin resistant. Features of adverse adipose tissue remodelling induced by obesity, including adipocyte enlargement, apoptosis, inflammation and perfusion were modestly and transiently improved by p66Shc (also known as Shc1) deletion. After 12 weeks of the HFD, p66Shc(-/-) mice were leaner than but equally glucose intolerant and insulin resistant compared with WT mice. In 77 patients, we found a direct correlation between BMI and p66Shc protein levels. Patients with low p66Shc levels were less obese, but were not protected from other metabolic syndrome features (diabetes, dyslipidaemia and hypertension). CONCLUSIONS/INTERPRETATION In mice and humans, reduced p66Shc levels protect from obesity, but not from ectopic fat accumulation, glucose intolerance and insulin resistance.
Collapse
|
|
10 |
27 |
25
|
Galimov ER, Chernyak BV, Sidorenko AS, Tereshkova AV, Chumakov PM. Prooxidant properties of p66shc are mediated by mitochondria in human cells. PLoS One 2014; 9:e86521. [PMID: 24618848 PMCID: PMC3950296 DOI: 10.1371/journal.pone.0086521] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022] Open
Abstract
p66shc is a protein product of an mRNA isoform of SHC1 gene that has a pro-oxidant and pro-apoptotic activity and is implicated in the aging process. Mitochondria were suggested as a major source of the p66shc-mediated production of reactive oxygen species (ROS), although the underlying mechanisms are poorly understood. We studied effects of p66shc on oxidative stress induced by hydrogen peroxide or by serum deprivation in human colon carcinoma cell line RKO and in diploid human dermal fibroblasts (HDFs). An shRNA-mediated knockdown of p66shc suppressed and an overexpression of a recombinant p66shc stimulated the production of ROS in the both models. This effect was not detected in the mitochondrial DNA-depleted ρ0-RKO cells that do not have the mitochondrial electron transport chain (ETC). The p66shc-dependent accumulation of mitochondrial ROS was detected with HyPer-mito, a mitochondria-targeted fluorescent protein sensor for hydrogen peroxide. The fragmentation of mitochondria induced by mitochondrial ROS was significantly reduced in the p66shc deficient RKO cells. Mitochondria-targeted antioxidants SkQ1 and SkQR1 also decreased the oxidative stress induced by hydrogen peroxide or by serum deprivation. Together the data indicate that the p66shc-dependant ROS production during oxidative stress has mitochondrial origin in human normal and cancer cells.
Collapse
|
research-article |
11 |
26 |