1
|
Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995; 270:1811-5. [PMID: 8525373 DOI: 10.1126/science.270.5243.1811] [Citation(s) in RCA: 2174] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Evidence suggests that CD8+ T lymphocytes are involved in the control of human immunodeficiency virus (HIV) infection in vivo, either by cytolytic mechanisms or by the release of HIV-suppressive factors (HIV-SF). The chemokines RANTES, MIP-1 alpha, and MIP-1 beta were identified as the major HIV-SF produced by CD8+ T cells. Two active proteins purified from the culture supernatant of an immortalized CD8+ T cell clone revealed sequence identity with human RANTES and MIP-1 alpha. RANTES, MIP-1 alpha, and MIP-1 beta were released by both immortalized and primary CD8+ T cells. HIV-SF activity produced by these cells was completely blocked by a combination of neutralizing antibodies against RANTES, MIP-1 alpha, and MIP-1 beta. Recombinant human RANTES, MIP-1 alpha, and MIP-1 beta induced a dose-dependent inhibition of different strains of HIV-1, HIV-2, and simian immunodeficiency virus (SIV). These data may have relevance for the prevention and therapy of AIDS.
Collapse
|
|
30 |
2174 |
2
|
Schmitz JE, Kuroda MJ, Santra S, Sasseville VG, Simon MA, Lifton MA, Racz P, Tenner-Racz K, Dalesandro M, Scallon BJ, Ghrayeb J, Forman MA, Montefiori DC, Rieber EP, Letvin NL, Reimann KA. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 1999; 283:857-60. [PMID: 9933172 DOI: 10.1126/science.283.5403.857] [Citation(s) in RCA: 1748] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Clinical evidence suggests that cellular immunity is involved in controlling human immunodeficiency virus-1 (HIV-1) replication. An animal model of acquired immune deficiency syndrome (AIDS), the simian immunodeficiency virus (SIV)-infected rhesus monkey, was used to show that virus replication is not controlled in monkeys depleted of CD8+ lymphocytes during primary SIV infection. Eliminating CD8+ lymphocytes from monkeys during chronic SIV infection resulted in a rapid and marked increase in viremia that was again suppressed coincident with the reappearance of SIV-specific CD8+ T cells. These results confirm the importance of cell-mediated immunity in controlling HIV-1 infection and support the exploration of vaccination approaches for preventing infection that will elicit these immune responses.
Collapse
|
|
26 |
1748 |
3
|
Veazey RS, DeMaria M, Chalifoux LV, Shvetz DE, Pauley DR, Knight HL, Rosenzweig M, Johnson RP, Desrosiers RC, Lackner AA. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 1998; 280:427-31. [PMID: 9545219 DOI: 10.1126/science.280.5362.427] [Citation(s) in RCA: 1141] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human and simian immunodeficiency virus (HIV and SIV) replicate optimally in activated memory CD4(+) T cells, a cell type that is abundant in the intestine. SIV infection of rhesus monkeys resulted in profound and selective depletion of CD4+ T cells in the intestine within days of infection, before any such changes in peripheral lymphoid tissues. The loss of CD4+ T cells in the intestine occurred coincident with productive infection of large numbers of mononuclear cells at this site. The intestine appears to be a major target for SIV replication and the major site of CD4+ T cell loss in early SIV infection.
Collapse
|
|
27 |
1141 |
4
|
Mascola JR, Stiegler G, VanCott TC, Katinger H, Carpenter CB, Hanson CE, Beary H, Hayes D, Frankel SS, Birx DL, Lewis MG. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med 2000; 6:207-10. [PMID: 10655111 DOI: 10.1038/72318] [Citation(s) in RCA: 1032] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of the human immunodeficiency virus-1 (HIV-1)/simian immunodeficiency virus (SIV) chimeric virus macaque model (SHIV) permits the in vivo evaluation of anti-HIV-1 envelope glycoprotein immune responses. Using this model, others, and we have shown that passively infused antibody can protect against an intravenous challenge. However, HIV-1 is most often transmitted across mucosal surfaces and the intravenous challenge model may not accurately predict the role of antibody in protection against mucosal exposure. After controlling the macaque estrous cycle with progesterone, anti-HIV-1 neutralizing monoclonal antibodies 2F5 and 2G12, and HIV immune globulin were tested. Whereas all five control monkeys displayed high plasma viremia and rapid CD4 cell decline, 14 antibody-treated macaques were either completely protected against infection or against pathogenic manifestations of SHIV-infection. Infusion of all three antibodies together provided the greatest amount of protection, but a single monoclonal antibody, with modest virus neutralizing activity, was also protective. Compared with our previous intravenous challenge study with the same virus and antibodies, the data indicated that greater protection was achieved after vaginal challenge. This study demonstrates that antibodies can affect transmission and subsequent disease course after vaginal SHIV-challenge; the data begin to define the type of antibody response that could play a role in protection against mucosal transmission of HIV-1.
Collapse
|
|
25 |
1032 |
5
|
Clerici M, Shearer GM. A TH1-->TH2 switch is a critical step in the etiology of HIV infection. IMMUNOLOGY TODAY 1993; 14:107-11. [PMID: 8096699 DOI: 10.1016/0167-5699(93)90208-3] [Citation(s) in RCA: 1007] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This viewpoint proposes that an imbalance in the TH1-type and TH2-type responses contributes to the immune dysregulation associated with HIV infection, and that resistance to HIV infection and/or progression to AIDS is dependent on a TH1-->TH2 dominance. This hypothesis is based on the authors' findings that: (1) progression to AIDS is characterized by loss of IL-2- and IFN-gamma production concomitant with increases in IL-4 and IL-10; and (2) many seronegative, HIV-exposed individuals generate strong TH1-type responses to HIV antigens.
Collapse
|
Review |
32 |
1007 |
6
|
Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, Roederer M. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 2005; 434:1093-7. [PMID: 15793563 DOI: 10.1038/nature03501] [Citation(s) in RCA: 1006] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 02/25/2005] [Indexed: 12/21/2022]
Abstract
It has recently been established that both acute human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections are accompanied by a dramatic and selective loss of memory CD4+ T cells predominantly from the mucosal surfaces. The mechanism underlying this depletion of memory CD4+ T cells (that is, T-helper cells specific to previously encountered pathogens) has not been defined. Using highly sensitive, quantitative polymerase chain reaction together with precise sorting of different subsets of CD4+ T cells in various tissues, we show that this loss is explained by a massive infection of memory CD4+ T cells by the virus. Specifically, 30-60% of CD4+ memory T cells throughout the body are infected by SIV at the peak of infection, and most of these infected cells disappear within four days. Furthermore, our data demonstrate that the depletion of memory CD4+ T cells occurs to a similar extent in all tissues. As a consequence, over one-half of all memory CD4+ T cells in SIV-infected macaques are destroyed directly by viral infection during the acute phase-an insult that certainly heralds subsequent immunodeficiency. Our findings point to the importance of reducing the cell-associated viral load during acute infection through therapeutic or vaccination strategies.
Collapse
|
Journal Article |
20 |
1006 |
7
|
Shiver JW, Fu TM, Chen L, Casimiro DR, Davies ME, Evans RK, Zhang ZQ, Simon AJ, Trigona WL, Dubey SA, Huang L, Harris VA, Long RS, Liang X, Handt L, Schleif WA, Zhu L, Freed DC, Persaud NV, Guan L, Punt KS, Tang A, Chen M, Wilson KA, Collins KB, Heidecker GJ, Fernandez VR, Perry HC, Joyce JG, Grimm KM, Cook JC, Keller PM, Kresock DS, Mach H, Troutman RD, Isopi LA, Williams DM, Xu Z, Bohannon KE, Volkin DB, Montefiori DC, Miura A, Krivulka GR, Lifton MA, Kuroda MJ, Schmitz JE, Letvin NL, Caulfield MJ, Bett AJ, Youil R, Kaslow DC, Emini EA. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 2002; 415:331-5. [PMID: 11797011 DOI: 10.1038/415331a] [Citation(s) in RCA: 968] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies of human immunodeficiency virus type 1 (HIV-1) infection in humans and of simian immunodeficiency virus (SIV) in rhesus monkeys have shown that resolution of the acute viral infection and control of the subsequent persistent infection are mediated by the antiviral cellular immune response. We comparatively assessed several vaccine vector delivery systems-three formulations of a plasmid DNA vector, the modified vaccinia Ankara (MVA) virus, and a replication incompetent adenovirus type 5 (Ad5) vector-expressing the SIV gag protein for their ability to elicit such immune responses in monkeys. The vaccines were tested either as a single modality or in combined modality regimens. Here we show that the most effective responses were elicited by a replication-incompetent Ad5 vector, used either alone or as a booster inoculation after priming with a DNA vector. After challenge with a pathogenic HIV-SIV hybrid virus (SHIV), the animals immunized with Ad5 vector exhibited the most pronounced attenuation of the virus infection. The replication-defective adenovirus is a promising vaccine vector for development of an HIV-1 vaccine.
Collapse
|
|
23 |
968 |
8
|
Wyatt R, Kwong PD, Desjardins E, Sweet RW, Robinson J, Hendrickson WA, Sodroski JG. The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 1998; 393:705-11. [PMID: 9641684 DOI: 10.1038/31514] [Citation(s) in RCA: 965] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human immunodeficiency virus HIV-1 establishes persistent infections in humans which lead to acquired immunodeficiency syndrome (AIDS). The HIV-1 envelope glycoproteins, gp120 and gp41, are assembled into a trimeric complex that mediates virus entry into target cells. HIV-1 entry depends on the sequential interaction of the gp120 exterior envelope glycoprotein with the receptors on the cell, CD4 and members of the chemokine receptor family. The gp120 glycoprotein, which can be shed from the envelope complex, elicits both virus-neutralizing and non-neutralizing antibodies during natural infection. Antibodies that lack neutralizing activity are often directed against the gp120 regions that are occluded on the assembled trimer and which are exposed only upon shedding. Neutralizing antibodies, by contrast, must access the functional envelope glycoprotein complex and typically recognize conserved or variable epitopes near the receptor-binding regions. Here we describe the spatial organization of conserved neutralization epitopes on gp120, using epitope maps in conjunction with the X-ray crystal structure of a ternary complex that includes a gp120 core, CD4 and a neutralizing antibody. A large fraction of the predicted accessible surface of gp120 in the trimer is composed of variable, heavily glycosylated core and loop structures that surround the receptor-binding regions. Understanding the structural basis for the ability of HIV-1 to evade the humoral immune response should assist in the design of a vaccine.
Collapse
|
|
27 |
965 |
9
|
Amara RR, Villinger F, Altman JD, Lydy SL, O'Neil SP, Staprans SI, Montefiori DC, Xu Y, Herndon JG, Wyatt LS, Candido MA, Kozyr NL, Earl PL, Smith JM, Ma HL, Grimm BD, Hulsey ML, Miller J, McClure HM, McNicholl JM, Moss B, Robinson HL. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 2001; 292:69-74. [PMID: 11393868 DOI: 10.1126/science.1058915] [Citation(s) in RCA: 835] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Heterologous prime/boost regimens have the potential for raising high levels of immune responses. Here we report that DNA priming followed by a recombinant modified vaccinia Ankara (rMVA) booster controlled a highly pathogenic immunodeficiency virus challenge in a rhesus macaque model. Both the DNA and rMVA components of the vaccine expressed multiple immunodeficiency virus proteins. Two DNA inoculations at 0 and 8 weeks and a single rMVA booster at 24 weeks effectively controlled an intrarectal challenge administered 7 months after the booster. These findings provide hope that a relatively simple multiprotein DNA/MVA vaccine can help to control the acquired immune deficiency syndrome epidemic.
Collapse
|
|
24 |
835 |
10
|
Hansen SG, Ford JC, Lewis MS, Ventura AB, Hughes CM, Coyne-Johnson L, Whizin N, Oswald K, Shoemaker R, Swanson T, Legasse AW, Chiuchiolo MJ, Parks CL, Axthelm MK, Nelson JA, Jarvis MA, Piatak M, Lifson JD, Picker LJ. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 2011; 473:523-7. [PMID: 21562493 PMCID: PMC3102768 DOI: 10.1038/nature10003] [Citation(s) in RCA: 830] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/17/2011] [Indexed: 02/05/2023]
Abstract
The acquired immunodeficiency syndrome (AIDS)-causing lentiviruses human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) effectively evade host immunity and, once established, infections with these viruses are only rarely controlled by immunological mechanisms. However, the initial establishment of infection in the first few days after mucosal exposure, before viral dissemination and massive replication, may be more vulnerable to immune control. Here we report that SIV vaccines that include rhesus cytomegalovirus (RhCMV) vectors establish indefinitely persistent, high-frequency, SIV-specific effector memory T-cell (T(EM)) responses at potential sites of SIV replication in rhesus macaques and stringently control highly pathogenic SIV(MAC239) infection early after mucosal challenge. Thirteen of twenty-four rhesus macaques receiving either RhCMV vectors alone or RhCMV vectors followed by adenovirus 5 (Ad5) vectors (versus 0 of 9 DNA/Ad5-vaccinated rhesus macaques) manifested early complete control of SIV (undetectable plasma virus), and in twelve of these thirteen animals we observed long-term (≥1 year) protection. This was characterized by: occasional blips of plasma viraemia that ultimately waned; predominantly undetectable cell-associated viral load in blood and lymph node mononuclear cells; no depletion of effector-site CD4(+) memory T cells; no induction or boosting of SIV Env-specific antibodies; and induction and then loss of T-cell responses to an SIV protein (Vif) not included in the RhCMV vectors. Protection correlated with the magnitude of the peak SIV-specific CD8(+) T-cell responses in the vaccine phase, and occurred without anamnestic T-cell responses. Remarkably, long-term RhCMV vector-associated SIV control was insensitive to either CD8(+) or CD4(+) lymphocyte depletion and, at necropsy, cell-associated SIV was only occasionally measurable at the limit of detection with ultrasensitive assays, observations that indicate the possibility of eventual viral clearance. Thus, persistent vectors such as CMV and their associated T(EM) responses might significantly contribute to an efficacious HIV/AIDS vaccine.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
830 |
11
|
Daniel MD, Kirchhoff F, Czajak SC, Sehgal PK, Desrosiers RC. Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene. Science 1992; 258:1938-41. [PMID: 1470917 DOI: 10.1126/science.1470917] [Citation(s) in RCA: 808] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vaccine protection against the human immunodeficiency virus (HIV) and the related simian immunodeficiency virus (SIV) in animal models is proving to be a difficult task. The difficulty is due in large part to the persistent, unrelenting nature of HIV and SIV infection once infection is initiated. SIV with a constructed deletion in the auxiliary gene nef replicates poorly in rhesus monkeys and appears to be nonpathogenic in this normally susceptible host. Rhesus monkeys vaccinated with live SIV deleted in nef were completely protected against challenge by intravenous inoculation of live, pathogenic SIV. Deletion of nef or of multiple genetic elements from HIV may provide the means for creating a safe, effective, live attenuated vaccine to protect against acquired immunodeficiency syndrome (AIDS).
Collapse
|
|
33 |
808 |
12
|
Hessell AJ, Hangartner L, Hunter M, Havenith CEG, Beurskens FJ, Bakker JM, Lanigan CMS, Landucci G, Forthal DN, Parren PWHI, Marx PA, Burton DR. Fc receptor but not complement binding is important in antibody protection against HIV. Nature 2007; 449:101-4. [PMID: 17805298 DOI: 10.1038/nature06106] [Citation(s) in RCA: 760] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 07/20/2007] [Indexed: 11/08/2022]
Abstract
Most successful vaccines elicit neutralizing antibodies and this property is a high priority when developing an HIV vaccine. Indeed, passively administered neutralizing antibodies have been shown to protect against HIV challenge in some of the best available animal models. For example, antibodies given intravenously can protect macaques against intravenous or mucosal SHIV (an HIV/SIV chimaera) challenge and topically applied antibodies can protect macaques against vaginal SHIV challenge. However, the mechanism(s) by which neutralizing antibodies afford protection against HIV is not understood and, in particular, the role of antibody Fc-mediated effector functions is unclear. Here we report that there is a dramatic decrease in the ability of a broadly neutralizing antibody to protect macaques against SHIV challenge when Fc receptor and complement-binding activities are engineered out of the antibody. No loss of antibody protective activity is associated with the elimination of complement binding alone. Our in vivo results are consistent with in vitro assays indicating that interaction of Fc-receptor-bearing effector cells with antibody-complexed infected cells is important in reducing virus yield from infected cells. Overall, the data suggest the potential importance of activity against both infected cells and free virus for effective protection against HIV.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
760 |
13
|
Li Q, Duan L, Estes JD, Ma ZM, Rourke T, Wang Y, Reilly C, Carlis J, Miller CJ, Haase AT. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 2005; 434:1148-52. [PMID: 15793562 DOI: 10.1038/nature03513] [Citation(s) in RCA: 757] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Accepted: 03/07/2005] [Indexed: 11/09/2022]
Abstract
In early simian immunodeficiency virus (SIV) and human immunodeficiency virus-1 (HIV-1) infections, gut-associated lymphatic tissue (GALT), the largest component of the lymphoid organ system, is a principal site of both virus production and depletion of primarily lamina propria memory CD4+ T cells; that is, CD4-expressing T cells that previously encountered antigens and microbes and homed to the lamina propria of GALT. Here, we show that peak virus production in gut tissues of SIV-infected rhesus macaques coincides with peak numbers of infected memory CD4+ T cells. Surprisingly, most of the initially infected memory cells were not, as expected, activated but were instead immunophenotypically 'resting' cells that, unlike truly resting cells, but like the first cells mainly infected at other mucosal sites and peripheral lymph nodes, are capable of supporting virus production. In addition to inducing immune activation and thereby providing activated CD4+ T-cell targets to sustain infection, virus production also triggered an immunopathologically limiting Fas-Fas-ligand-mediated apoptotic pathway in lamina propria CD4+ T cells, resulting in their preferential ablation. Thus, SIV exploits a large, resident population of resting memory CD4+ T cells in GALT to produce peak levels of virus that directly (through lytic infection) and indirectly (through apoptosis of infected and uninfected cells) deplete CD4+ T cells in the effector arm of GALT. The scale of this CD4+ T-cell depletion has adverse effects on the immune system of the host, underscoring the importance of developing countermeasures to SIV that are effective before infection of GALT.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
757 |
14
|
Barouch DH, Santra S, Schmitz JE, Kuroda MJ, Fu TM, Wagner W, Bilska M, Craiu A, Zheng XX, Krivulka GR, Beaudry K, Lifton MA, Nickerson CE, Trigona WL, Punt K, Freed DC, Guan L, Dubey S, Casimiro D, Simon A, Davies ME, Chastain M, Strom TB, Gelman RS, Montefiori DC, Lewis MG, Emini EA, Shiver JW, Letvin NL. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science 2000; 290:486-92. [PMID: 11039923 DOI: 10.1126/science.290.5491.486] [Citation(s) in RCA: 727] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
With accumulating evidence indicating the importance of cytotoxic T lymphocytes (CTLs) in containing human immunodeficiency virus-1 (HIV-1) replication in infected individuals, strategies are being pursued to elicit virus-specific CTLs with prototype HIV-1 vaccines. Here, we report the protective efficacy of vaccine-elicited immune responses against a pathogenic SHIV-89.6P challenge in rhesus monkeys. Immune responses were elicited by DNA vaccines expressing SIVmac239 Gag and HIV-1 89.6P Env, augmented by the administration of the purified fusion protein IL-2/Ig, consisting of interleukin-2 (IL-2) and the Fc portion of immunoglobulin G (IgG), or a plasmid encoding IL-2/Ig. After SHIV-89.6P infection, sham-vaccinated monkeys developed weak CTL responses, rapid loss of CD4+ T cells, no virus-specific CD4+ T cell responses, high setpoint viral loads, significant clinical disease progression, and death in half of the animals by day 140 after challenge. In contrast, all monkeys that received the DNA vaccines augmented with IL-2/Ig were infected, but demonstrated potent secondary CTL responses, stable CD4+ T cell counts, preserved virus-specific CD4+ T cell responses, low to undetectable setpoint viral loads, and no evidence of clinical disease or mortality by day 140 after challenge.
Collapse
|
|
25 |
727 |
15
|
Baba TW, Liska V, Hofmann-Lehmann R, Vlasak J, Xu W, Ayehunie S, Cavacini LA, Posner MR, Katinger H, Stiegler G, Bernacky BJ, Rizvi TA, Schmidt R, Hill LR, Keeling ME, Lu Y, Wright JE, Chou TC, Ruprecht RM. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat Med 2000; 6:200-6. [PMID: 10655110 DOI: 10.1038/72309] [Citation(s) in RCA: 693] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although maternal human immunodeficiency virus type 1 (HIV-1) transmission occurs during gestation, intrapartum and postpartum (by breast-feeding), 50-70% of all infected children seem to acquire HIV-1 shortly before or during delivery. Epidemiological evidence indicates that mucosal exposure is an important aspect of intrapartum HIV transmission. A simian immunodeficiency virus (SIV) macaque model has been developed that mimics the mucosal exposure that can occur during intrapartum HIV-1 transmission. To develop immunoprophylaxis against intrapartum HIV-1 transmission, we used SHIV-vpu+ (refs. 5,6), a chimeric simian-human virus that encodes the env gene of HIV-IIIB. Several combinations of human monoclonal antibodies against HIV-1 have been identified that neutralize SHIV-vpu+ completely in vitro through synergistic interaction. Here, we treated four pregnant macaques with a triple combination of the human IgG1 monoclonal antibodies F105, 2G12 and 2F5. All four macaques were protected against intravenous SHIV-vpu+ challenge after delivery. The infants received monoclonal antibodies after birth and were challenged orally with SHIV-vpu+ shortly thereafter. We found no evidence of infection in any infant during 6 months of follow-up. This demonstrates that IgG1 monoclonal antibodies protect against mucosal lentivirus challenge in neonates. We conclude that epitopes recognized by the three monoclonal antibodies are important determinants for achieving substantial protection, thus providing a rational basis for AIDS vaccine development.
Collapse
|
|
25 |
693 |
16
|
Mascola JR, Lewis MG, Stiegler G, Harris D, VanCott TC, Hayes D, Louder MK, Brown CR, Sapan CV, Frankel SS, Lu Y, Robb ML, Katinger H, Birx DL. Protection of Macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J Virol 1999; 73:4009-18. [PMID: 10196297 PMCID: PMC104180 DOI: 10.1128/jvi.73.5.4009-4018.1999] [Citation(s) in RCA: 647] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1998] [Accepted: 01/27/1999] [Indexed: 11/20/2022] Open
Abstract
The role of antibody in protection against human immunodeficiency virus (HIV-1) has been difficult to study in animal models because most primary HIV-1 strains do not infect nonhuman primates. Using a chimeric simian/human immunodeficiency virus (SHIV) based on the envelope of a primary isolate (HIV-89.6), we performed passive-transfer experiments in rhesus macaques to study the role of anti-envelope antibodies in protection. Based on prior in vitro data showing neutralization synergy by antibody combinations, we evaluated HIV immune globulin (HIVIG), and human monoclonal antibodies (MAbs) 2F5 and 2G12 given alone, compared with the double combination 2F5/2G12 and the triple combination HIVIG/2F5/2G12. Antibodies were administered 24 h prior to intravenous challenge with the pathogenic SHIV-89.6PD. Six control monkeys displayed high plasma viremia, rapid CD4(+)-cell decline, and clinical AIDS within 14 weeks. Of six animals given HIVIG/2F5/2G12, three were completely protected; the remaining three animals became SHIV infected but displayed reduced plasma viremia and near normal CD4(+)-cell counts. One of three monkeys given 2F5/2G12 exhibited only transient evidence of infection; the other two had marked reductions in viral load. All monkeys that received HIVIG, 2F5, or 2G12 alone became infected and developed high-level plasma viremia. However, compared to controls, monkeys that received HIVIG or MAb 2G12 displayed a less profound drop in CD4(+) T cells and a more benign clinical course. These data indicate a general correlation between in vitro neutralization and protection and suggest that a vaccine that elicits neutralizing antibody should have a protective effect against HIV-1 infection or disease.
Collapse
|
research-article |
26 |
647 |
17
|
Velu V, Titanji K, Zhu B, Husain S, Pladevega A, Lai L, Vanderford TH, Chennareddi L, Silvestri G, Freeman GJ, Ahmed R, Amara RR. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 2009; 458:206-10. [PMID: 19078956 PMCID: PMC2753387 DOI: 10.1038/nature07662] [Citation(s) in RCA: 624] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 11/21/2008] [Indexed: 12/14/2022]
Abstract
Chronic immunodeficiency virus infections are characterized by dysfunctional cellular and humoral antiviral immune responses. As such, immune modulatory therapies that enhance and/or restore the function of virus-specific immunity may protect from disease progression. Here we investigate the safety and immune restoration potential of blockade of the co-inhibitory receptor programmed death 1 (PD-1) during chronic simian immunodeficiency virus (SIV) infection in macaques. We demonstrate that PD-1 blockade using an antibody to PD-1 is well tolerated and results in rapid expansion of virus-specific CD8 T cells with improved functional quality. This enhanced T-cell immunity was seen in the blood and also in the gut, a major reservoir of SIV infection. PD-1 blockade also resulted in proliferation of memory B cells and increases in SIV envelope-specific antibody. These improved immune responses were associated with significant reductions in plasma viral load and also prolonged the survival of SIV-infected macaques. Blockade was effective during the early (week 10) as well as late ( approximately week 90) phases of chronic infection even under conditions of severe lymphopenia. These results demonstrate enhancement of both cellular and humoral immune responses during a pathogenic immunodeficiency virus infection by blocking a single inhibitory pathway and identify a novel therapeutic approach for control of human immunodeficiency virus infections.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
624 |
18
|
Hansen SG, Vieville C, Whizin N, Coyne-Johnson L, Siess DC, Drummond DD, Legasse AW, Axthelm MK, Oswald K, Trubey CM, Piatak M, Lifson JD, Nelson JA, Jarvis MA, Picker LJ. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat Med 2009; 15:293-9. [PMID: 19219024 PMCID: PMC2720091 DOI: 10.1038/nm.1935] [Citation(s) in RCA: 566] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 01/21/2009] [Indexed: 01/08/2023]
Abstract
The rapid onset of massive, systemic viral replication during primary HIV or simian immunodeficiency virus (SIV) infection and the immune evasion capabilities of these viruses pose fundamental problems for vaccines that depend upon initial viral replication to stimulate effector T cell expansion and differentiation. We hypothesized that vaccines designed to maintain differentiated effector memory T cell (TEM cell) responses at viral entry sites might improve efficacy by impairing viral replication at its earliest stage, and we have therefore developed SIV protein-encoding vectors based on rhesus cytomegalovirus (RhCMV), the prototypical inducer of life-long TEM cell responses. RhCMV vectors expressing SIV Gag, Rev-Tat-Nef and Env persistently infected rhesus macaques, regardless of preexisting RhCMV immunity, and primed and maintained robust, SIV-specific CD4+ and CD8+ TEM cell responses (characterized by coordinate tumor necrosis factor, interferon-gamma and macrophage inflammatory protein-1beta expression, cytotoxic degranulation and accumulation at extralymphoid sites) in the absence of neutralizing antibodies. Compared to control rhesus macaques, these vaccinated rhesus macaques showed increased resistance to acquisition of progressive SIVmac239 infection upon repeated limiting-dose intrarectal challenge, including four macaques who controlled rectal mucosal infection without progressive systemic dissemination. These data suggest a new paradigm for AIDS vaccine development--vaccines capable of generating and maintaining HIV-specific TEM cells might decrease the incidence of HIV acquisition after sexual exposure.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
566 |
19
|
Parren PW, Marx PA, Hessell AJ, Luckay A, Harouse J, Cheng-Mayer C, Moore JP, Burton DR. Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. J Virol 2001; 75:8340-7. [PMID: 11483779 PMCID: PMC115078 DOI: 10.1128/jvi.75.17.8340-8347.2001] [Citation(s) in RCA: 557] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A major unknown in human immunodeficiency virus (HIV-1) vaccine design is the efficacy of antibodies in preventing mucosal transmission of R5 viruses. These viruses, which use CCR5 as a coreceptor, appear to have a selective advantage in transmission of HIV-1 in humans. Hence R5 viruses predominate during primary infection and persist throughout the course of disease in most infected people. Vaginal challenge of macaques with chimeric simian/human immunodeficiency viruses (SHIV) is perhaps one of the best available animal models for human HIV-1 infection. Passive transfer studies are widely used to establish the conditions for antibody protection against viral challenge. Here we show that passive intravenous transfer of the human neutralizing monoclonal antibody b12 provides dose-dependent protection to macaques vaginally challenged with the R5 virus SHIV(162P4). Four of four monkeys given 25 mg of b12 per kg of body weight 6 h prior to challenge showed no evidence of viral infection (sterile protection). Two of four monkeys given 5 mg of b12/kg were similarly protected, whereas the other two showed significantly reduced and delayed plasma viremia compared to control animals. In contrast, all four monkeys treated with a dose of 1 mg/kg became infected with viremia levels close to those for control animals. Antibody b12 serum concentrations at the time of virus challenge corresponded to approximately 400 (25 mg/kg), 80 (5 mg/kg), and 16 (1 mg/kg) times the in vitro (90%) neutralization titers. Therefore, complete protection against mucosal challenge with an R5 SHIV required essentially complete neutralization of the infecting virus. This suggests that a vaccine based on antibody alone would need to sustain serum neutralizing antibody titers (90%) of the order of 1:400 to achieve sterile protection but that lower titers, around 1:100, could provide a significant benefit. The significance of such substerilizing neutralizing antibody titers in the context of a potent cellular immune response is an important area for further study.
Collapse
|
research-article |
24 |
557 |
20
|
Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J, Santiago ML, Bibollet-Ruche F, Chen Y, Wain LV, Liegeois F, Loul S, Ngole EM, Bienvenue Y, Delaporte E, Brookfield JFY, Sharp PM, Shaw GM, Peeters M, Hahn BH. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 2006; 313:523-6. [PMID: 16728595 PMCID: PMC2442710 DOI: 10.1126/science.1126531] [Citation(s) in RCA: 540] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1), the cause of human acquired immunodeficiency syndrome (AIDS), is a zoonotic infection of staggering proportions and social impact. Yet uncertainty persists regarding its natural reservoir. The virus most closely related to HIV-1 is a simian immunodeficiency virus (SIV) thus far identified only in captive members of the chimpanzee subspecies Pan troglodytes troglodytes. Here we report the detection of SIVcpz antibodies and nucleic acids in fecal samples from wild-living P. t. troglodytes apes in southern Cameroon, where prevalence rates in some communities reached 29 to 35%. By sequence analysis of endemic SIVcpz strains, we could trace the origins of pandemic (group M) and nonpandemic (group N) HIV-1 to distinct, geographically isolated chimpanzee communities. These findings establish P. t. troglodytes as a natural reservoir of HIV-1.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
540 |
21
|
Brenchley JM, Paiardini M, Knox KS, Asher AI, Cervasi B, Asher TE, Scheinberg P, Price DA, Hage CA, Kholi LM, Khoruts A, Frank I, Else J, Schacker T, Silvestri G, Douek DC. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood 2008; 112:2826-35. [PMID: 18664624 PMCID: PMC2556618 DOI: 10.1182/blood-2008-05-159301] [Citation(s) in RCA: 508] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 07/19/2008] [Indexed: 01/29/2023] Open
Abstract
Acute HIV infection is characterized by massive loss of CD4 T cells from the gastrointestinal (GI) tract. Th17 cells are critical in the defense against microbes, particularly at mucosal surfaces. Here we analyzed Th17 cells in the blood, GI tract, and broncheoalveolar lavage of HIV-infected and uninfected humans, and SIV-infected and uninfected sooty mangabeys. We found that (1) human Th17 cells are specific for extracellular bacterial and fungal antigens, but not common viral antigens; (2) Th17 cells are infected by HIV in vivo, but not preferentially so; (3) CD4 T cells in blood of HIV-infected patients are skewed away from a Th17 phenotype toward a Th1 phenotype with cellular maturation; (4) there is significant loss of Th17 cells in the GI tract of HIV-infected patients; (5) Th17 cells are not preferentially lost from the broncheoalveolar lavage of HIV-infected patients; and (6) SIV-infected sooty mangabeys maintain healthy frequencies of Th17 cells in the blood and GI tract. These observations further elucidate the immunodeficiency of HIV disease and may provide a mechanistic basis for the mucosal barrier breakdown that characterizes HIV infection. Finally, these data may help account for the nonprogressive nature of nonpathogenic SIV infection in sooty mangabeys.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
508 |
22
|
Hansen SG, Piatak M, Ventura AB, Hughes CM, Gilbride RM, Ford JC, Oswald K, Shoemaker R, Li Y, Lewis MS, Gilliam AN, Xu G, Whizin N, Burwitz BJ, Planer SL, Turner JM, Legasse AW, Axthelm MK, Nelson JA, Früh K, Sacha JB, Estes JD, Keele BF, Edlefsen PT, Lifson JD, Picker LJ. Immune clearance of highly pathogenic SIV infection. Nature 2013; 502:100-4. [PMID: 24025770 PMCID: PMC3849456 DOI: 10.1038/nature12519] [Citation(s) in RCA: 505] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/01/2013] [Indexed: 02/07/2023]
Abstract
Established infections with the human and simian immunodeficiency viruses (HIV and SIV, respectively) are thought to be permanent with even the most effective immune responses and antiretroviral therapies only able to control, but not clear, these infections. Whether the residual virus that maintains these infections is vulnerable to clearance is a question of central importance to the future management of millions of HIV-infected individuals. We recently reported that approximately 50% of rhesus macaques (RM; Macaca mulatta) vaccinated with SIV protein-expressing rhesus cytomegalovirus (RhCMV/SIV) vectors manifest durable, aviraemic control of infection with the highly pathogenic strain SIVmac239 (ref. 5). Here we show that regardless of the route of challenge, RhCMV/SIV vector-elicited immune responses control SIVmac239 after demonstrable lymphatic and haematogenous viral dissemination, and that replication-competent SIV persists in several sites for weeks to months. Over time, however, protected RM lost signs of SIV infection, showing a consistent lack of measurable plasma- or tissue-associated virus using ultrasensitive assays, and a loss of T-cell reactivity to SIV determinants not in the vaccine. Extensive ultrasensitive quantitative PCR and quantitative PCR with reverse transcription analyses of tissues from RhCMV/SIV vector-protected RM necropsied 69-172 weeks after challenge did not detect SIV RNA or DNA sequences above background levels, and replication-competent SIV was not detected in these RM by extensive co-culture analysis of tissues or by adoptive transfer of 60 million haematolymphoid cells to naive RM. These data provide compelling evidence for progressive clearance of a pathogenic lentiviral infection, and suggest that some lentiviral reservoirs may be susceptible to the continuous effector memory T-cell-mediated immune surveillance elicited and maintained by cytomegalovirus vectors.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
505 |
23
|
Kestler H, Kodama T, Ringler D, Marthas M, Pedersen N, Lackner A, Regier D, Sehgal P, Daniel M, King N. Induction of AIDS in rhesus monkeys by molecularly cloned simian immunodeficiency virus. Science 1990; 248:1109-12. [PMID: 2160735 DOI: 10.1126/science.2160735] [Citation(s) in RCA: 467] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Better understanding of the pathogenesis of acquired immunodeficiency syndrome (AIDS) would be greatly facilitated by a relevant animal model that uses molecularly cloned virus of defined sequence to induce the disease. Such a system would also be of great value for AIDS vaccine research. An infectious molecular clone of simian immunodeficiency virus (SIV) was identified that induces AIDS in common rhesus monkeys in a time frame suitable for laboratory investigation. These results provide another strong link in the chain of evidence for the viral etiology of AIDS. More importantly, they define a system for molecular dissection of the determinants of AIDS pathogenesis.
Collapse
|
|
35 |
467 |
24
|
Silvestri G, Sodora DL, Koup RA, Paiardini M, O'Neil SP, McClure HM, Staprans SI, Feinberg MB. Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity 2003; 18:441-52. [PMID: 12648460 DOI: 10.1016/s1074-7613(03)00060-8] [Citation(s) in RCA: 465] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
HIV-infected humans and SIV-infected rhesus macaques who remain healthy despite long-term infection exhibit exceptionally low levels of virus replication and active antiviral cellular immune responses. In contrast, sooty mangabey monkeys that represent natural hosts for SIV infection do not develop AIDS despite high levels of virus replication and limited antiviral CD8(+) T cell responses. We report here that SIV-infected mangabeys maintain preserved T lymphocyte populations and regenerative capacity and manifest far lower levels of aberrant immune activation and apoptosis than are seen in pathogenic SIV and HIV infections. These data suggest that direct consequences of virus replication alone cannot account for progressive CD4(+) T cell depletion leading to AIDS. Rather, attenuated immune activation enables SIV-infected mangabeys to avoid the bystander damage seen in pathogenic infections and protects them from developing AIDS.
Collapse
|
|
22 |
465 |
25
|
Abstract
Rhesus monkeys were infected with mutant forms of simian immunodeficiency virus lacking dual combinations of the 4th, 5th and 6th sites for N-linked glycosylation in the external envelope glycoprotein of the virus. When compared with sera from monkeys infected with the parental virus, sera from monkeys infected with the mutant viruses exhibited markedly increased antibody binding to specific peptides from this region and markedly increased neutralizing activity. These results demonstrate a role for N-linked glycosylation in limiting the neutralizing antibody response to SIV and in shielding the virus from immune recognition.
Collapse
|
|
27 |
454 |