1
|
Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol 2015; 16:343-53. [PMID: 25789684 PMCID: PMC4507498 DOI: 10.1038/ni.3123] [Citation(s) in RCA: 1369] [Impact Index Per Article: 136.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/10/2015] [Indexed: 12/12/2022]
Abstract
Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
1369 |
2
|
Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, Perera-Lecoin M, Surasombatpattana P, Talignani L, Thomas F, Cao-Lormeau VM, Choumet V, Briant L, Desprès P, Amara A, Yssel H, Missé D. Biology of Zika Virus Infection in Human Skin Cells. J Virol 2015; 89:8880-96. [PMID: 26085147 PMCID: PMC4524089 DOI: 10.1128/jvi.00354-15] [Citation(s) in RCA: 890] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/08/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of human skin in the entry of ZIKV and its contribution to the induction of antiviral immune responses. We show that human dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells are permissive to the most recent ZIKV isolate, responsible for the epidemic in French Polynesia. Several entry and/or adhesion factors, including DC-SIGN, AXL, Tyro3, and, to a lesser extent, TIM-1, permitted ZIKV entry, with a major role for the TAM receptor AXL. The ZIKV permissiveness of human skin fibroblasts was confirmed by the use of a neutralizing antibody and specific RNA silencing. ZIKV induced the transcription of Toll-like receptor 3 (TLR3), RIG-I, and MDA5, as well as several interferon-stimulated genes, including OAS2, ISG15, and MX1, characterized by strongly enhanced beta interferon gene expression. ZIKV was found to be sensitive to the antiviral effects of both type I and type II interferons. Finally, infection of skin fibroblasts resulted in the formation of autophagosomes, whose presence was associated with enhanced viral replication, as shown by the use of Torin 1, a chemical inducer of autophagy, and the specific autophagy inhibitor 3-methyladenine. The results presented herein permit us to gain further insight into the biology of ZIKV and to devise strategies aiming to interfere with the pathology caused by this emerging flavivirus. IMPORTANCE Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family. Vector-mediated transmission of ZIKV is initiated when a blood-feeding female Aedes mosquito injects the virus into the skin of its mammalian host, followed by infection of permissive cells via specific receptors. Indeed, skin immune cells, including dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells, were all found to be permissive to ZIKV infection. The results also show a major role for the phosphatidylserine receptor AXL as a ZIKV entry receptor and for cellular autophagy in enhancing ZIKV replication in permissive cells. ZIKV replication leads to activation of an antiviral innate immune response and the production of type I interferons in infected cells. Taken together, these results provide the first general insights into the interaction between ZIKV and its mammalian host.
Collapse
MESH Headings
- Aedes/virology
- Animals
- Autophagy/immunology
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Chlorocebus aethiops
- Cytokines/biosynthesis
- DEAD Box Protein 58
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Fibroblasts/virology
- Flaviviridae/immunology
- Flaviviridae/physiology
- Flaviviridae Infections/immunology
- Flaviviridae Infections/virology
- HEK293 Cells
- Hepatitis A Virus Cellular Receptor 1
- Humans
- Insect Vectors/virology
- Interferon-Induced Helicase, IFIH1
- Interferon-beta/biosynthesis
- Interferon-beta/immunology
- Keratinocytes/virology
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Myxovirus Resistance Proteins/biosynthesis
- Phagosomes/immunology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA Interference
- RNA, Small Interfering
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Skin/immunology
- Skin/virology
- Toll-Like Receptor 3/genetics
- Toll-Like Receptor 3/immunology
- Toll-Like Receptor 3/metabolism
- Toll-Like Receptor 7/immunology
- Ubiquitins/biosynthesis
- Vero Cells
- Virus Internalization
- Virus Replication
- Axl Receptor Tyrosine Kinase
Collapse
|
research-article |
10 |
890 |
3
|
Reed KD, Melski JW, Graham MB, Regnery RL, Sotir MJ, Wegner MV, Kazmierczak JJ, Stratman EJ, Li Y, Fairley JA, Swain GR, Olson VA, Sargent EK, Kehl SC, Frace MA, Kline R, Foldy SL, Davis JP, Damon IK. The detection of monkeypox in humans in the Western Hemisphere. N Engl J Med 2004; 350:342-50. [PMID: 14736926 DOI: 10.1056/nejmoa032299] [Citation(s) in RCA: 672] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND During May and June 2003, an outbreak of febrile illness with vesiculopustular eruptions occurred among persons in the midwestern United States who had had contact with ill pet prairie dogs obtained through a common distributor. Zoonotic transmission of a bacterial or viral pathogen was suspected. METHODS We reviewed medical records, conducted interviews and examinations, and collected blood and tissue samples for analysis from 11 patients and one prairie dog. Histopathological and electron-microscopical examinations, microbiologic cultures, and molecular assays were performed to identify the etiologic agent. RESULTS The initial Wisconsin cases evaluated in this outbreak occurred in five males and six females ranging in age from 3 to 43 years. All patients reported having direct contact with ill prairie dogs before experiencing a febrile illness with skin eruptions. We found immunohistochemical or ultrastructural evidence of poxvirus infection in skin-lesion tissue from four patients. Monkeypox virus was recovered in cell cultures of seven samples from patients and from the prairie dog. The virus was identified by detection of monkeypox-specific DNA sequences in tissues or isolates from six patients and the prairie dog. Epidemiologic investigation suggested that the prairie dogs had been exposed to at least one species of rodent recently imported into the United States from West Africa. CONCLUSIONS Our investigation documents the isolation and identification of monkeypox virus from humans in the Western Hemisphere. Infection of humans was associated with direct contact with ill prairie dogs that were being kept or sold as pets.
Collapse
|
|
21 |
672 |
4
|
Wu SJ, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, Putvatana R, Louder MK, Filgueira L, Marovich MA, Wong HK, Blauvelt A, Murphy GS, Robb ML, Innes BL, Birx DL, Hayes CG, Frankel SS. Human skin Langerhans cells are targets of dengue virus infection. Nat Med 2000; 6:816-20. [PMID: 10888933 DOI: 10.1038/77553] [Citation(s) in RCA: 481] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dengue virus (DV), an arthropod-borne flavivirus, causes a febrile illness for which there is no antiviral treatment and no vaccine. Macrophages are important in dengue pathogenesis; however, the initial target cell for DV infection remains unknown. As DV is introduced into human skin by mosquitoes of the genus Aedes, we undertook experiments to determine whether human dendritic cells (DCs) were permissive for the growth of DV. Initial experiments demonstrated that blood-derived DCs were 10-fold more permissive for DV infection than were monocytes or macrophages. We confirmed this with human skin DCs (Langerhans cells and dermal/interstitial DCs). Using cadaveric human skin explants, we exposed skin DCs to DV ex vivo. Of the human leukocyte antigen DR-positive DCs that migrated from the skin, emigrants from both dermis and epidermis, 60-80% expressed DV antigens. These observations were supported by histologic findings from the skin rash of a human subject who received an attenuated tetravalent dengue vaccine. Immunohistochemistry of the skin showed CD1a-positive DCs double-labeled with an antibody against DV envelope glycoprotein. These data demonstrate that human skin DCs are permissive for DV infection, and provide a potential mechanism for the transmission of DV into human skin.
Collapse
|
Comparative Study |
25 |
481 |
5
|
Schowalter RM, Pastrana DV, Pumphrey KA, Moyer AL, Buck CB. Merkel cell polyomavirus and two previously unknown polyomaviruses are chronically shed from human skin. Cell Host Microbe 2010; 7:509-15. [PMID: 20542254 PMCID: PMC2919322 DOI: 10.1016/j.chom.2010.05.006] [Citation(s) in RCA: 438] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/16/2010] [Accepted: 05/03/2010] [Indexed: 12/16/2022]
Abstract
Mounting evidence indicates that Merkel cell polyomavirus (MCV), a circular double-stranded DNA virus, is a causal factor underlying a highly lethal form of skin cancer known as Merkel cell carcinoma. To explore the possibility that MCV and other polyomaviruses commonly inhabit healthy human skin, we developed an improved rolling circle amplification (RCA) technique to isolate circular DNA viral genomes from human skin swabs. Complete MCV genomes were recovered from 40% of healthy adult volunteers tested, providing full-length, apparently wild-type cloned MCV genomes. RCA analysis also identified two previously unknown polyomavirus species that we name human polyomavirus-6 (HPyV6) and HPyV7. Biochemical experiments show that polyomavirus DNA is shed from the skin in the form of assembled virions. A pilot serological study indicates that infection or coinfection with these three skin-tropic polyomaviruses is very common. Thus, at least three polyomavirus species are constituents of the human skin microbiome.
Collapse
|
Research Support, N.I.H., Intramural |
15 |
438 |
6
|
Forslund O, Antonsson A, Nordin P, Stenquist B, Göran Hansson B. A broad range of human papillomavirus types detected with a general PCR method suitable for analysis of cutaneous tumours and normal skin. J Gen Virol 1999; 80 ( Pt 9):2437-2443. [PMID: 10501499 DOI: 10.1099/0022-1317-80-9-2437] [Citation(s) in RCA: 377] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A pair of degenerate PCR primers (FAP59/64) was designed from two relatively conserved regions of the L1 open reading frame of most human papillomaviruses (HPV). The size of the generated amplicon was about 480 bp. PCR using these primers was found capable of amplifying DNA from 87% (65/75) of the HPV types tested, its sensitivity being 1-10 copies for HPV-5, -20 and -30 clones. HPV was found in 63% (5/8) of tumour samples and in 63% (5/8) of normal skin biopsies from patients with various cutaneous tumours. HPV-5, HPV-8, HPV-12, HPVvs20-4 and six putatively novel HPV types were identified. No correlation was found to exist between specific HPV and tumour types. Skin surface swab samples from one or more sites on three of four healthy volunteers were found to contain HPV, types 12 and 49 being identified, as well as eight novel HPV types, two of which were also found among the patients. In all, HPV was detected in 75% (9/12) of those tested, five HPV types and 12 novel candidate types being identified, and 37% (7/19) of HPV-positive samples were found to manifest more than one HPV type. All the HPV detected manifested high degrees of nucleotide sequence similarity with HPV types associated with skin lesions and epidermodysplasia verruciformis. The overall HPV finding in the skin samples was 50% (20/40) using the FAP primers as compared to 18% (7/40) using another PCR test designed for skin types. The results thus suggest the new method to be sensitive and generally applicable for detecting cutaneous HPV.
Collapse
|
|
26 |
377 |
7
|
Zhu H, Cong JP, Mamtora G, Gingeras T, Shenk T. Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc Natl Acad Sci U S A 1998; 95:14470-5. [PMID: 9826724 PMCID: PMC24397 DOI: 10.1073/pnas.95.24.14470] [Citation(s) in RCA: 333] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mechanistic insights to viral replication and pathogenesis generally have come from the analysis of viral gene products, either by studying their biochemical activities and interactions individually or by creating mutant viruses and analyzing their phenotype. Now it is possible to identify and catalog the host cell genes whose mRNA levels change in response to a pathogen. We have used DNA array technology to monitor the level of approximately 6,600 human mRNAs in uninfected as compared with human cytomegalovirus-infected cells. The level of 258 mRNAs changed by a factor of 4 or more before the onset of viral DNA replication. Several of these mRNAs encode gene products that might play key roles in virus-induced pathogenesis, identifying them as intriguing targets for further study.
Collapse
|
research-article |
27 |
333 |
8
|
Antonsson A, Forslund O, Ekberg H, Sterner G, Hansson BG. The ubiquity and impressive genomic diversity of human skin papillomaviruses suggest a commensalic nature of these viruses. J Virol 2000; 74:11636-41. [PMID: 11090162 PMCID: PMC112445 DOI: 10.1128/jvi.74.24.11636-11641.2000] [Citation(s) in RCA: 309] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2000] [Accepted: 09/26/2000] [Indexed: 12/20/2022] Open
Abstract
Human papillomaviruses (HPV) are epitheliotropic viruses, with some types suggested to be associated with skin cancer. In this study, swab samples collected from five different sites on the skin of renal transplant recipients, dialysis patients, and age- and sex-matched healthy controls were analyzed for HPV DNA by a newly designed PCR test. Most individuals were found to have asymptomatic HPV infections; more specifically, 94% of the renal transplant patients, 82% of the dialysis patients, and 80% of the healthy controls were positive for HPV DNA. The multiplicity of the HPVs detected was astounding: 20 previously described and 30 putatively new types were identified by cloning and sequencing of 33 samples from 13 individuals. These results demonstrate that normal human skin harbors an array of papillomaviruses, most of them previously unknown.
Collapse
|
Clinical Trial |
25 |
309 |
9
|
Rodenhuis-Zybert IA, Wilschut J, Smit JM. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 2010; 67:2773-86. [PMID: 20372965 PMCID: PMC11115823 DOI: 10.1007/s00018-010-0357-z] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/08/2010] [Accepted: 03/16/2010] [Indexed: 11/25/2022]
Abstract
Dengue virus (DENV 1-4) represents a major emerging arthropod-borne pathogen. All four DENV serotypes are prevalent in the (sub) tropical regions of the world and infect 50-100 million individuals annually. Whereas the majority of DENV infections proceed asymptomatically or result in self-limited dengue fever, an increasing number of patients present more severe manifestations, such as dengue hemorrhagic fever and dengue shock syndrome. In this review we will give an overview of the infectious life cycle of DENV and will discuss the viral and host factors that are important in controlling DENV infection.
Collapse
|
Review |
15 |
294 |
10
|
Foulongne V, Sauvage V, Hebert C, Dereure O, Cheval J, Gouilh MA, Pariente K, Segondy M, Burguière A, Manuguerra JC, Caro V, Eloit M. Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS One 2012; 7:e38499. [PMID: 22723863 PMCID: PMC3378559 DOI: 10.1371/journal.pone.0038499] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/10/2012] [Indexed: 02/07/2023] Open
Abstract
The human skin is a complex ecosystem that hosts a heterogeneous flora. Until recently, the diversity of the cutaneous microbiota was mainly investigated for bacteria through culture based assays subsequently confirmed by molecular techniques. There are now many evidences that viruses represent a significant part of the cutaneous flora as demonstrated by the asymptomatic carriage of beta and gamma-human papillomaviruses on the healthy skin. Furthermore, it has been recently suggested that some representatives of the Polyomavirus genus might share a similar feature. In the present study, the cutaneous virome of the surface of the normal-appearing skin from five healthy individuals and one patient with Merkel cell carcinoma was investigated through a high throughput metagenomic sequencing approach in an attempt to provide a thorough description of the cutaneous flora, with a particular focus on its viral component. The results emphasize the high diversity of the viral cutaneous flora with multiple polyomaviruses, papillomaviruses and circoviruses being detected on normal-appearing skin. Moreover, this approach resulted in the identification of new Papillomavirus and Circovirus genomes and confirmed a very low level of genetic diversity within human polyomavirus species. Although viruses are generally considered as pathogen agents, our findings support the existence of a complex viral flora present at the surface of healthy-appearing human skin in various individuals. The dynamics and anatomical variations of this skin virome and its variations according to pathological conditions remain to be further studied. The potential involvement of these viruses, alone or in combination, in skin proliferative disorders and oncogenesis is another crucial issue to be elucidated.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
281 |
11
|
Erez N, Achdout H, Milrot E, Schwartz Y, Wiener-Well Y, Paran N, Politi B, Tamir H, Israely T, Weiss S, Beth-Din A, Shifman O, Israeli O, Yitzhaki S, Shapira SC, Melamed S, Schwartz E. Diagnosis of Imported Monkeypox, Israel, 2018. Emerg Infect Dis 2019; 25:980-983. [PMID: 30848724 PMCID: PMC6478227 DOI: 10.3201/eid2505.190076] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report a case of monkeypox in a man who returned from Nigeria to Israel in 2018. Virus was detected in pustule swabs by transmission electron microscopy and PCR and confirmed by immunofluorescence assay, tissue culture, and ELISA. The West Africa monkeypox outbreak calls for increased awareness by public health authorities worldwide.
Collapse
|
Historical Article |
6 |
277 |
12
|
Howell MD, Gallo RL, Boguniewicz M, Jones JF, Wong C, Streib JE, Leung DYM. Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity 2006; 24:341-8. [PMID: 16546102 DOI: 10.1016/j.immuni.2006.02.006] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 01/03/2006] [Accepted: 02/01/2006] [Indexed: 02/07/2023]
Abstract
Atopic dermatitis (AD) is associated with eczema vaccinatum (EV), a disseminated viral skin infection that follows inoculation with vaccinia virus (VV). This study examined whether AD skin can control VV replication, and the role of IL-4 and IL-13 in modulating the human cathelicidin LL-37, an antimicrobial peptide that kills VV. AD skin exhibited increased VV replication and decreased LL-37 expression compared to normal or psoriasis skin. IL-4/IL-13 enhanced VV replication while downregulating LL-37 in VV-stimulated keratinocytes. Neutralizing IL-4/IL-13 in AD skin augmented LL-37 and inhibited VV replication. Cathelicidins were induced via toll-like receptor-3 and were inhibited by IL-4/IL-13 through STAT-6. Skin from cathelicidin-deficient mice exhibited reduced ability to control VV replication. Exogenous LL-37 controlled vaccinia viral replication in infected keratinocytes and AD skin explants. The current study demonstrates that Th2 cytokines enhance VV replication in AD skin by subverting the innate immune response against VV in a STAT-6-dependent manner.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
19 |
259 |
13
|
Porcari AR, Devivar RV, Kucera LS, Drach JC, Townsend LB. Design, synthesis, and antiviral evaluations of 1-(substituted benzyl)-2-substituted-5,6-dichlorobenzimidazoles as nonnucleoside analogues of 2,5,6-trichloro-1-(beta-D-ribofuranosyl)benzimidazole. J Med Chem 1998; 41:1252-62. [PMID: 9548815 DOI: 10.1021/jm970559i] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have recently reported that certain ribosylated polyhalogenated benzimidazoles are potent and selective inhibitors of HCMV replication at noncytotoxic concentrations. To extend the structure-activity relationship beyond these first-generation compounds, we alkylated 5,6-dichloro-2-substituted-benzimidazoles with either a series of substituted benzyl halides or (2-bromoethyl)benzene to obtain five series of nonnucleoside analogues. Evaluation of these compounds for activity against herpes viruses revealed that the new compounds were less active than the benzimidazole ribonucleosides against human cytomegalovirus (HCMV) and inactive against herpes simplex virus type 1 (HSV-1). However, as part of our broader antiviral testing, we found that some of these compounds were active against HIV. Comparisons of the biological data revealed that a chloro or bromo group was required at the 2-position for the best separation of activity against HIV and cytotoxicity. Evaluation of the most active compounds against drug-resistant HIV suggested that they act by a mechanism other than inhibition of reverse transcriptase.
Collapse
|
Comparative Study |
27 |
217 |
14
|
de Swart RL, Ludlow M, de Witte L, Yanagi Y, van Amerongen G, McQuaid S, Yüksel S, Geijtenbeek TBH, Duprex WP, Osterhaus ADME. Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog 2007; 3:e178. [PMID: 18020706 PMCID: PMC2077902 DOI: 10.1371/journal.ppat.0030178] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 10/05/2007] [Indexed: 11/18/2022] Open
Abstract
Measles virus (MV) is hypothesized to enter the host by infecting epithelial cells of the respiratory tract, followed by viremia mediated by infected monocytes. However, neither of these cell types express signaling lymphocyte activation molecule (CD150), which has been identified as the receptor for wild-type MV. We have infected rhesus and cynomolgus macaques with a recombinant MV strain expressing enhanced green fluorescent protein (EGFP); thus bringing together the optimal animal model for measles and a virus that can be detected with unprecedented sensitivity. Blood samples and broncho-alveolar lavages were collected every 3 d, and necropsies were performed upon euthanasia 9 or 15 d after infection. EGFP production by MV-infected cells was visualized macroscopically, in both living and sacrificed animals, and microscopically by confocal microscopy and FACS analysis. At the peak of viremia, EGFP fluorescence was detected in skin, respiratory and digestive tract, but most intensely in all lymphoid tissues. B- and T-lymphocytes expressing CD150 were the major target cells for MV infection. Highest percentages (up to 30%) of infected lymphocytes were detected in lymphoid tissues, and the virus preferentially targeted cells with a memory phenotype. Unexpectedly, circulating monocytes did not sustain productive MV infection. In peripheral tissues, large numbers of MV-infected CD11c+ MHC class-II+ myeloid dendritic cells were detected in conjunction with infected T-lymphocytes, suggesting transmission of MV between these cell types. Fluorescent imaging of MV infection in non-human primates demonstrated a crucial role for lymphocytes and dendritic cells in the pathogenesis of measles and measles-associated immunosuppression.
Collapse
|
research-article |
18 |
213 |
15
|
Norja P, Hokynar K, Aaltonen LM, Chen R, Ranki A, Partio EK, Kiviluoto O, Davidkin I, Leivo T, Eis-Hübinger AM, Schneider B, Fischer HP, Tolba R, Vapalahti O, Vaheri A, Söderlund-Venermo M, Hedman K. Bioportfolio: lifelong persistence of variant and prototypic erythrovirus DNA genomes in human tissue. Proc Natl Acad Sci U S A 2006; 103:7450-3. [PMID: 16651522 PMCID: PMC1464359 DOI: 10.1073/pnas.0602259103] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human erythrovirus is a minute, single-stranded DNA virus causing many diseases, including erythema infectiosum, arthropathy, and fetal death. After primary infection, the viral genomes persist in solid tissues. Besides the prototype, virus type 1, two major variants (virus types 2 and 3) have been identified recently, the clinical significance and epidemiology of which are mostly unknown. We examined 523 samples of skin, synovium, tonsil, or liver (birth year range, 1913-2000), and 1,640 sera, by qualitative and quantitative molecular assays for the DNA of human erythroviruses. Virus types 1 and 2 were found in 132 (25%) and 58 (11%) tissues, respectively. DNA of virus type 1 was found in all age groups, whereas that of type 2 was strictly confined to those subjects born before 1973 (P < 0.001). Correspondingly, the sera from the past two decades contained DNA of type 1 but not type 2 or 3. Our data suggest strongly that the newly identified human erythrovirus type 2 as well as the prototype 1 circulated in Northern and Central Europe in equal frequency, more than half a century ago, whereafter type 2 disappeared from circulation. Type 3 never attained wide occurrence in this area during the past > or =70 years. The erythrovirus DNA persistence in human tissues is lifelong and represents a source of information about our past, the Bioportfolio, which, at the individual level, provides a registry of one's infectious encounters, and at the population level, a database for epidemiological and phylogenetic analyses.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
208 |
16
|
Patterson BK, Landay A, Siegel JN, Flener Z, Pessis D, Chaviano A, Bailey RC. Susceptibility to human immunodeficiency virus-1 infection of human foreskin and cervical tissue grown in explant culture. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:867-73. [PMID: 12213715 PMCID: PMC1867269 DOI: 10.1016/s0002-9440(10)64247-2] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Numerous studies have indicated a protective effect of male circumcision against acquisition of human immunodeficiency virus (HIV)-1. We investigated mechanisms responsible for the possible increased HIV-1 susceptibility of human foreskin. Foreskins from eight pediatric and six adult patients with (n = 3) and without (n = 11) histories of sexually transmitted disease were evaluated. Six cervical biopsies from HIV-1-seronegative women were included as controls. CD4(+) T cells, macrophages, and Langerhans' cells (LCs) were quantified using image analysis. Cells expressing HIV-1 co-receptors CCR5 and CXCR4 were quantified using immunofluorescence and image analysis. Foreskin biopsies were infected ex vivo in organotypic culture with HIV-1. HIV-1 DNA copies in foreskin and cervical mucosal tissue were compared and the infected cell phenotype was determined. Foreskin mucosa contained higher mean proportions of CD4(+) T cells (22.4%), macrophages (2.4%), and LCs (11.5%) in adults than in children (4.9%, 0.3%, and 6.2%, respectively) or in cervical mucosa (6.2%, 1.4%, and 1.5%, respectively). The highest proportions of CD4(+) T cells and LCs occurred in patients with a history of infection. Foreskin immune cells expressed predominantly the CCR5 HIV-1 co-receptor. Adult foreskin mucosa had greater susceptibility to infection with HIV(bal) than cervical mucosa or the external surface of foreskin tissue. Circumcision likely reduces risk of HIV-1 acquisition in men by decreasing HIV-1 target cells.
Collapse
|
research-article |
23 |
206 |
17
|
Herber R, Liem A, Pitot H, Lambert PF. Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J Virol 1996; 70:1873-81. [PMID: 8627712 PMCID: PMC190015 DOI: 10.1128/jvi.70.3.1873-1881.1996] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human papillomavirus type 16 (HPV-16) genome is commonly present in human cervical carcinoma, in which a subset of the viral genes, E6 and E7, are expressed. The HPV-16 E6 and E7 gene products can associated with and inactivate the tumor suppressor proteins p53 and Rb (the retinoblastoma susceptibility gene product), and in tissue culture cells, these viral genes display oncogenic properties. These findings have led to the hypothesis that E6 and E7 contribute to cervical carcinogenesis. This hypothesis has recently been tested by using transgenic mice as an animal model. HPV-16 E6 and E7 together were found to induce cancers in multiple tissues in which they were expressed, including squamous cell carcinoma, the cancer type most commonly associated with HPV-16 in the human cervix. We have extended these studies to investigate the in vivo activities of HPV-16 E7 when expressed in squamous epithelia of transgenic mice. Grossly, E7 transgenic mice had multiple phenotypes, including wrinkled skin that was apparent prior to the appearance of hair on neonates, thickened ears, and loss of hair in adults. In lines of mice expressing higher levels of E7, we observed stunted growth and mortality at an early age, potentially caused by an incapacity to feed. Histological analysis demonstrated that E7 causes epidermal hyperplasia in multiple transgenic lineages with high penetrance. This epithelial hyperplasia was characterized by an expansion of the proliferating compartment and an expansion of the keratin 10-positive layer of cells and was associated with hyperkeratosis. Hyperplasia was found at multiple sites in the animals in addition to the skin, including the mouth palate, esophagus, forestomach, and exocervix. In multiple transgenic lineages, adult animals developed skin tumors late in life with low penetrance. These tumors arose from the squamous epithelia and from sebaceous glands and were characterized histologically to be highly differentiated, locally invasive, and aggressive in their growth properties. On the basis of these phenotypes, we conclude that HPV-16 E7 can alter epithelial cell growth parameters sufficiently to potentiate tumorigenesis in mice.
Collapse
MESH Headings
- Animals
- Base Sequence
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/virology
- Cell Differentiation
- Cell Transformation, Neoplastic
- Cell Transformation, Viral
- DNA, Viral
- Epithelium/pathology
- Epithelium/virology
- Gene Expression Regulation, Viral
- Humans
- Hyperplasia/pathology
- Hyperplasia/virology
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/physiology
- Papillomaviridae/genetics
- Papillomaviridae/physiology
- Papillomavirus E7 Proteins
- RNA, Messenger/metabolism
- RNA, Viral/metabolism
- Skin/pathology
- Skin/virology
Collapse
|
research-article |
29 |
192 |
18
|
Ong PY, Leung DYM. Bacterial and Viral Infections in Atopic Dermatitis: a Comprehensive Review. Clin Rev Allergy Immunol 2017; 51:329-337. [PMID: 27377298 DOI: 10.1007/s12016-016-8548-5] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atopic dermatitis (AD) is the most common allergic skin disease in the general population. It is a chronic inflammatory skin disease complicated by recurrent bacterial and viral infections that, when left untreated, can lead to significant complications. The current article will review immunologic and molecular mechanisms underlying the propensity of AD patients to microbial infections. These infections include Staphylococcus aureus (S. aureus) skin infections, eczema herpeticum, eczema vaccinatum, and eczema coxsackium. Previous studies have shown that skin barrier defects, a decrease in antimicrobial peptides, increased skin pH, or Th2 cytokines such as IL-4 and IL-13 are potential contributing factors for the increased risk of skin infections in AD. In addition, bacterial virulence such as methicillin-resistant S. aureus (MRSA) produces significantly higher number of superantigens that increase their potential in causing infection and more severe cutaneous inflammation in AD patients. More recent studies suggest that skin microbiome including Staphylococcus epidermidis or other coagulase-negative staphylococci may play an important role in controlling S. aureus skin infections in AD. Other studies also suggest that genetic variants in the innate immune response may predispose AD patients to increased risk of viral skin infections. These genetic variants include thymic stromal lymphopoietin (TSLP), type I interferon (α, ß, ω), type II interferon (γ), and molecular pathways that lead to the production of interferons (interferon regulatory factor 2). A common staphylococcal toxin, α-toxin, may also play a role in enhancing herpes simplex virus skin infections in AD. Further understanding of these disease processes may have important clinical implications for the prevention and treatment of skin infections in this common skin disease.
Collapse
|
Review |
8 |
190 |
19
|
Abstract
Approximately 15 types of human papillomavirus (HPV) infection cause virtually all cases of cervical cancer. Human papillomavirus 16 is the major type, accounting for approximately 50% of cases. The major steps of cervical carcinogenesis include HPV infection, viral persistence and progression to precancer (as opposed to viral clearance), and invasion. Human papillomavirus is the most common sexually transmitted infection. However, most HPV infections become undetectable by even sensitive HPV DNA testing within 1 to 2 years. The prevalence of infection peaks at young ages and declines thereafter, perhaps as the result of HPV type-specific acquired immunity. Most HPV infections are neither microscopically evident nor visible, making HPV DNA detection the diagnostic reference standard. Poorly defined immunologic factors are the major determinants of viral outcome. Smoking, multiparity, and long-term oral contraceptive use increase the risk of persistence and progression. Other sexually transmitted infections (eg, Chlamydia trachomatis), chronic inflammation, and nutritional factors might also play a role. Overt, long-term viral persistence in the absence of precancer is uncommon. New prevention strategies can be derived from the evolving knowledge of HPV carcinogenesis. Human papillomavirus vaccination is the ultimate prevention strategy, and large-scale trials are already underway. In the meantime, HPV DNA diagnostics are more sensitive although less specific than cytology, permitting a consideration of lengthened screening intervals. In terms of public health education, clinicians and patients will need to shift discussions of the mildly abnormal Papanicolaou test to consideration of HPV infection as a common sexually transmitted infection that rarely causes cervical cancer.
Collapse
|
|
22 |
189 |
20
|
Moffat JF, Zerboni L, Kinchington PR, Grose C, Kaneshima H, Arvin AM. Attenuation of the vaccine Oka strain of varicella-zoster virus and role of glycoprotein C in alphaherpesvirus virulence demonstrated in the SCID-hu mouse. J Virol 1998; 72:965-74. [PMID: 9444989 PMCID: PMC124567 DOI: 10.1128/jvi.72.2.965-974.1998] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/1997] [Accepted: 11/04/1997] [Indexed: 02/05/2023] Open
Abstract
The SCID-hu mouse implanted with human fetal tissue is a novel model for investigating human viral pathogenesis. Infection of human skin implants was used to investigate the basis for the clinical attenuation of the varicella-zoster virus (VZV) strain, V-Oka, from which the newly licensed vaccine is made. The pathogenicity of V-Oka was compared with that of its parent, P-Oka, another low-passage clinical isolate, strain Schenke (VZV-S), and VZV-Ellen, a standard laboratory strain. The role of glycoprotein C (gC) in infectivity for human skin was assessed by using gC-negative mutants of V-Oka and VZV-Ellen. Whereas all of these VZV strains replicated well in tissue culture, only low-passage clinical isolates were fully virulent in skin, as shown by infectious virus yields and analysis of implant tissues for VZV DNA and viral protein synthesis. The infectivity of V-Oka in skin was impaired compared to that of P-Oka, providing the first evidence of a virologic basis for the clinical attenuation of V-Oka. The infectivity of V-Oka was further diminished in the absence of gC expression. All strains except gC-Ellen retained some capacity to replicate in human skin, but cell-free virus was recovered only from implants infected with P-Oka or VZV-S. Although VZV is closely related to herpes simplex virus type 1 (HSV-1) genetically, experiments in the SCID-hu model revealed differences in tropism for human cells that correlated with differences in VZV and HSV-1 disease. VZV caused extensive infection of epidermal and dermal skin cells, while HSV-1 produced small, superficial lesions restricted to the epidermis. As in VZV, gC expression was a determinant for viral replication in skin. VZV infects human CD4+ and CD8+ T cells in thymus/liver implants, but HSV-1 was detected only in epithelial cells, with no evidence of lymphotropism. These SCID-hu mouse experiments show that the clinical attenuation of the varicella vaccine can be attributed to decreased replication of V-Oka in skin and that tissue culture passage alone reduces the ability of VZV to infect human skin in vivo. Furthermore, gC, which is dispensable for replication in tissue culture, plays a critical role in the virulence of the human alphaherpesviruses VZV and HSV-1 for human skin.
Collapse
|
research-article |
27 |
181 |
21
|
Hannigan GD, Meisel JS, Tyldsley AS, Zheng Q, Hodkinson BP, SanMiguel AJ, Minot S, Bushman FD, Grice EA. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. mBio 2015; 6:e01578-15. [PMID: 26489866 PMCID: PMC4620475 DOI: 10.1128/mbio.01578-15] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Viruses make up a major component of the human microbiota but are poorly understood in the skin, our primary barrier to the external environment. Viral communities have the potential to modulate states of cutaneous health and disease. Bacteriophages are known to influence the structure and function of microbial communities through predation and genetic exchange. Human viruses are associated with skin cancers and a multitude of cutaneous manifestations. Despite these important roles, little is known regarding the human skin virome and its interactions with the host microbiome. Here we evaluated the human cutaneous double-stranded DNA virome by metagenomic sequencing of DNA from purified virus-like particles (VLPs). In parallel, we employed metagenomic sequencing of the total skin microbiome to assess covariation and infer interactions with the virome. Samples were collected from 16 subjects at eight body sites over 1 month. In addition to the microenviroment, which is known to partition the bacterial and fungal microbiota, natural skin occlusion was strongly associated with skin virome community composition. Viral contigs were enriched for genes indicative of a temperate phage replication style and also maintained genes encoding potential antibiotic resistance and virulence factors. CRISPR spacers identified in the bacterial DNA sequences provided a record of phage predation and suggest a mechanism to explain spatial partitioning of skin phage communities. Finally, we modeled the structure of bacterial and phage communities together to reveal a complex microbial environment with a Corynebacterium hub. These results reveal the previously underappreciated diversity, encoded functions, and viral-microbial dynamic unique to the human skin virome. IMPORTANCE To date, most cutaneous microbiome studies have focused on bacterial and fungal communities. Skin viral communities and their relationships with their hosts remain poorly understood despite their potential to modulate states of cutaneous health and disease. Previous studies employing whole-metagenome sequencing without purification for virus-like particles (VLPs) have provided some insight into the viral component of the skin microbiome but have not completely characterized these communities or analyzed interactions with the host microbiome. Here we present an optimized virus purification technique and corresponding analysis tools for gaining novel insights into the skin virome, including viral "dark matter," and its potential interactions with the host microbiome. The work presented here establishes a baseline of the healthy human skin virome and is a necessary foundation for future studies examining viral perturbations in skin health and disease.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
177 |
22
|
Stittelaar KJ, van Amerongen G, Kondova I, Kuiken T, van Lavieren RF, Pistoor FHM, Niesters HGM, van Doornum G, van der Zeijst BAM, Mateo L, Chaplin PJ, Osterhaus ADME. Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus. J Virol 2005; 79:7845-51. [PMID: 15919938 PMCID: PMC1143678 DOI: 10.1128/jvi.79.12.7845-7851.2005] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 02/24/2005] [Indexed: 11/20/2022] Open
Abstract
The use of classical smallpox vaccines based on vaccinia virus (VV) is associated with severe complications in both naive and immune individuals. Modified vaccinia virus Ankara (MVA), a highly attenuated replication-deficient strain of VV, has been proven to be safe in humans and immunocompromised animals, and its efficacy against smallpox is currently being addressed. Here we directly compare the efficacies of MVA alone and in combination with classical VV-based vaccines in a cynomolgus macaque monkeypox model. The MVA-based smallpox vaccine protected macaques against a lethal respiratory challenge with monkeypox virus and is therefore an important candidate for the protection of humans against smallpox.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
176 |
23
|
Antonsson A, Hansson BG. Healthy skin of many animal species harbors papillomaviruses which are closely related to their human counterparts. J Virol 2002; 76:12537-42. [PMID: 12438579 PMCID: PMC136724 DOI: 10.1128/jvi.76.24.12537-12542.2002] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomaviruses associated with clinical symptoms have been found in many vertebrate species. In this study, we have used an L1 gene consensus PCR test designed to detect a broad spectrum of human skin papillomaviruses to analyze swab samples from healthy skin of 111 animals belonging to 19 vertebrate species. In eight of the species, papillomavirus DNA was found with the following prevalences: chimpanzees, 9 of 11 samples positive; gorillas, 3 of 4; long-tailed macaques, 14 of 16; spider monkeys, 2 of 2; ruffed lemurs, 1 of 2; cows, 6 of 10; European elks, 4 of 4; aurochs, 1 of 1. In total, 53 new putative animal papillomavirus types were found. The results show that skin papillomaviruses can be detected in healthy skin from many different animal species and are sufficiently related genetically to their human counterparts to be identified by a human skin papillomavirus primer set (FAP59 and FAP64).
Collapse
|
research-article |
23 |
170 |
24
|
Ku CC, Zerboni L, Ito H, Graham BS, Wallace M, Arvin AM. Varicella-zoster virus transfer to skin by T Cells and modulation of viral replication by epidermal cell interferon-alpha. ACTA ACUST UNITED AC 2004; 200:917-25. [PMID: 15452178 PMCID: PMC2213285 DOI: 10.1084/jem.20040634] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Primary infection with varicella-zoster virus (VZV) causes the characteristic syndrome of varicella, or chickenpox. Experiments in severe combined immunodeficiency mice with human skin grafts (SCIDhu mice) indicate that VZV infection of T cells can mediate transfer of infectious virus to skin. VZV-infected T cells reached epithelial sites of replication within 24 h after entering the circulation. Memory CD4+ T cells were the predominant population recovered from skin in SCIDhu mice given uninfected or infected mononuclear cells, suggesting that immune surveillance by memory T cells may facilitate VZV transfer. The increased susceptibility of memory T cells to VZV infection may further enhance their role in VZV pathogenesis. During VZV skin infection, viral gene products down-regulated interferon-α to permit focal replication, whereas adjacent epidermal cells mounted a potent interferon-α response against cell–cell spread. Interleukin-1α, although activated in VZV-infected cells, did not trigger expression of endothelial adhesion molecules, thereby avoiding early recruitment of inflammatory cells. The prolonged varicella incubation period appears to represent the time required for VZV to overcome antiviral responses of epidermal cells and generate vesicles at the skin surface. Modulation of VZV replication by cutaneous innate immunity may avoid an incapacitating infection of the host that would limit opportunities for VZV transmission.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
165 |
25
|
Antonsson A, Karanfilovska S, Lindqvist PG, Hansson BG. General acquisition of human papillomavirus infections of skin occurs in early infancy. J Clin Microbiol 2003; 41:2509-14. [PMID: 12791874 PMCID: PMC156491 DOI: 10.1128/jcm.41.6.2509-2514.2003] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human skin papillomaviruses (HPVs) represent a group of ubiquitous viruses detected at a high prevalence in the normal skin of healthy adults. In the present study, we analyzed skin swab samples from babies during their first days of life and from infants at various ages up to age 4 years. Specimens from their parents and, for the newborn babies, environmental samples were also investigated. HPV DNA was already detected on the day of birth in samples from 2 of the 16 babies, and 45% of the samples from the babies were positive for HPV in the days following birth. Seventy-seven percent of the skin samples collected from the mothers were HPV DNA positive. The prevalence of HPV DNA among children from the ages of 1 month to 4 years varied between 50 and 70%. The HPV DNA sequences detected revealed a great diversity of genotypes and putative genotypes. Among 115 samples from 38 infants and 31 parents and 7 environmental samples, a total of 73 HPV types or putative types were isolated. Of these, 26 putative HPV types have not been described before. Our data suggest that asymptomatic HPV infections of normal skin are acquired very early in infancy and are caused by a great multiplicity of HPV types.
Collapse
|
research-article |
22 |
163 |