1
|
Ryan AK, Bartlett K, Clayton P, Eaton S, Mills L, Donnai D, Winter RM, Burn J. Smith-Lemli-Opitz syndrome: a variable clinical and biochemical phenotype. J Med Genet 1998; 35:558-65. [PMID: 9678700 PMCID: PMC1051366 DOI: 10.1136/jmg.35.7.558] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have reviewed all known UK cases of Smith-Lemli-Opitz syndrome. Among 49 cases with proven 7-dehydrocholesterol reductase deficiency, half had been terminated or had died in infancy. The minimum incidence is 1 in 60,000. The frequent occurrence of hypospadias may account for 71% of recognised cases being male. Important common features which emerged include short thumbs, severe photosensitivity, aggressive behaviour, and atrioventricular septal defect. The typical facial appearance becomes less obvious with age and 20% of cases did not have 2/3 toe syndactyly. Biochemical measurements of serum 7-dehydrocholesterol did not correlate with clinical severity.
Collapse
|
research-article |
27 |
187 |
2
|
Kelley RL, Roessler E, Hennekam RC, Feldman GL, Kosaki K, Jones MC, Palumbos JC, Muenke M. Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: does abnormal cholesterol metabolism affect the function of Sonic Hedgehog? AMERICAN JOURNAL OF MEDICAL GENETICS 1996; 66:478-84. [PMID: 8989473 DOI: 10.1002/(sici)1096-8628(19961230)66:4<478::aid-ajmg22>3.0.co;2-q] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The RSH/Smith-Lemli-Opitz syndrome (RSH/SLOS) is an autosomal recessive malformation syndrome associated with increased levels of 7-dehydro-cholesterol (7-DHC) and a defect of cholesterol biosynthesis at the level of 3 beta-hydroxy-steroid-delta7-reductase (7-DHC reductase). Because rats exposed to inhibitors of 7-DHC reductase during development have a high frequency of holoprosencephaly (HPE) [Roux et al., 1979], we have undertaken a search for biochemical evidence of RSH/SLOS and other possible defects of sterol metabolism among patients with various forms of HPE. We describe 4 patients, one with semilobar HPE and three others with less complete forms of the HPE sequence, in whom we have made a biochemical diagnosis of RSH/SLOS. The clinical and biochemical spectrum of these and other patients with RSH/SLOS suggests a role of abnormal sterol metabolism in the pathogenesis of their malformations. The association of HPE and RSH/SLOS is discussed in light of the recent discoveries that mutations in the embryonic patterning gene, Sonic Hedgehog (SHH), can cause HPE in humans and that the sonic hedgehog protein product undergoes autoproteolysis to form a cholesterol-modified active product. These clinical, biochemical, and molecular studies suggest that HPE and other malformations in SLOS may be caused by incomplete or abnormal modification of the sonic hedgehog protein and, possible, other patterning proteins of the hedgehog class, a hypothesis testable in somatic cell systems.
Collapse
|
|
29 |
167 |
3
|
Woollett LA. Review: Transport of maternal cholesterol to the fetal circulation. Placenta 2011; 32 Suppl 2:S218-21. [PMID: 21300403 DOI: 10.1016/j.placenta.2011.01.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 11/19/2022]
Abstract
Data obtained from recent studies in humans, rodents, and cell culture demonstrate that circulating maternal cholesterol can be transported to the fetus. The two major cell types responsible for the transport are trophoblasts and endothelial cells of the fetoplacental vasculature. Maternal lipoprotein-cholesterol is initially taken up by trophoblasts via receptor-mediated and receptor-independent processes, is transported by any number of the sterol transport proteins expressed by cells, and is effluxed or secreted out of the basal side via protein-mediated processes or by aqueous diffusion. This cholesterol is then taken up by the endothelium and effluxed to acceptors within the fetal circulation. The ability to manipulate the mass of maternal cholesterol that is taken up by the placenta and crosses to the fetus could positively impact development of fetuses affected with the Smith-Lemli-Opitz Syndrome (SLOS) that have reduced ability to synthesize cholesterol and possibly impact growth of fetuses unaffected by SLOS but with low birthweights.
Collapse
|
Review |
14 |
130 |
4
|
Wassif CA, Zhu P, Kratz L, Krakowiak PA, Battaile KP, Weight FF, Grinberg A, Steiner RD, Nwokoro NA, Kelley RI, Stewart RR, Porter FD. Biochemical, phenotypic and neurophysiological characterization of a genetic mouse model of RSH/Smith--Lemli--Opitz syndrome. Hum Mol Genet 2001; 10:555-64. [PMID: 11230174 DOI: 10.1093/hmg/10.6.555] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The RSH/Smith--Lemli--Opitz syndrome (RSH/SLOS) is a human autosomal recessive syndrome characterized by multiple malformations, a distinct behavioral phenotype with autistic features and mental retardation. RSH/SLOS is due to an inborn error of cholesterol biosynthesis caused by mutation of the 3 beta-hydroxysterol Delta(7)-reductase gene. To further our understanding of the developmental and neurological processes that underlie the pathophysiology of this disorder, we have developed a mouse model of RSH/SLOS by disruption of the 3 beta-hydroxysterol Delta(7)-reductase gene. Here we provide the biochemical, phenotypic and neurophysiological characterization of this genetic mouse model. As in human patients, the RSH/SLOS mouse has a marked reduction of serum and tissue cholesterol levels and a marked increase of serum and tissue 7-dehydrocholesterol levels. Phenotypic similarities between this mouse model and the human syndrome include intra-uterine growth retardation, variable craniofacial anomalies including cleft palate, poor feeding with an uncoordinated suck, hypotonia and decreased movement. Neurophysiological studies showed that although the response of frontal cortex neurons to the neurotransmitter gamma-amino-n-butyric acid was normal, the response of these same neurons to glutamate was significantly impaired. This finding provides insight into potential mechanisms underlying the neurological dysfunction seen in this human mental retardation syndrome and suggests that this mouse model will allow the testing of potential therapeutic interventions.
Collapse
|
|
24 |
127 |
5
|
Waterham HR, Wanders RJ. Biochemical and genetic aspects of 7-dehydrocholesterol reductase and Smith-Lemli-Opitz syndrome. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1529:340-56. [PMID: 11111101 DOI: 10.1016/s1388-1981(00)00159-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In recent years, several inherited human disorders caused by defects in cholesterol biosynthesis have been identified. These are characterized by malformations, multiple congenital anomalies, mental and growth retardation and/or skeletal and skin abnormalities indicating a pivotal role of cholesterol in morphogenesis and embryonic development. The first recognized and most common of these developmental disorders is Smith-Lemli-Opitz syndrome, an autosomal recessive trait caused by mutations in the DHCR7 gene resulting in a deficiency of the encoded sterol Delta(7)-reductase, alternatively called 7-dehydrocholesterol reductase (EC 1.3.1.21). This enzyme catalyzes the final step in cholesterol biosynthesis, which is the reduction of the Delta(7) double bond of 7-dehydrocholesterol to produce cholesterol.
Collapse
|
Comparative Study |
25 |
99 |
6
|
Porter FD. RSH/Smith-Lemli-Opitz syndrome: a multiple congenital anomaly/mental retardation syndrome due to an inborn error of cholesterol biosynthesis. Mol Genet Metab 2000; 71:163-74. [PMID: 11001807 DOI: 10.1006/mgme.2000.3069] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RSH/Smith-Lemli-Opitz syndrome (RSH/SLOS) is an autosomal recessive multiple congenital anomaly/mental retardation syndrome caused by an inborn error of cholesterol biosynthesis. The RSH/SLOS phenotypic spectrum is broad; however, typical features include microcephaly, ptosis, a small upturned nose, micrognathia, postaxial polydactaly, second and third toe syndactaly, genital anomalies, growth failure, and mental retardation. RSH/SLOS is due to a deficiency of the 3beta-hydroxysterol Delta(7)-reductase, which catalyzes the reduction of 7-dehydrocholesterol (7-DHC) to cholesterol. This inborn error of cholesterol biosynthesis results in elevated serum and tissue 7-DHC levels. The 3beta-hydroxysterol Delta(7)-reductase gene (DHCR7) maps to chromosome 11q12-13, and to date 66 different mutations of this gene have been identified in RSH/SLOS patients. Identification of the biochemical basis of RSH/SLOS has led to development of therapeutic regimens based on dietary cholesterol supplementation and has increased our understanding of the role cholesterol plays during embryonic development.
Collapse
|
Review |
25 |
88 |
7
|
Witsch-Baumgartner M, Gruber M, Kraft HG, Rossi M, Clayton P, Giros M, Haas D, Kelley RI, Krajewska-Walasek M, Utermann G. Maternal apo E genotype is a modifier of the Smith-Lemli-Opitz syndrome. J Med Genet 2004; 41:577-84. [PMID: 15286151 PMCID: PMC1735869 DOI: 10.1136/jmg.2004.018085] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Smith-Lemli-Opitz syndrome (MIM 270400) is an autosomal recessive malformation and mental retardation syndrome that ranges in clinical severity from minimal dysmorphism and mild mental retardation to severe congenital anomalies and intrauterine death. Smith-Lemli-Opitz syndrome is caused by mutations in the Delta7 sterol-reductase gene (DHCR7; EC 1.3.1.21), which impair endogenous cholesterol biosynthesis and make the growing embryo dependent on exogenous (maternal) sources of cholesterol. We have investigated whether apolipoprotein E, a major component of the cholesterol transport system in human beings, is a modifier of the clinical severity of Smith-Lemli-Opitz syndrome. METHOD Common apo E, DHCR7, and LDLR genotypes were determined in 137 biochemically characterised patients with Smith-Lemli-Opitz syndrome and 59 of their parents. RESULTS There was a significant correlation between patients' clinical severity scores and maternal apo E genotypes (p = 0.028) but not between severity scores and patients' or paternal apo E genotypes. In line with their effects on serum cholesterol levels, the maternal apo epsilon2 genotypes were associated with a severe Smith-Lemli-Opitz syndrome phenotype, whereas apo E genotypes without the epsilon2 allele were associated with a milder phenotype. The correlation of maternal apo E genotype with disease severity persisted after stratification for DHCR7 genotype. There was no association of Smith-Lemli-Opitz syndrome severity with LDLR gene variation. CONCLUSIONS These results suggest that the efficiency of cholesterol transport from the mother to the embryo is affected by the maternal apo E genotype and extend the role of apo E and its disease associations to modulation of embryonic development and malformations.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
71 |
8
|
Xu L, Mirnics K, Bowman AB, Liu W, Da J, Porter NA, Korade Z. DHCEO accumulation is a critical mediator of pathophysiology in a Smith-Lemli-Opitz syndrome model. Neurobiol Dis 2011; 45:923-9. [PMID: 22182693 DOI: 10.1016/j.nbd.2011.12.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/25/2011] [Accepted: 12/04/2011] [Indexed: 11/19/2022] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is an inborn error of metabolism caused by defective cholesterol biosynthesis. Mutations within the gene encoding 7-dehydrocholesterol reductase (DHCR7), the last enzyme in the pathway, lead to the accumulation of 7-dehydrocholesterol (7-DHC) in the brain tissue and blood of the SLOS patients. The objective of this study was to determine the consequences of the accumulation of an immediate cholesterol precursor, 7-DHC and its oxysterol metabolite, 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), in the brain tissue of Dhcr7-KO mouse, a model for SLOS. We found that cholesterol, 7-DHC and DHCEO show region-specific distribution, suggesting that the midbrain and the cortex are the primary sites of vulnerability. We also report that neurons are ten fold more susceptible to a 7-DHC-derived oxysterol mixture than glial cells, and that DHCEO accelerates differentiation and arborization of cortical neurons. The overall results suggest that 7-DHC oxidative metabolites are critical contributors to altered neural development in SLOS. The future studies will test if antioxidant supplementation will ameliorate some of the clinical symptoms associated with this devastating disease.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
67 |
9
|
Valencia A, Kochevar IE. Ultraviolet A induces apoptosis via reactive oxygen species in a model for Smith-Lemli-Opitz syndrome. Free Radic Biol Med 2006; 40:641-50. [PMID: 16458195 DOI: 10.1016/j.freeradbiomed.2005.09.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 09/09/2005] [Accepted: 09/15/2005] [Indexed: 01/07/2023]
Abstract
Solar ultraviolet A (UVA) radiation induces many responses in skin including oxidative stress, DNA damage, inflammation, and skin cancer. Smith-Lemli-Opitz syndrome (SLO-S) patients show dramatically enhanced immediate (5 min) and extended (24-48 h) skin inflammation in response to low UVA doses compared to normal skin. Mutations in Delta7-dehydrocholesterol reductase, which converts 7-dehydrocholesterol to cholesterol, produces high levels of 7-dehydrocholesterol in SLO-S patient's serum. Since 7-dehydrocholesterol is more rapidly oxidized than cholesterol, we hypothesized that 7-dehydrocholesterol enhances UVA-induced oxidative stress leading to keratinocyte death and inflammation. When keratinocytes containing high 7-dehydrocholesterol and low cholesterol were exposed to UVA (10 J/cm2), eightfold greater reactive oxygen species (ROS) were produced than in normal keratinocytes after 15 min. UVA induced 7-dehydrocholesterol concentration-dependent cell death at 24 h. These responses were inhibited by antioxidants, reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor (diphenyleneiodonium) and a mitochondria-specific radical quencher. Cell death was characterized by activation of caspases-3, -8, and -9 and by phosphatidylserine translocation. Studies using antioxidants and specific caspase inhibitors indicated that activation of caspase-8, but not caspase-9, mediates ROS-dependent caspase-3 activation and suggested that ROS from NADPH oxidase activate caspase-8. These results support a ROS-mediated apoptotic mechanism for the enhanced UVA-induced inflammation in SLO-S patients.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
63 |
10
|
Abstract
The Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive metabolic disorder characterized by variable congenital malformations, facial dysmorphism, and mental retardation. Mutations in the DHCR7 gene have been identified in SLOS patients. This gene encodes for the enzyme Delta7-sterol reductase which catalyses the last step of cholesterol biosynthesis. Among the 73 different mutations observed so far, including 10 novel mutations reported in this review, the majority are missense mutations (65) which cluster in three domains of the protein: in the transmembrane domain (TM mutations), in the fourth cytoplasmic loop (4L mutations), and at the C-terminus (CT mutations). Two nonsense mutations, one splice site mutation, two single nucleotide insertions, and three deletions which likely all represent null mutations were also described. Expression studies have demonstrated a decreased protein stability for all analyzed missense mutations. By comparing clinical severity scores, biochemical data, and mutations in SLOS patients a genotype-phenotype correlation has been established. The null and 4L mutations are associated with a severe clinical phenotype, and TM and CT mutations are associated with a mild clinical phenotype. DHCR7 mutational spectra in SLOS patients of British, German, Italian, and Polish origin demonstrate significant geographic frequency differences of common DHCR7 mutations.
Collapse
|
|
24 |
58 |
11
|
Kovarova M, Wassif CA, Odom S, Liao K, Porter FD, Rivera J. Cholesterol deficiency in a mouse model of Smith-Lemli-Opitz syndrome reveals increased mast cell responsiveness. ACTA ACUST UNITED AC 2006; 203:1161-71. [PMID: 16618793 PMCID: PMC2121200 DOI: 10.1084/jem.20051701] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutation of the 3β-hydroxysterol Δ7-reductase gene (Dhcr7−/−) results in Smith-Lemli-Opitz syndrome (SLOS). Patients, and genetically altered mice, are unable to produce cholesterol and accumulate 7-dehydrocholesterol (DHC) in serum and tissue. This causes multiple growth and developmental abnormalities as well as immune system anomalies including allergy. Because cholesterol is a key component of liquid-ordered membranes (lipid rafts) and these domains have been implicated in regulating mast cell activation, we examined whether mast cell responsiveness is altered in this model. Mast cells derived from Dhcr7−/− mice (DHCR KO) showed constitutive cytokine production and hyper-degranulation after stimulation of the high affinity IgE receptor (FcɛRI). DHCR KO mast cells, but not wild-type mast cells, accumulated DHC in lipid rafts. DHC partially disrupted lipid raft stability and displaced Lyn kinase protein and activity from lipid rafts. This led to down-regulation of some Lyn-dependent signaling events but increased Fyn kinase activity and Akt phosphorylation. The Lyn-dependent phosphorylation of Csk-binding protein, which negatively regulates Fyn activity, was decreased. This phenotype reproduces some of the characteristics of Lyn-null mast cells, which also demonstrate hyper-degranulation. These findings provide the first evidence of lipid raft dysfunction in SLOS and may explain the observed association of allergy with SLOS.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
57 |
12
|
Dehart DB, Lanoue L, Tint GS, Sulik KK. Pathogenesis of malformations in a rodent model for Smith-Lemli-Opitz syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS 1997; 68:328-37. [PMID: 9024568 DOI: 10.1002/(sici)1096-8628(19970131)68:3<328::aid-ajmg15>3.0.co;2-v] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The fact that Smith-Lemli-Opitz syndrome (SLOS), a syndrome comprising major malformations involving a number of organ systems, results from an abnormality in cholesterol biosynthesis, was discovered only recently. Utilizing a drug (BM 15.766) to inhibit the same step in cholesterol biosynthesis as is abnormal in those affected with SLOS, we have developed a rat model that presents with abnormalities observed as early as gestational day 12 that appear to be consistent with some of those subsequent malformations that comprise the human syndrome. Abnormalities of the brain and face include deficiency in the midline region of the upper face, narrowing of the forebrain hemispheres and of the cerebral aqueduct, and deficiency in the developing lower jaw. Associated pathogenesis, as observed on gestational day 11 in histological sections and with scanning electron microscopy, involves abnormal cell populations at the rim of the developing forebrain and in the alar plate of the lower midbrain and hind-brain. The affected cells appear abnormally rounded up, having apparently lost their normal cell contacts. The potential basis for the selective vulnerability of this cell population and the impact of its vulnerability relative to subsequent dysmorphogenesis is discussed.
Collapse
|
|
28 |
56 |
13
|
Witsch-Baumgartner M, Ciara E, Löffler J, Menzel HJ, Seedorf U, Burn J, Gillessen-Kaesbach G, Hoffmann GF, Fitzky BU, Mundy H, Clayton P, Kelley RI, Krajewska-Walasek M, Utermann G. Frequency gradients of DHCR7 mutations in patients with Smith-Lemli-Opitz syndrome in Europe: evidence for different origins of common mutations. Eur J Hum Genet 2001; 9:45-50. [PMID: 11175299 DOI: 10.1038/sj.ejhg.5200579] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Smith-Lemli-Opitz syndrome/RSH (SLOS) is a multiple congenital anomaly syndrome caused by mutations in the gene for Delta7-sterol reductase (DHCR7) which catalyses the last step in the biosynthesis of cholesterol. SLOS is among the common recessive disorders in Europeans but almost absent in most other populations. More than 40 mutations in the DHCR7 gene some of which are frequent have been described in SLOS patients of various origins. Here we report mutation analysis of the DHCR7 gene in SLOS patients from Poland (n = 15), Germany/Austria (n = 22) and Great Britain (n = 22). Altogether 35 different mutations were identified and the two null mutations IVS8-1G > C and W151X were the most frequent in the total sample. In all three populations three mutations accounted for >0.5 of SLOS chromosomes. The mutational spectra were, however, significantly different across these populations with each of the common mutations showing an east-west gradient (W151X, V326L) or vice versa (IVS8-1G > C). W151X is the most frequent (0.33) mutation in Polish SLOS patients. It has an intermediate frequency in German/Austrian patients (0.18) and is rare among British patients (0.02). V326L shows the same distribution pattern (Poland 0.23, Germany/Austria 0.18, Britain 0.02). In contrast IVS8-1G > C is most frequent in Britain (0.34) intermediate in Germany/Austria (0.20) and rare in Poland (0.03). All analysed IVS8-1G > C and V326L alleles shared the same DHCR7 haplotype, whereas the W151X mutation occurred on different haplotypes. There is evidence for both recurrent mutations and founder effects. Together this suggests that the common SLOS mutations in Europe have different geographic and historic origins and spread across the continent in opposite directions.
Collapse
|
|
24 |
53 |
14
|
Wassif CA, Krakowiak PA, Wright BS, Gewandter JS, Sterner AL, Javitt N, Yergey AL, Porter FD. Residual cholesterol synthesis and simvastatin induction of cholesterol synthesis in Smith-Lemli-Opitz syndrome fibroblasts. Mol Genet Metab 2005; 85:96-107. [PMID: 15896653 DOI: 10.1016/j.ymgme.2004.12.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 12/21/2004] [Accepted: 12/22/2004] [Indexed: 11/17/2022]
Abstract
Smith-Lemli-Opitz syndrome (RSH/SLOS) is an autosomal recessive, malformation syndrome caused by mutations in the 3beta-hydroxysterol delta7-reductase gene (DHCR7). DHCR7 catalyzes the reduction of 7-dehydrocholesterol (7DHC) to cholesterol. We report the mutation analysis and determination of residual cholesterol synthesis in 47 SLOS patients, and the effects of treatment of SLOS skin fibroblasts with simvastatin. Using deuterium labeling we have quantified the amount of synthesized cholesterol and 7DHC in homozygote, heterozygote, and control fibroblast cell lines. In SLOS fibroblasts, the fraction of synthesized cholesterol to total sterol synthesis ranged from undetectable to over 50%. This establishes that different mutant alleles encode enzymes with varying degrees of residual activity. There was a correlation between increased phenotypic severity and decreased residual cholesterol synthesis (r(2)=0.45, p<0.0001). Simvastatin treatment of SLOS fibroblasts with residual DHCR7 enzymatic activity decreased 7DHC levels and increased cholesterol synthesis. This increase in cholesterol synthesis is due to increased expression of a mutant allele with residual function. Determination of residual enzymatic activity for specific DHCR7 mutant alleles will help in understanding the processes underlying the broad phenotypic spectrum found in this disorder and will be useful in identifying patients who may benefit from simvastatin therapy.
Collapse
|
|
20 |
53 |
15
|
So J, Suckow V, Kijas Z, Kalscheuer V, Moser B, Winter J, Baars M, Firth H, Lunt P, Hamel B, Meinecke P, Moraine C, Odent S, Schinzel A, van der Smagt JJ, Devriendt K, Albrecht B, Gillessen-Kaesbach G, van der Burgt I, Petrij F, Faivre L, McGaughran J, McKenzie F, Opitz JM, Cox T, Schweiger S. Mild phenotypes in a series of patients with Opitz GBBB syndrome with MID1 mutations. Am J Med Genet A 2005; 132A:1-7. [PMID: 15558842 DOI: 10.1002/ajmg.a.30407] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Opitz syndrome (OS; MIM 145410 and MIM 300000) is a congenital midline malformation syndrome characterized by hypertelorism, hypospadias, cleft lip/palate, laryngotracheoesophageal (LTE) abnormalities, imperforate anus, developmental delay, and cardiac defects. The X-linked form (XLOS) is caused by mutations in the MID1 gene, which encodes a microtubule-associated RBCC protein. In this study, phenotypic manifestations of patients with and without MID1 mutations were compared to determine genotype-phenotype correlations. We detected 10 novel mutations, 5 in familial cases, 2 in sporadic cases, and 3 in families for whom it was not clear if they were familial or sporadic. The genotype and phenotype was compared for these 10 families, clinically diagnosed OS patients found not to have MID1 mutations, and 4 families in whom we have previously reported MID1 mutations. This combined data set includes clinical and mutation data on 70 patients. The XLOS patients with MID1 mutations were less severely affected than patients with MID1 mutations reported in previous studies, particularly in functionally significant neurologic, LTE, anal, and cardiac abnormalities. Minor anomalies were more prevalent in patients with MID1 mutations compared to those without mutations in this study. Female MID1 mutation carriers had milder phenotypes compared to male MID1 mutation carriers, with the most common manifestation being hypertelorism in both sexes. Most of the anomalies found in the patients of the present study do not correlate with the MID1 mutation type, with the possible exception of LTE malformations. This study demonstrates the wide spectrum of severity and manifestations of OS. It also shows that XLOS patients with MID1 mutations may be less severely affected than indicated in prior reports.
Collapse
|
Comparative Study |
20 |
51 |
16
|
Tu C, Li J, Jiang X, Sheflin LG, Pfeffer BA, Behringer M, Fliesler SJ, Qu J. Ion-current-based proteomic profiling of the retina in a rat model of Smith-Lemli-Opitz syndrome. Mol Cell Proteomics 2013; 12:3583-98. [PMID: 23979708 PMCID: PMC3861709 DOI: 10.1074/mcp.m113.027847] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 08/21/2013] [Indexed: 12/26/2022] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is one of the most common recessive human disorders and is characterized by multiple congenital malformations as well as neurosensory and cognitive abnormalities. A rat model of SLOS has been developed that exhibits progressive retinal degeneration and visual dysfunction; however, the molecular events underlying the degeneration and dysfunction remain poorly understood. Here, we employed a well-controlled, ion-current-based approach to compare retinas from the SLOS rat model to retinas from age- and sex-matched control rats (n = 5/group). Retinas were subjected to detergent extraction and subsequent precipitation and on-pellet-digestion procedures and then were analyzed on a long, heated column (75 cm, with small particles) with a 7-h gradient. The high analytical reproducibility of the overall proteomics procedure enabled reliable expression profiling. In total, 1,259 unique protein groups, ~40% of which were membrane proteins, were quantified under highly stringent criteria, including a peptide false discovery rate of 0.4%, with high quality ion-current data (e.g. signal-to-noise ratio ≥ 10) obtained independently from at least two unique peptides for each protein. The ion-current-based strategy showed greater quantitative accuracy and reproducibility over a parallel spectral counting analysis. Statistically significant alterations of 101 proteins were observed; these proteins are implicated in a variety of biological processes, including lipid metabolism, oxidative stress, cell death, proteolysis, visual transduction, and vesicular/membrane transport, consistent with the features of the associated retinal degeneration in the SLOS model. Selected targets were further validated by Western blot analysis and correlative immunohistochemistry. Importantly, although photoreceptor cell death was validated by TUNEL analysis, Western blot and immunohistochemical analyses suggested a caspase-3-independent pathway. In total, these results provide compelling new evidence implicating molecular changes beyond the initial defect in cholesterol biosynthesis in this retinal degeneration model, and they might have broader implications with respect to the pathobiological mechanism underlying SLOS.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
48 |
17
|
Wassif CA, Vied D, Tsokos M, Connor WE, Steiner RD, Porter FD. Cholesterol storage defect in RSH/Smith-Lemli-Opitz syndrome fibroblasts. Mol Genet Metab 2002; 75:325-34. [PMID: 12051964 DOI: 10.1016/s1096-7192(02)00010-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The RSH/Smith-Lemli-Opitz syndrome (SLOS) is a multiple malformation/mental retardation syndrome caused by an inborn error of cholesterol synthesis. Mutations in the 3beta-hydroxysteroid Delta(7)-reductase gene result in impaired enzymatic reduction of 7-dehydrocholesterol (7-DHC) to cholesterol. Cells obtain cholesterol by either de novo synthesis or from exogenous sources by the binding and uptake of low density lipoprotein (LDL) particles. Because de novo synthesis of cholesterol is impaired in SLOS, current investigational therapy for SLOS consists of dietary cholesterol supplementation. However, the potential effects of elevated intracellular levels of 7-DHC on intracellular LDL metabolism have not been described. We now report that in addition to the primary defect in de novo cholesterol synthesis, SLOS fibroblasts have a secondary defect of LDL cholesterol metabolism. Staining of fibroblasts with filipin, a fluorescent polyene antibiotic which binds unesterified sterols, shows that SLOS fibroblasts accumulate unesterified sterols. Further studies show that this increased filipin staining was due to an abnormal accumulation of LDL derived cholesterol rather than due to storage of endogenously synthesized 7-dehydrocholesterol (7-DHC). We have also found that SLOS fibroblasts failed to degrade LDL at a normal rate, and examination of SLOS fibroblasts by electron microscopy demonstrated the formation of lysosomal inclusions similar to that seen in Niemann-Pick type C (NPC) cells. We propose that 7-DHC may directly or indirectly inhibit the function of the NPC protein through its sterol-sensing domain (SSD), and that 7-DHC may perturb the function of other SSD containing proteins in SLOS.
Collapse
|
|
23 |
43 |
18
|
Valencia A, Rajadurai A, Carle AB, Kochevar IE. 7-Dehydrocholesterol enhances ultraviolet A-induced oxidative stress in keratinocytes: roles of NADPH oxidase, mitochondria, and lipid rafts. Free Radic Biol Med 2006; 41:1704-18. [PMID: 17145559 PMCID: PMC1880892 DOI: 10.1016/j.freeradbiomed.2006.09.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 08/23/2006] [Accepted: 09/05/2006] [Indexed: 12/20/2022]
Abstract
Long wavelength solar UVA radiation stimulates formation of reactive oxygen species (ROS) and prostaglandin E(2) (PGE(2)), which are involved in skin photosensitivity and tumor promotion. High levels of 7-dehydrocholesterol (7-DHC), the precursor to cholesterol, cause exaggerated photosensitivity to UVA in patients with Smith-Lemli-Opitz syndrome (SLOS). Partially replacing cholesterol with 7-DHC in keratinocytes rapidly (<5 min) increased UVA-induced ROS, intracellular calcium, phospholipase A(2) activity, PGE(2), and NADPH oxidase activity. UVA-induced ROS and PGE(2) production were inhibited in these cells by depleting the Nox1 subunit of NADPH oxidase using siRNA or using a mitochondrial radical quencher, MitoQ. Partial replacement of cholesterol with 7-DHC also disrupted membrane lipid raft domains, although depletion of cholesterol, which also disrupts lipid rafts, did not affect UVA-induced increases in ROS and PGE(2). Phospholipid liposomes containing 7-DHC were more rapidly oxidized by a free radical mechanism than those containing cholesterol. These results indicate that 7-DHC enhances rapid UVA-induced ROS and PGE(2) formation by enhancing free radical-mediated membrane lipid oxidation and suggests that this mechanism might underlie the UVA photosensitivity in SLOS.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
42 |
19
|
Richards MJ, Nagel BA, Fliesler SJ. Lipid hydroperoxide formation in the retina: correlation with retinal degeneration and light damage in a rat model of Smith-Lemli-Opitz syndrome. Exp Eye Res 2005; 82:538-41. [PMID: 16199034 PMCID: PMC2844950 DOI: 10.1016/j.exer.2005.08.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
The Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive disease presenting with multiple congenital anomalies, caused by a defect in cholesterol biosynthesis that results in abnormally elevated levels of 7-dehydrocholesterol (7DHC). Progressive retinal degeneration has been demonstrated in a rat model of SLOS, which is markedly exacerbated by intense light, far more so than occurs in normal albino rats under the same conditions. Herein, we demonstrate that, by six postnatal weeks, retinas in the SLOS rat model contain levels of lipid hydroperoxides (LPOs) comparable to those found in light-damaged albino rats (twice the normal steady-state levels), and that intense light exposure results in a three-fold elevation of LPOs with concomitant severe retinal degeneration. These results suggest a correlation between retinal degeneration and LPO levels. We propose that the presence of 7DHC in the SLOS rat retina potentiates LPO formation, and promotes the observed hypersensitivity to light-induced retinal degeneration.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
40 |
20
|
Nowaczyk MJ, Farrell SA, Sirkin WL, Velsher L, Krakowiak PA, Waye JS, Porter FD. Smith-Lemli-Opitz (RHS) syndrome: holoprosencephaly and homozygous IVS8-1G-->C genotype. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 103:75-80. [PMID: 11562938 DOI: 10.1002/1096-8628(20010915)103:1<75::aid-ajmg1502>3.0.co;2-r] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Smith-Lemli-Opitz syndrome (RHS) (SLOS, OMIM 270400) is an autosomal recessive disorder of cholesterol biosynthesis caused by mutations of the 3beta-hydroxysterol Delta(7)-Delta(8)-reductase gene, DHCR7. We report a fetus with holoprosencephaly and multiple congenital anomalies who was homozygous for the IVS8-1G-->C mutation. Following termination of pregnancy, both the elevated amniotic fluid 7-dehydrocholesterol level and the DHCR7 mutations were demonstrated. Two other newborn infants with IVS8-1G-->C/IVS8-1G-->C genotype are described. This report illustrates a severe phenotypic extreme of SLOS associated with a null genotype, underscores the complex relationship between SLOS and holoprosencephaly, and discusses the possible pathogenetic mechanisms of the development of holoprosencephaly in SLOS.
Collapse
|
Case Reports |
24 |
38 |
21
|
Rossi M, D'Armiento M, Parisi I, Ferrari P, Hall CM, Cervasio M, Rivasi F, Balli F, Vecchione R, Corso G, Andria G, Parenti G. Clinical phenotype of lathosterolosis. Am J Med Genet A 2007; 143A:2371-81. [PMID: 17853487 DOI: 10.1002/ajmg.a.31929] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lathosterolosis (LS) is a defect of cholesterol biosynthesis due to the deficiency of the enzyme sterol-C5-desaturase. Only two patients have been described to date, both presenting with multiple malformations, mental retardation, and liver involvement. In addition in one of them pathological examination revealed mucolipidosis-like inclusions on optic microscopy analysis, and peculiar lysosomal lamellar bodies on electron microscopy analysis. This study is focused on a better characterization of the clinical phenotype of LS. We describe a further case in a fetus, sibling of the first patient reported, presenting with neural tube defect, craniofacial and limb anomalies, and prenatal liver involvement. The fetal phenotype suggests the possible occurrence of significant intrafamilial variability in LS, and expands the phenotypic spectrum of the disease. Histological examination of autopsy samples from the fetus and skin fibroblasts from the living sibling suggested that the mucolipidosis-like picture previously reported is not a constant feature of LS, being possibly associated with the most severe biochemical defects, but confirmed the ultrastructural finding of lamellar inclusions. The LS phenotype appears to be characterized by the distinctive association of a recognizable pattern of congenital anomalies, involving axial and appendicular skeleton, liver, central nervous and urogenital systems, and lysosomal storage. This condition partially overlaps with other defects of sterol metabolism, suggesting intriguing pathogenic links among these conditions.
Collapse
|
Journal Article |
18 |
35 |
22
|
Chattopadhyay A, Paila YD, Jafurulla M, Chaudhuri A, Singh P, Murty MRVS, Vairamani M. Differential effects of cholesterol and 7-dehydrocholesterol on ligand binding of solubilized hippocampal serotonin1A receptors: implications in SLOS. Biochem Biophys Res Commun 2007; 363:800-5. [PMID: 17904101 DOI: 10.1016/j.bbrc.2007.09.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 09/12/2007] [Indexed: 11/21/2022]
Abstract
The serotonin1A receptor is an important member of the G-protein coupled receptor family, and is involved in the generation and modulation of a variety of cognitive, behavioral, and developmental functions. Solubilization of the hippocampal serotonin1A receptor by 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) is accompanied by loss of membrane cholesterol which results in a reduction in specific agonist binding activity. Replenishment of cholesterol to solubilized membranes restores the cholesterol content of the membrane and significantly enhances specific agonist binding activity. In order to test the stringency of the requirement of cholesterol in this process, we solubilized native hippocampal membranes followed by replenishment with 7-dehydrocholesterol (7-DHC). 7-DHC is an immediate biosynthetic precursor of cholesterol differing only in a double bond at the 7th position in its sterol ring. Our results show, for the first time, that replenishment of solubilized hippocampal membranes with 7-DHC does not restore ligand binding activity of the serotonin1A receptor, in spite of recovery of the overall membrane order. This observation shows that the requirement for restoration of ligand binding activity is more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane sterols with this important neuronal receptor under pathogenic conditions such as the Smith-Lemli-Opitz syndrome.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
35 |
23
|
Starck L, Lövgren-Sandblom A, Björkhem I. Simvastatin treatment in the SLO syndrome: a safe approach? AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 113:183-9. [PMID: 12407710 DOI: 10.1002/ajmg.10722] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Soon after the discovery of reduced cholesterol synthesis in the Smith-Lemli-Opitz syndrome (SLOS), several trials with dietary supplementation were initiated with the aim of increasing cholesterol and reducing the de novo synthesis and accumulation of 7- and 8-dehydrocholesterol (DHC). Dietary cholesterol raises cholesterol levels in the circulation with only marginal effects on levels of DHC. Photosensitivity and polyneuropathy have been reported to be improved by the treatment, but other effects have been difficult to evaluate. In order to see whether inhibition of hydroxymethylglutaryl CoA reductase is of benefit, two of our patients have been treated with simvastatin in addition to the long-term treatment with cholesterol and bile acids. Absolute as well as relative levels of DHC were reduced. In one patient, creatine kinase increased moderately after 2 months of treatment. In the other patient, the treatment had to be interrupted because of hepatotoxic side effects with a marked increase in alanine aminotransferase and aggravation of the hypocholesterolemia and photosensitivity. We conclude that even if the levels of accumulated intermediates can be reduced, treatment with a statin may be harmful in some patients with SLOS.
Collapse
|
Case Reports |
23 |
35 |
24
|
Rossi M, Vajro P, Iorio R, Battagliese A, Brunetti-Pierri N, Corso G, Di Rocco M, Ferrari P, Rivasi F, Vecchione R, Andria G, Parenti G. Characterization of liver involvement in defects of cholesterol biosynthesis: long-term follow-up and review. Am J Med Genet A 2005; 132A:144-51. [PMID: 15580635 DOI: 10.1002/ajmg.a.30426] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inborn defects of cholesterol biosynthesis are a group of metabolic disorders presenting with mental retardation and multiple congenital anomalies (MCA/MR syndromes). Functional and structural liver involvement has been reported as a rare (2.5-6%) complication of the Smith-Lemli-Opitz syndrome (SLOS) and it has not been fully characterized. Here, we report on a long-term follow-up study of four patients with SLOS, and one case with lathosterolosis who presented with liver disease and underwent an extensive diagnostic work-up. Reports of liver involvement in cholesterol biosynthesis defects are reviewed. Two main different patterns of liver involvement emerged: progressive cholestasis, and stable isolated hypertransaminasemia. In our series, the first pattern was found in two patients with SLOS and one with lathosterolosis, and the second in two SLOS cases. Cholestasis was associated with early lethality and normal serum gamma-glutamyl-transferase (GGT) levels in SLOS, while possible prolonged survival and high GGT levels were seen in lathosterolosis. Hepatic fibrosis was present in both conditions. Liver biopsy performed in one of our SLOS patients with isolated hypertransaminasemia, showed only mild hydropic degeneration of the hepatocytes. The presence of liver involvement in 16% of the SLOS patients diagnosed at our Center suggests that this complication might have been underestimated in previously reported cases, possibly overshadowed by the severity of multiple malformations. Fetal hepatopathy, cholestasis, and isolated hypertransaminasemia can occur also in other disorders of cholesterol biosynthesis, such as mevalonic aciduria, desmosterolosis, Conradi-Hunermann syndrome, Greenberg dysplasia, and Pelger-Huet homozygosity syndrome. This group of inherited disorders should be considered in the differential diagnosis of patients presenting with liver disease associated with developmental delay and/or multiple malformations. Periodic liver function evaluations are recommended in these patients.
Collapse
|
Review |
20 |
33 |
25
|
Digilio MC, Marino B, Giannotti A, Dallapiccola B, Opitz JM. Specific congenital heart defects in RSH/Smith-Lemli-Opitz syndrome: postulated involvement of the sonic hedgehog pathway in syndromes with postaxial polydactyly or heterotaxia. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2003; 67:149-53. [PMID: 12797454 DOI: 10.1002/bdra.10010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND RSH/Smith-Lemli-Opitz syndrome is an autosomal recessive syndrome due to an inborn error of cholesterol metabolism and is characterized by developmental delay, facial anomalies, hypospadias, congenital heart defect (CHD), postaxial polydactyly, and 2-3 toe syndactyly. CHD is found in half of the propositi, and a specific association with atrioventricular canal defect (AVCD) and anomalous pulmonary venous return has been demonstrated. METHODS We report on an additional patient with RSH/SLOS presenting with complete AVCD and anomalous pulmonary venous return, and discuss the possible relationship of the Sonic Hedgehog (SHH) pathway as causative factor of these CHDs and those in heterotaxia patients with postaxial polydactyly syndromes. RESULTS Anatomic similarities between heterotaxia and CHDs of several syndromes with postaxial polydactyly have been noted previously, considering the frequent association of AVCD with common atrium in these conditions. It is known that both CHDs of heterotaxia and postaxial polydactyly can be related to abnormalities of the SHH pathway. Cholesterol has a critical role in the formation of normally active hedgehog proteins. It could be hypothesized that specific types of CHDs in RSH/SLOS can be caused by modifications of the SHH protein related to the defect of cholesterol biosynthesis. CONCLUSIONS The specific association of AVCD and anomalous pulmonary venous return in patients with RSH/SLOS and the finding of AVCD +/- common atrium in several syndromes with polydactyly leads to the hypothesis that heterotaxia due to SHH anomalies could be involved in a large spectrum of conditions. Perturbations in different components of the SHH pathway could lead to several developmental errors presenting with partially overlapping clinical manifestations.
Collapse
|
Case Reports |
22 |
32 |