1
|
Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus MV, Nie Q. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021; 12:1088. [PMID: 33597522 PMCID: PMC7889871 DOI: 10.1038/s41467-021-21246-9] [Citation(s) in RCA: 3773] [Impact Index Per Article: 943.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
Understanding global communications among cells requires accurate representation of cell-cell signaling links and effective systems-level analyses of those links. We construct a database of interactions among ligands, receptors and their cofactors that accurately represent known heteromeric molecular complexes. We then develop CellChat, a tool that is able to quantitatively infer and analyze intercellular communication networks from single-cell RNA-sequencing (scRNA-seq) data. CellChat predicts major signaling inputs and outputs for cells and how those cells and signals coordinate for functions using network analysis and pattern recognition approaches. Through manifold learning and quantitative contrasts, CellChat classifies signaling pathways and delineates conserved and context-specific pathways across different datasets. Applying CellChat to mouse and human skin datasets shows its ability to extract complex signaling patterns. Our versatile and easy-to-use toolkit CellChat and a web-based Explorer ( http://www.cellchat.org/ ) will help discover novel intercellular communications and build cell-cell communication atlases in diverse tissues.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
3773 |
2
|
Abstract
The healing of an adult skin wound is a complex process requiring the collaborative efforts of many different tissues and cell lineages. The behavior of each of the contributing cell types during the phases of proliferation, migration, matrix synthesis, and contraction, as well as the growth factor and matrix signals present at a wound site, are now roughly understood. Details of how these signals control wound cell activities are beginning to emerge, and studies of healing in embryos have begun to show how the normal adult repair process might be readjusted to make it less like patching up and more like regeneration.
Collapse
|
Review |
28 |
3323 |
3
|
Ballard JL, Khoury JC, Wedig K, Wang L, Eilers-Walsman BL, Lipp R. New Ballard Score, expanded to include extremely premature infants. J Pediatr 1991; 119:417-23. [PMID: 1880657 DOI: 10.1016/s0022-3476(05)82056-6] [Citation(s) in RCA: 1111] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Ballard Maturational Score was refined and expanded to achieve greater accuracy and to include extremely premature neonates. To test validity, accuracy, interrater reliability, and optimal postnatal age at examination, the resulting New Ballard Score (NBS) was assessed for 578 newly born infants and the results were analyzed. Gestational ages ranged from 20 to 44 weeks and postnatal ages at examination ranged from birth to 96 hours. In 530 infants, gestational age by last menstrual period was confirmed by agreement within 2 weeks with gestational age by prenatal ultrasonography (C-GLMP). For these infants, correlation between gestational age by NBS and C-GLMP was 0.97. Mean differences between gestational age by NBS and C-GLMP were 0.32 +/- 1.58 weeks and 0.15 +/- 1.46 weeks among the extremely premature infants (less than 26 weeks) and among the total population, respectively. Correlations between the individual criteria and C-GLMP ranged from 0.72 to 0.82. Interrater reliability of NBS, as determined by correlation between raters who rated the same subgroup of infants, ws 0.95. For infants less than 26 weeks of gestational age, the greatest validity (97% within 2 weeks of C-GLMP) was seen when the examination was performed before 12 hours of postnatal age. For infants at least 26 weeks of gestational age, percentages of agreement with C-GLMP remained constant, averaging 92% for all postnatal age categories up to 96 hours. The NBS is a valid and accurate gestational assessment tool for extremely premature infants and remains valid for the entire newborn infant population.
Collapse
|
|
34 |
1111 |
4
|
Abstract
Clinical conditions causing hair loss, such as androgenetic alopecia, alopecia areata, and scarring alopecia, can be psychologically devastating to individuals and are the target of a multimillion dollar pharmaceutical industry. The importance of the hair follicle in skin biology, however, does not rest solely with its ability to produce hair. Hair follicles are self-renewing and contain reservoirs of multipotent stem cells that are capable of regenerating the epidermis and are thought to be utilized in wound healing. Hair follicles are also the sites of origin of many neoplasias, including some basal cell carcinomas and pilomatricoma. These diseases result from inappropriate activation of signaling pathways that regulate hair follicle morphogenesis. Identification of the signaling molecules and pathways operating in developing and postnatal, cycling, hair follicles is therefore vital to our understanding of pathogenic states in the skin and may ultimately permit the development of novel therapies for skin tumors as well as for hair loss disease. The purpose of this review is to summarize recent progress in our understanding of the molecular mechanisms regulating hair follicle formation, and to discuss ways in which this information may eventually be utilized in the clinic.
Collapse
|
Review |
23 |
720 |
5
|
Abstract
Mice and cells lacking the epidermal growth factor receptor (EGFR) were generated to examine its physiological role in vivo. Mutant fetuses are retarded in growth and die at mid-gestation in a 129/Sv genetic background, whereas in a 129/Sv x C57BL/6 cross some survive until birth and even to postnatal day 20 in a 129/Sv x C57BL/6 x MF1 background. Death in utero probably results from a defect in the spongiotrophoblast layer of the placenta. Newborn mutant mice have open eyes, rudimentary whiskers, immature lungs, and defects in the epidermis, correlating with the expression pattern of the EGFR as monitored by beta-galactosidase activity. These defects are probably cell-autonomous because chimeric mice generated with EGFR-/- embryonic stem cells contribute small amounts of mutant cells to some organs. These results indicate that the EGFR regulates epithelial proliferation and differentiation and that the genetic background influences the resulting phenotype.
Collapse
|
|
30 |
719 |
6
|
Hu Y, Baud V, Delhase M, Zhang P, Deerinck T, Ellisman M, Johnson R, Karin M. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science 1999; 284:316-20. [PMID: 10195896 DOI: 10.1126/science.284.5412.316] [Citation(s) in RCA: 673] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The oligomeric IkappaB kinase (IKK) is composed of three polypeptides: IKKalpha and IKKbeta, the catalytic subunits, and IKKgamma, a regulatory subunit. IKKalpha and IKKbeta are similar in structure and thought to have similar function-phosphorylation of the IkappaB inhibitors in response to proinflammatory stimuli. Such phosphorylation leads to degradation of IkappaB and activation of nuclear factor kappaB transcription factors. The physiological function of these protein kinases was explored by analysis of IKKalpha-deficient mice. IKKalpha was not required for activation of IKK and degradation of IkappaB by proinflammatory stimuli. Instead, loss of IKKalpha interfered with multiple morphogenetic events, including limb and skeletal patterning and proliferation and differentiation of epidermal keratinocytes.
Collapse
|
|
26 |
673 |
7
|
Abstract
The epidermis and its appendages develop from a single layer of multipotent embryonic progenitor keratinocytes. Embryonic stem cells receive cues from their environment that instruct them to commit to a particular differentiation programme and generate a stratified epidermis, hair follicles or sebaceous glands. Exciting recent developments have focused on how adult skin epithelia maintain populations of stem cells for use in the natural cycles of hair follicle regeneration and for re-epithelialization in response to wounding.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
666 |
8
|
Koster MI, Kim S, Mills AA, DeMayo FJ, Roop DR. p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev 2004; 18:126-31. [PMID: 14729569 PMCID: PMC324418 DOI: 10.1101/gad.1165104] [Citation(s) in RCA: 515] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Development of stratified epithelia, such as the epidermis, requires p63 expression. The p63 gene encodes isoforms that contain (TA) or lack (DeltaN) a transactivation domain. We demonstrate that TAp63 isoforms are the first to be expressed during embryogenesis and are required for initiation of epithelial stratification. In addition, TAp63 isoforms inhibit terminal differentiation, suggesting that TAp63 isoforms must be counterbalanced by DeltaNp63 isoforms to allow cells to respond to signals required for maturation of embryonic epidermis. Our data demonstrate that p63 plays a dual role: initiating epithelial stratification during development and maintaining proliferative potential of basal keratinocytes in mature epidermis.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
515 |
9
|
Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 2002; 109:693-705. [PMID: 12086669 DOI: 10.1016/s0092-8674(02)00757-2] [Citation(s) in RCA: 494] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nerves and blood vessels are branched structures, but whether their branching patterns are established independently or coordinately is not clear. Here we show that arteries, but not veins, are specifically aligned with peripheral nerves in embryonic mouse limb skin. Mutations that eliminate peripheral sensory nerves or Schwann cells prevent proper arteriogenesis, while those that disorganize the nerves maintain the alignment of arteries with misrouted axons. In vitro, sensory neurons or Schwann cells can induce arterial marker expression in isolated embryonic endothelial cells, and VEGF(164/120) is necessary and sufficient to mediate this induction. These data suggest that peripheral nerves provide a template that determines the organotypic pattern of blood vessel branching and arterial differentiation in the skin, via local secretion of VEGF.
Collapse
|
|
23 |
494 |
10
|
Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 2002; 20:933-6. [PMID: 12161760 DOI: 10.1038/nbt726] [Citation(s) in RCA: 487] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previous reports have demonstrated the growth of undifferentiated human embryonic stem (HES) cells on mouse embryonic fibroblast (MEF) feeders and on laminin- or Matrigel-coated plastic surfaces supplemented with MEF-conditioned medium. These xenosupport systems run the risk of cross-transfer of animal pathogens from the animal feeder, matrix, or conditioned medium to the HES cells, thus compromising later clinical application. Here we show that human fetal and adult fibroblast feeders support prolonged undifferentiated HES cell growth of existing cell lines and are superior to cell-free matrices (collagen I, human extracellular matrix, Matrigel, and laminin) supplemented with human or MEF feeder-conditioned medium. Additionally, we report the derivation and establishment of a new HES cell line in completely animal-free conditions. Like HES cells cultured on MEF feeders, the HES cells grown on human feeders had normal karyotypes, tested positive for alkaline phosphatase activity, expressed Oct-4 and cell surface markers including SSEA-3, SSEA-4, Tra 1-60, and GCTM-2, formed teratomas in severely combined immunodeficient (SCID) mice, and retained all key morphological characteristics. Human feeder#150;supported HES cells should provide a safer alternative to existing HES cell lines in therapeutic applications.
Collapse
|
Technical Report |
23 |
487 |
11
|
Rennard SI, Berg R, Martin GR, Foidart JM, Robey PG. Enzyme-linked immunoassay (ELISA) for connective tissue components. Anal Biochem 1980; 104:205-14. [PMID: 6992646 DOI: 10.1016/0003-2697(80)90300-0] [Citation(s) in RCA: 484] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
|
45 |
484 |
12
|
Grigoryan T, Wend P, Klaus A, Birchmeier W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 2008; 22:2308-41. [PMID: 18765787 PMCID: PMC2749675 DOI: 10.1101/gad.1686208] [Citation(s) in RCA: 458] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wnt signaling is one of a handful of powerful signaling pathways that play crucial roles in the animal life by controlling the genetic programs of embryonic development and adult homeostasis. When disrupted, these signaling pathways cause developmental defects, or diseases, among them cancer. The gateway of the canonical Wnt pathway, which contains >100 genes, is an essential molecule called beta-catenin (Armadillo in Drosophila). Conditional loss- and gain-of-function mutations of beta-catenin in mice provided powerful tools for the functional analysis of canonical Wnt signaling in many tissues and organs. Such studies revealed roles of Wnt signaling that were previously not accessible to genetic analysis due to the early embryonic lethality of conventional beta-catenin knockout mice, as well as the redundancy of Wnt ligands, receptors, and transcription factors. Analysis of conditional beta-catenin loss- and gain-of-function mutant mice demonstrated that canonical Wnt signals control progenitor cell expansion and lineage decisions both in the early embryo and in many organs. Canonical Wnt signaling also plays important roles in the maintenance of various embryonic or adult stem cells, and as recent findings demonstrated, in cancer stem cell types. This has opened new opportunities to model numerous human diseases, which have been associated with deregulated Wnt signaling. Our review summarizes what has been learned from genetic studies of the Wnt pathway by the analysis of conditional beta-catenin loss- and gain-of-function mice.
Collapse
|
Review |
17 |
458 |
13
|
Yi R, O'Carroll D, Pasolli HA, Zhang Z, Dietrich FS, Tarakhovsky A, Fuchs E. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet 2006; 38:356-62. [PMID: 16462742 DOI: 10.1038/ng1744] [Citation(s) in RCA: 427] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 01/10/2006] [Indexed: 01/07/2023]
Abstract
During embryogenesis, multipotent progenitors within the single-layered surface epithelium differentiate to form the epidermis and its appendages. Here, we show that microRNAs (miRNAs) have an essential role in orchestrating these events. We cloned more than 100 miRNAs from skin and show that epidermis and hair follicles differentially express discrete miRNA families. To explore the functional significance of this finding, we conditionally targeted Dicer1 gene ablation in embryonic skin progenitors. Within the first week after loss of miRNA expression, cell fate specification and differentiation were not markedly impaired, and in the interfollicular epidermis, apoptosis was not markedly increased. Notably, however, developing hair germs evaginate rather than invaginate, thereby perturbing the epidermal organization. Here we characterize miRNAs in skin, the existence of which was hitherto unappreciated, and demonstrate their differential expression and importance in the morphogenesis of epithelial tissues within this vital organ.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
427 |
14
|
Matzuk MM, Lu N, Vogel H, Sellheyer K, Roop DR, Bradley A. Multiple defects and perinatal death in mice deficient in follistatin. Nature 1995; 374:360-3. [PMID: 7885475 DOI: 10.1038/374360a0] [Citation(s) in RCA: 424] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Follistatin, an activin-binding protein and activin antagonist in vitro, can bind to heparan sulphate proteoglycans and may function in vivo to present activins to their receptors. In the mouse, follistatin messenger RNA is first detected in the deciduum (on embryonic day 5.5), and later in the developing hindbrain, somites, vibrissae, teeth, epidermis and muscle. In Xenopus laevis, overexpression of follistatin leads to induction of neural tissue. Here we use loss-of-function mutant mice to investigate the function of follistatin in mammals. We find that follistatin-deficient mice are retarded in their growth, have decreased mass of the diaphragm and intercostal muscles, shiny taut skin, skeletal defects of the hard palate and the thirteenth pair of ribs, their whisker and tooth development is abnormal, they fail to breathe, and die within hours of birth. These defects are more widespread than those seen in activin-deficient mutant mice, indicating that follistatin may modulate the actions of several members of the transforming growth factor-beta family.
Collapse
|
|
30 |
424 |
15
|
Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, Valentini S, Guerra L, Schedl A, Camerino G. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 2006; 38:1304-9. [PMID: 17041600 DOI: 10.1038/ng1907] [Citation(s) in RCA: 423] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 09/21/2006] [Indexed: 12/16/2022]
Abstract
R-spondins are a recently characterized small family of growth factors. Here we show that human R-spondin1 (RSPO1) is the gene disrupted in a recessive syndrome characterized by XX sex reversal, palmoplantar hyperkeratosis and predisposition to squamous cell carcinoma of the skin. Our data show, for the first time, that disruption of a single gene can lead to complete female-to-male sex reversal in the absence of the testis-determining gene, SRY.
Collapse
|
|
19 |
423 |
16
|
Steinberg MS. Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1970; 173:395-433. [PMID: 5429514 DOI: 10.1002/jez.1401730406] [Citation(s) in RCA: 421] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
|
55 |
421 |
17
|
Davies AM, Bandtlow C, Heumann R, Korsching S, Rohrer H, Thoenen H. Timing and site of nerve growth factor synthesis in developing skin in relation to innervation and expression of the receptor. Nature 1987; 326:353-8. [PMID: 3031505 DOI: 10.1038/326353a0] [Citation(s) in RCA: 421] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We show that nerve growth factor (NGF) synthesis in developing skin begins with sensory innervation and that sensory neurons do not express NGF receptors until their fibres reach their cutaneous targets. Both cutaneous epithelium and mesenchyme synthesize NGF, the concentration of messenger RNA for NGF being higher in the more densely innervated epithelium.
Collapse
|
|
38 |
421 |
18
|
Chiang C, Swan RZ, Grachtchouk M, Bolinger M, Litingtung Y, Robertson EK, Cooper MK, Gaffield W, Westphal H, Beachy PA, Dlugosz AA. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol 1999; 205:1-9. [PMID: 9882493 DOI: 10.1006/dbio.1998.9103] [Citation(s) in RCA: 388] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hair follicle is a source of epithelial stem cells and site of origin for several types of skin tumors. Although it is clear that follicles arise by way of a series of inductive tissue interactions, identification of the signaling molecules driving this process remains a major challenge in skin biology. In this study we report an obligatory role for the secreted morphogen Sonic hedgehog (Shh) during hair follicle development. Hair germs comprising epidermal placodes and associated dermal condensates were detected in both control and Shh -/- embryos, but progression through subsequent stages of follicle development was blocked in mutant skin. The expression of Gli1 and Ptc1 was reduced in Shh -/- dermal condensates and they failed to evolve into hair follicle papillae, suggesting that the adjacent mesenchyme is a critical target for placode-derived Shh. Despite the profound inhibition of hair follicle morphogenesis, late-stage follicle differentiation markers were detected in Shh -/- skin grafts, as well as cultured vibrissa explants treated with cyclopamine to block Shh signaling. Our findings reveal an essential role for Shh during hair follicle morphogenesis, where it is required for normal advancement beyond the hair germ stage of development.
Collapse
|
|
26 |
388 |
19
|
Reddy S, Andl T, Bagasra A, Lu MM, Epstein DJ, Morrisey EE, Millar SE. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev 2001; 107:69-82. [PMID: 11520664 DOI: 10.1016/s0925-4773(01)00452-x] [Citation(s) in RCA: 383] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mutations in WNT effector genes perturb hair follicle morphogenesis, suggesting key roles for WNT proteins in this process. We show that expression of Wnts 10b and 10a is upregulated in placodes at the onset of follicle morphogenesis and in postnatal hair follicles beginning a new cycle of hair growth. The expression of additional Wnt genes is observed in follicles at later stages of differentiation. Among these, we find that Wnt5a is expressed in the developing dermal condensate of wild type but not Sonic hedgehog (Shh)-null embryos, indicating that Wnt5a is a target of SHH in hair follicle morphogenesis. These results identify candidates for several key follicular signals and suggest that WNT and SHH signaling pathways interact to regulate hair follicle morphogenesis.
Collapse
|
|
24 |
383 |
20
|
Miner JH, Cunningham J, Sanes JR. Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. J Cell Biol 1998; 143:1713-23. [PMID: 9852162 PMCID: PMC2132973 DOI: 10.1083/jcb.143.6.1713] [Citation(s) in RCA: 375] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/1998] [Revised: 10/27/1998] [Indexed: 11/29/2022] Open
Abstract
Laminins are the major noncollagenous glycoproteins of all basal laminae (BLs). They are alpha/beta/gamma heterotrimers assembled from 10 known chains, and they subserve both structural and signaling roles. Previously described mutations in laminin chain genes result in diverse disorders that are manifested postnatally and therefore provide little insight into laminin's roles in embryonic development. Here, we show that the laminin alpha5 chain is required during embryogenesis. The alpha5 chain is present in virtually all BLs of early somite stage embryos and then becomes restricted to specific BLs as development proceeds, including those of the surface ectoderm and placental vasculature. BLs that lose alpha5 retain or acquire other alpha chains. Embryos lacking laminin alpha5 die late in embryogenesis. They exhibit multiple developmental defects, including failure of anterior neural tube closure (exencephaly), failure of digit septation (syndactyly), and dysmorphogenesis of the placental labyrinth. These defects are all attributable to defects in BLs that are alpha5 positive in controls and that appear ultrastructurally abnormal in its absence. Other laminin alpha chains accumulate in these BLs, but this compensation is apparently functionally inadequate. Our results identify new roles for laminins and BLs in diverse developmental processes.
Collapse
|
research-article |
27 |
375 |
21
|
Vasioukhin V, Bauer C, Degenstein L, Wise B, Fuchs E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin. Cell 2001; 104:605-17. [PMID: 11239416 DOI: 10.1016/s0092-8674(01)00246-x] [Citation(s) in RCA: 368] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
When surface epithelium was conditionally targeted for ablation of alpha-catenin, hair follicle development was blocked and epidermal morphogenesis was dramatically affected, with defects in adherens junction formation, intercellular adhesion, and epithelial polarity. Differentiation occurred, but epidermis displayed hyperproliferation, suprabasal mitoses, and multinucleated cells. In vitro, alpha-catenin null keratinocytes were poorly contact inhibited and grew rapidly. These differences were not dependent upon intercellular adhesion and were in marked contrast to keratinocytes conditionally null for another essential intercellular adhesion protein, desmoplakin (DP). KO keratinocytes exhibited sustained activation of the Ras-MAPK cascade due to aberrations in growth factor responses. Thus, remarkably, features of precancerous lesions often attributed to defects in cell cycle regulatory genes can be generated by compromising the function of alpha-catenin.
Collapse
|
|
24 |
368 |
22
|
Schmidt-Supprian M, Bloch W, Courtois G, Addicks K, Israël A, Rajewsky K, Pasparakis M. NEMO/IKK gamma-deficient mice model incontinentia pigmenti. Mol Cell 2000; 5:981-92. [PMID: 10911992 DOI: 10.1016/s1097-2765(00)80263-4] [Citation(s) in RCA: 366] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Disruption of the X-linked gene encoding NF-kappa B essential modulator (NEMO) produces male embryonic lethality, completely blocks NF-kappa B activation by proinflammatory cytokines, and interferes with the generation and/or persistence of lymphocytes. Heterozygous female mice develop patchy skin lesions with massive granulocyte infiltration and hyperproliferation and increased apoptosis of keratinocytes. Diseased animals present severe growth retardation and early mortality. Surviving mice recover almost completely, presumably through clearing the skin of NEMO-deficient keratinocytes. Male lethality and strikingly similar skin lesions in heterozygous females are hallmarks of the human genetic disorder incontinentia pigmenti (IP). Together with the recent discovery that mutations in the human NEMO gene cause IP, our results indicate that we have created a mouse model for that disease.
Collapse
|
|
25 |
366 |
23
|
Röber RA, Weber K, Osborn M. Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 1989; 105:365-78. [PMID: 2680424 DOI: 10.1242/dev.105.2.365] [Citation(s) in RCA: 361] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mouse embryos, acquisition of the nuclear lamin polypeptides A/C varies according to developmental stage and tissue type. In order to determine the precise time points and cell types in which lamin A/C are first observed, we have used two monoclonal antibodies in immunofluorescence studies of different tissues of developing mouse embryos and of young mice. One antibody (mAB346) is specific for lamins A and C, while the other (PKB8) detects lamins A, B and C. Dividing uterine development into three phases—germ layer formation, organogenesis and tissue differentiation—our results show that lamin A/C expression in the embryo proper is not observed until the third phase of development. Lamin A/C first appears at embryonic day 12 in muscle cells of the trunk, head and the appendages. Three days later it is also seen in cells of the epidermis where its appearance coincides with the time of stratification. In the simple epithelial of lung, liver, kidney and intestine, as well as in heart and brain, lamins A/C do not appear until well after birth. Embryonal carcinoma (EC) cells express lamin B but not lamin A/C. Lamin A/C expression is noted in some EC cells after they are induced to differentiate and in several differentiated teratocarcinoma cell lines. Our results suggest that commitment of a cell to a particular pathway of differentiation (assayed by cell-type-specific expression of intermediate filament proteins) usually occurs prior to the time that lamin A/C can be detected. Thus lamin A/C expression may serve as a limit on the plasticity of cells for further developmental events.
Collapse
|
|
36 |
361 |
24
|
Peters KG, Werner S, Chen G, Williams LT. Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 1992; 114:233-43. [PMID: 1315677 DOI: 10.1242/dev.114.1.233] [Citation(s) in RCA: 356] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factors (FGFs) can influence the growth and differentiation of cultured cells derived from neuroectoderm, ectoderm or mesenchyme. The FGFs interact with a family of at least four closely related receptor tyrosine kinases that are products of individual genes. To investigate the role of FGFs in the growth and differentiation of embryonic tissues and to determine whether the individual FGF receptor genes might have specific functions, we compared the localization of mRNA for two FGF receptor genes, FGFR1 (the flg gene product) and FGFR2 (the bek gene product), during limb formation and organogenesis in mouse embryos (E9.5-E16.5). Although the two genes were coexpressed in some tissues, the differential expression of FGFR1 and FGFR2 in most embryonic tissues was striking. FGFR1 was expressed diffusely in mesenchyme of limb buds, somites and organ rudiments. In contrast, FGFR2 was expressed predominantly in the epithelial cells of embryonic skin and of developing organs. The differential expression of FGFR1 and FGFR2 in mesenchyme and epithelium respectively, suggests the receptor genes are independently regulated and that they mediate different functions of FGFs during development.
Collapse
|
|
33 |
356 |
25
|
Northcutt RG, Gans C. The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. THE QUARTERLY REVIEW OF BIOLOGY 1983; 58:1-28. [PMID: 6346380 DOI: 10.1086/413055] [Citation(s) in RCA: 353] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vertebrate body organization differs from that of other chordates in a large number of derived features that involve all organ systems. Most of these features arise embryonically from epidermal placodes, neural crest, and a muscularized hypomere. The developmental modifications were associated with a shift from filter-feeding to more active predation, which established advantages for improved gas exchange and distribution. Active predation involved more efficient patterns of locomotion and led to a major reorganization of the pharynx, to elaboration of the circulatory, digestive, and nervous systems, and to special sense organs. Most of the organs that derive from epidermal placodes and neural crest may have arisen phylogentically from epidermal nerve plexus of earlier chordates. Supportive tissues such as cartilage, bone, dentine, and enamel-like tissues probably arose in association with several of the new vertebrate sense organs and only secondarily provided mechanical support. The development of armor appears to have occurred late in vertebrate evolution. Finally, the origin of a postotic skull and axial vertebrae appears to be associated with the origin of the gnathostomes.
Collapse
|
Review |
42 |
353 |