1
|
Zhu Y, Wang Q, Wang Y, Xu Y, Li J, Zhao S, Wang D, Ma Z, Yan F, Liu Y. Combined Transcriptomic and Metabolomic Analysis Reveals the Role of Phenylpropanoid Biosynthesis Pathway in the Salt Tolerance Process of Sophora alopecuroides. Int J Mol Sci 2021; 22:ijms22052399. [PMID: 33673678 PMCID: PMC7957753 DOI: 10.3390/ijms22052399] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Salt stress is the main abiotic stress that limits crop yield and agricultural development. Therefore, it is imperative to study the effects of salt stress on plants and the mechanisms through which plants respond to salt stress. In this study, we used transcriptomics and metabolomics to explore the effects of salt stress on Sophora alopecuroides. We found that salt stress incurred significant gene expression and metabolite changes at 0, 4, 24, 48, and 72 h. The integrated transcriptomic and metabolomic analysis revealed that the differentially expressed genes (DEGs) and differential metabolites (DMs) obtained in the phenylpropanoid biosynthesis pathway were significantly correlated under salt stress. Of these, 28 DEGs and seven DMs were involved in lignin synthesis and 23 DEGs and seven DMs were involved in flavonoid synthesis. Under salt stress, the expression of genes and metabolites related to lignin and flavonoid synthesis changed significantly. Lignin and flavonoids may participate in the removal of reactive oxygen species (ROS) in the root tissue of S. alopecuroides and reduced the damage caused under salt stress. Our research provides new ideas and genetic resources to study the mechanism of plant responses to salt stress and further improve the salt tolerance of plants.
Collapse
|
Journal Article |
4 |
36 |
2
|
Wang J, Lu N, Fu B. Inter-comparison of stable isotope mixing models for determining plant water source partitioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:685-693. [PMID: 30812003 DOI: 10.1016/j.scitotenv.2019.02.262] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/22/2018] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
Water sources used for plant identification coupled with stable isotopes are essential to improving the understanding of eco-hydrological processes and ecological management in water-limited ecosystems. Many approaches associated with stable isotopes have been used to determine plant water source apportionment. However, inter-comparisons of different methods are still limited, especially for Bayesian mixing models. In this study, we tested linear mixing models (IsoSource) and Bayesian models (SIAR, MixSIR and MixSIAR) to identify sources of water absorbed by Vitex negundo and Sophora viciifolia (shrubs) and Artemisia gmelinii (subshrub) during the growing season in the semiarid Loess Plateau. The results showed that there was no significant difference in the predicted plant water source fractions using only stable hydrogen isotope (δ2H) and only stable oxygen isotope (δ18O) with the IsoSource model. No significant difference was found in plant water source apportionment by the three Bayesian mixing models combined with δ2H and δ18O except for individual months. The SIAR and MixSIAR models detected no pronounced seasonal variations in plant water uptake, while the MixSIR model did detect seasonal variations. Overall, the SIAR and MixSIAR models exhibited relatively better water source apportionment performances than that of the MixSIR model. This discrepancy may be attributed to the difference in the post distribution simulation algorithm. This study provides critical insights into choosing a suitable method for identifying plant water source apportionment in arid and semiarid regions.
Collapse
|
Comparative Study |
6 |
27 |
3
|
Zheng J, Gao M, Wang Q, Wang J, Sun X, Chang Q, Tashiro Y. Enhancement of l-lactic acid production via synergism in open co-fermentation of Sophora flavescens residues and food waste. BIORESOURCE TECHNOLOGY 2017; 225:159-164. [PMID: 27888733 DOI: 10.1016/j.biortech.2016.11.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
In this study, Sophora flavescens residues (SFR) were used for l-lactic acid production and were mixed with food waste (FW) to assess the effects of different compositions of SFR and FW. Positive synergistic effects of mixed substrates were achieved with co-fermentation. Co-fermentation increased the proportion of l-lactic acid by decreasing the co-products of ethanol and other organic acids. A maximum l-lactic acid concentration of 48.4g/L and l-lactic acid conversion rate of 0.904g/g total sugar were obtained through co-fermentation of SFR and FW at the optimal ratio of 1:1.5. These results were approximately 6-fold those obtained during mono-fermentation of SFR. Co-fermentation of SFR and FW provides a suitable C/N ratio and pH for effective open fermentative production of l-lactic acid.
Collapse
|
|
8 |
23 |
4
|
Abd-Alla HI, Souguir D, Radwan MO. Genus Sophora: a comprehensive review on secondary chemical metabolites and their biological aspects from past achievements to future perspectives. Arch Pharm Res 2021; 44:903-986. [PMID: 34907492 PMCID: PMC8671057 DOI: 10.1007/s12272-021-01354-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Sophora is deemed as one of the most remarkable genera of Fabaceae, and the third largest family of flowering plants. The genus Sophora comprises approximately 52 species, 19 varieties, and 7 forms that are widely distributed in Asia and mildly in Africa. Sophora species are recognized to be substantial sources of broad spectrum biopertinent secondary metabolites namely flavonoids, isoflavonoids, chalcones, chromones, pterocarpans, coumarins, benzofuran derivatives, sterols, saponins (mainly triterpene glycosides), oligostilbenes, and mainly alkaloids. Meanwhile, extracts and isolated compounds from Sophora have been identified to possess several health-promising effects including anti-inflammatory, anti-arthritic, antiplatelets, antipyretic, anticancer, antiviral, antimicrobial, antioxidant, anti-osteoporosis, anti-ulcerative colitis, antidiabetic, anti-obesity, antidiarrheal, and insecticidal activities. Herein, the present review aims to provide comprehensive details about the phytochemicals and biological effects of Sophora species. The review spotlighted on the promising phytonutrients extracted from Sophora and their plethora of bioactivities. The review also clarifies the remaining gaps and thus qualifies and supplies a platform for further investigations of these compounds.
Collapse
|
Review |
4 |
22 |
5
|
Alfajaro MM, Rho MC, Kim HJ, Park JG, Kim DS, Hosmillo M, Son KY, Lee JH, Park SI, Kang MI, Ryu YB, Park KH, Oh HM, Lee SW, Park SJ, Lee WS, Cho KO. Anti-rotavirus effects by combination therapy of stevioside and Sophora flavescens extract. Res Vet Sci 2014; 96:567-75. [PMID: 24704033 DOI: 10.1016/j.rvsc.2014.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/08/2013] [Accepted: 03/13/2014] [Indexed: 11/19/2022]
Abstract
Anti-rotaviral activities of Sophora flavescens extract (SFE) and stevioside (SV) from Stevia rebaudiana Bertoni either singly or in various combinations were examined in vitro and in vivo using a porcine rotavirus G5[P7] strain. Combination of SFE and SV inhibited in vitro virus replication more efficiently than each single treatment. In the piglet model, SV had no effect on rotavirus enteritis, whereas SFE improved but did not completely cure rotaviral enteritis. Interestingly, combination therapy of SFE and SV alleviated diarrhea, and markedly improved small intestinal lesion score and fecal virus shedding. Acute toxicity tests including the piglet lethal dose 50, and body weight, organ weight and pathological changes for the combination therapy did not show any adverse effect on the piglets. These preliminary data suggest that the combination therapy of SV and SFE is a potential curative medication for rotaviral diarrhea in pigs. Determination of the efficacy of this combination therapy in other species including humans needs to be addressed in the future.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
21 |
6
|
Berghe WV, De Naeyer A, Dijsselbloem N, David JP, De Keukeleire D, Haegeman G. Attenuation of ERK/RSK2-driven NFκB gene expression and cancer cell proliferation by kurarinone, a lavandulyl flavanone isolated from Sophora flavescens ait. roots. Endocr Metab Immune Disord Drug Targets 2011; 11:247-61. [PMID: 21831037 DOI: 10.2174/187153011796429790] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 02/20/2011] [Indexed: 11/22/2022]
Abstract
We have analyzed in molecular detail how kurarinone, a lavandulyl flavanone isolated from Sophora flavescens, suppresses nuclear factor-κB (NFκB)-driven interleukin-6 (IL6) expression and cancer cell growth. Interleukin-6 (IL6), involved in cancer-related inflammation, acts as an autocrine and paracrine growth factor, which promotes angiogenesis, metastasis, and subversion of immunity, and changes responsivity to hormones and to chemotherapeutics. Our results in estrogen-unresponsive fibroblasts, ribosomal S6 kinase 2 kinase (RSK2) knockout cells, and estrogen receptor (ER)-deficient breast tumor cells show that kurarinone can inhibit tumor cell proliferation and selectively block nuclear NFκB transactivation of specific target genes such as IL6, cyclin D1, SOD2 but not TNFAIP2. This occurs via attenuation of extracellular signal-regulated protein (ERK) and RSK2 kinase pathways and inhibition of S6 kinase ribosomal protein (S6RP) and histone H3 S10 phosphorylation. As constitutive NFκB and RSK2 activity are important hallmarks of human cancers, including hematopoietic malignancies and solid tumors, prenylated flavanones represent an attractive class of natural inhibitors of the ERK/RSK2 signaling pathway for cancer therapy.
Collapse
|
Comparative Study |
14 |
17 |
7
|
Zhao X, Sun XF, Zhao LL, Huang LJ, Wang PC. Morphological, transcriptomic and metabolomic analyses of Sophora davidii mutants for plant height. BMC PLANT BIOLOGY 2022; 22:144. [PMID: 35337273 PMCID: PMC8951708 DOI: 10.1186/s12870-022-03503-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/02/2022] [Indexed: 05/28/2023]
Abstract
Sophora davidii is an important plant resource in the karst region of Southwest China, but S. davidii plant-height mutants are rarely reported. Therefore, we performed phenotypic, anatomic structural, transcriptomic and metabolomic analyses to study the mechanisms responsible for S. davidii plant-height mutants. Phenotypic and anatomical observations showed that compared to the wild type, the dwarf mutant displayed a significant decrease in plant height, while the tall mutant displayed a significant increase in plant height. The dwarf mutant cells were smaller and more densely arranged, while those of the wild type and the tall mutant were larger and loosely arranged. Transcriptomic analysis revealed that differentially expressed genes (DEGs) involved in cell wall biosynthesis, expansion, phytohormone biosynthesis, signal transduction pathways, flavonoid biosynthesis and phenylpropanoid biosynthesis were significantly enriched in the S. davidii plant-height mutants. Metabolomic analysis revealed 57 significantly differential metabolites screened from both the dwarf and tall mutants. A total of 8 significantly different flavonoid compounds were annotated to LIPID MAPS, and three metabolites (chlorogenic acid, kaempferol and scopoletin) were involved in phenylpropanoid biosynthesis and flavonoid biosynthesis. These results shed light on the molecular mechanisms of plant height in S. davidii mutants and provide insight for further molecular breeding programs.
Collapse
|
research-article |
3 |
16 |
8
|
Kuki KN, Oliva MA, Pereira EG, Costa AC, Cambraia J. Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 403:207-214. [PMID: 18571219 DOI: 10.1016/j.scitotenv.2008.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 05/06/2008] [Accepted: 05/07/2008] [Indexed: 05/26/2023]
Abstract
Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions.
Collapse
|
|
17 |
16 |
9
|
Zhao P, Hamada C, Inoue K, Yamamoto H. Efficient production and capture of 8-prenylnaringenin and leachianone G-biosynthetic intermediates of sophoraflavanone G--by the addition of cork tissue to cell suspension cultures of Sophora flavescens. PHYTOCHEMISTRY 2003; 62:1093-1099. [PMID: 12591262 DOI: 10.1016/s0031-9422(02)00671-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It has previously been demonstrated that the addition of cork tissue to cell suspension cultures of Sophora flavescens stimulates the production of sophoraflavanone G, most of which has been recovered from the added cork tissue. In the present study, it was found that two precursors of sophoraflavanone G, 8-prenylnaringenin (sophoraflavanone B) and leachianone G, both of which have never been detected either in cultured cells or in the original plants, also accumulated in the added cork tissue. Thirteen minor flavonoids including three prenylated flavonoids, in addition to 8-prenylnaringenin and leachianone G, were isolated from the cork tissue co-incubated with S. flavescens cells. The new compounds flavescenones A, B and C, were determined to be (3R)-5, 7, 2'-trihydroxy-6-gamma, gamma-dimethylallyl-4', 5'-methylenedioxyisoflavanone; 5, 7, 2'-trihydroxy-6-gamma, gamma-dimethylallyl-4', 5'-methylenedioxyisoflavone and 2-[2',4'-dihydroxy-3'-(gamma-hydroxymethyl-gamma-methylallyl)phenyl]-5,6-methylenedioxybenzofuran, respectively, by means of spectroscopic analyses that included 2D-NMR techniques.
Collapse
|
|
22 |
15 |
10
|
Yamamoto H, Zhao P, Inoue K. Origin of two isoprenoid units in a lavandulyl moiety of sophoraflavanone G from Sophora flavescens cultured cells. PHYTOCHEMISTRY 2002; 60:263-267. [PMID: 12031444 DOI: 10.1016/s0031-9422(02)00111-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cell suspension cultures of Sophora flavescens produced large amounts of sophoraflavanone G, an 8-lavandulylated flavanone and lupalbigenin, a 6,3'-di-dimethylallylated isoflavone, by the simultaneous addition of cork tissues and methyl jasmonate. The labeling pattern of the isoprene units resulting after administration of [1-13C] glucose into the cell cultures in the presence of the above additives revealed that two isoprene units in the lavandulyl group of sophoraflavanone G and two dimethylallyl groups of lupalbigenin were biosynthesized via the 1-deoxy-D-xylulose-5-phosphate pathway.
Collapse
|
|
23 |
13 |
11
|
Wei G, Chen Y, Guo X, Wei J, Dong L, Chen S. Biosyntheses characterization of alkaloids and flavonoids in Sophora flavescens by combining metabolome and transcriptome. Sci Rep 2021; 11:7388. [PMID: 33795823 PMCID: PMC8016917 DOI: 10.1038/s41598-021-86970-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Sophora flavescens are widely used for their pharmacological effects. As its main pharmacological components, alkaloids and flavonoids are distributed in the root tissues wherein molecular mechanisms remain elusive. In this study, metabolite profiles are analyzed using metabolomes to obtain biomarkers detected in different root tissues. These biomarkers include alkaloids, phenylpropanoids, and flavonoids. The high-performance liquid chromatography analysis results indicate the differences in principal component contents. Oxymatrine, sophoridine, and matrine contents are the highest in the phloem, whereas trifolirhizin, maackiain, and kushenol I contents are the highest in the xylem. The transcript expression profiles also show tissue specificity in the roots. A total of 52 and 39 transcripts involved in alkaloid and flavonoid syntheses are found, respectively. Among them, the expression levels of LYSA1, LYSA2, AO2, AO6, PMT1, PMT17, PMT34, and PMT35 transcripts are highly and positively correlated with alkaloids contents. The expression levels of 4CL1, 4CL3, 4CL12, CHI5, CHI7, and CHI9 transcripts are markedly and positively correlated with flavonoids contents. Moreover, the quantitative profiles of alkaloids and flavonoids are provided, and the pivotal genes regulating their distribution in S. flavescens are determined. These results contribute to the existing data for the genetic improvement and target breeding of S. flavescens.
Collapse
|
research-article |
4 |
13 |
12
|
Wang MC, Huang WC, Chen LC, Yeh KW, Lin CF, Liou CJ. Sophoraflavanone G from Sophora flavescens Ameliorates Allergic Airway Inflammation by Suppressing Th2 Response and Oxidative Stress in a Murine Asthma Model. Int J Mol Sci 2022; 23:ijms23116104. [PMID: 35682783 PMCID: PMC9181790 DOI: 10.3390/ijms23116104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
Sophoraflavanone G (SG), isolated from Sophora flavescens, has anti-inflammatory and anti-tumor bioactive properties. We previously showed that SG promotes apoptosis in human breast cancer cells and leukemia cells and reduces the inflammatory response in lipopolysaccharide-stimulated macrophages. We investigated whether SG attenuates airway hyper-responsiveness (AHR) and airway inflammation in asthmatic mice. We also assessed its effects on the anti-inflammatory response in human tracheal epithelial cells. Female BALB/c mice were sensitized with ovalbumin, and asthmatic mice were treated with SG by intraperitoneal injection. We also exposed human bronchial epithelial BEAS-2B cells to different concentrations of SG to evaluate its effects on inflammatory cytokine levels. SG treatment significantly reduced AHR, eosinophil infiltration, goblet cell hyperplasia, and airway inflammation in the lungs of asthmatic mice. In the lungs of ovalbumin-sensitized mice, SG significantly promoted superoxide dismutase and glutathione expression and attenuated malondialdehyde levels. SG also suppressed levels of Th2 cytokines and chemokines in lung and bronchoalveolar lavage samples. In addition, we confirmed that SG decreased pro-inflammatory cytokine, chemokine, and eotaxin expression in inflammatory BEAS-2B cells. Taken together, our data demonstrate that SG shows potential as an immunomodulator that can improve asthma symptoms by decreasing airway-inflammation-related oxidative stress.
Collapse
|
|
3 |
12 |
13
|
Tian J, Pang Y, Yuan W, Peng J, Zhao Z. Growth and nitrogen metabolism in Sophora japonica (L.) as affected by salinity under different nitrogen forms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111347. [PMID: 35700842 DOI: 10.1016/j.plantsci.2022.111347] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Sophora japonica is a leguminous tree species native to China. To explore the nitrogen (N) source preference and its impact on stress tolerance, a hydroponic experiment was designed in which S. japonica seedlings were supplied with sole ammonium (NH4+) or sole nitrate (NO3-) nutrition under 75 mM NaCl-induced salt stress. The growth and N metabolism performance were investigated. In the absence of NaCl, plants fed NH4+ showed better root growth than those fed NO3-, but there was no difference in aerial part growth. Salinity inhibited the root growth of NH4+-fed plants and the shoot growth of NO3--fed plants, while the total N accumulation was suppressed under either N form. Specifically, in NH4+-fed plants, salinity significantly increased the net photosynthetic rate, root NH4+ content and root antioxidant enzyme activities. Higher nitrate reductase (NR) activities but lower glutamate synthetase (GS) activities were observed in both leaves and roots. Leaf AMT1.1 and AMT2.1a in NH4+-fed plants positively reacted to salt stress, whereas the expression of four AMTs was reduced or remained unchanged in roots. In contrast, salinity suppressed the net photosynthetic rate, antioxidant enzyme activities, and GS activity in the leaves of NO3--fed plants. Upregulation of NPF1.2, NPF2.11, NPF4.6 and NPF7.3, as well as unaltered NR activity, caused higher NO3- content in the leaves. Moreover, NR and glutamate synthase (GOGAT) activities together with the transcription of most NRTs were promoted by salinity in the roots of NO3--fed plants. Additionally, compared to those treated with NH4+, in response to salinity, NO3--treated seedlings showed more intensive repression of the net photosynthetic rate, chlorophyll content, and both shoot and root growth. Overall, these results suggest that S. japonica plants grew better in NH4+ medium than in NO3- medium, and the different N metabolism responses improved S. japonica tolerance to salinity with NH4+ application. This study provides new insights for understanding the mechanism of salt tolerance, breeding resistant varieties of S. japonica, and developing scientific fertilization management strategies during the seedling cultivation period.
Collapse
|
|
3 |
11 |
14
|
Liu R, Qi Y, Sun A, Xie H. Isolation and purification of chemical constituents from the pericarp ofSophora japonica L. by chromatography on a 12% cross-linked agarose gel. J Sep Sci 2007; 30:1870-4. [PMID: 17638350 DOI: 10.1002/jssc.200600528] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A chromatographic method using 12% cross-linked agarose gel Superose 12 as the separation medium was developed for isolation and purification of the chemical constituents from the pericarp of Sophora japonica L. The mobile phase used for the separation was 2% acetic acid and 7% acetic acid in gradient elution. As a result, eight compounds including four kinds of flavonoids and four kinds of isoflavonoids were obtained in a one-step separation. A straightforward explanation of the separation mechanism of flavonoids and isoflavonoids on Superose 12 is also given. The flavonoids and isoflavonoids are retained on Superose 12 by a combination of hydrogen bonding and hydrophobic interactions between the hydroxyl groups of aglycone and the residues of the cross-linking reagents used in the manufacture of Superose 12.
Collapse
|
|
18 |
11 |
15
|
Xu MJ, Dong JF. Synergistic action between jasmonic acid and nitric oxide in inducing matrine accumulation of Sophora flavescens suspension cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:92-101. [PMID: 18666956 DOI: 10.1111/j.1744-7909.2007.00570.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Secondary metabolites not only play important ecological roles in plants but also are important pharmaceutical and source compounds for derivative synthesis. Production of plant secondary metabolites is believed to be controlled by the endogenous signal network of plants. However, the molecular basis is still largely unknown. Here we show that matrine production of Sophora flavescens Ait. cells treated with low levels of jasmonic acid (JA) and nitric oxide (NO) is significantly increased although treatment with low concentrations of JA or NO alone has no effects on matrine production, showing that JA and NO may act synergistically in triggering matrine production. Moreover, treatment with NO triggers lipoxygenase (LOX) activity and enhances JA levels of the cells, showing that NO may activate the endogenous JA biosynthesis of S. flavescens cells. External application of JA induces nitric oxide synthase-like activities and stimulates NO generation of S. flavescens cells, which suggests that JA may trigger NO generation of the cells. Thus, the results reveal a mutually amplifying reaction between JA and NO in S. flavescens cells. Furthermore, JA and NO inhibitors suppress not only the mutually amplifying reaction between JA and NO but also the synergistic effects of NO and JA on matrine production. Therefore, the data demonstrate that the synergistic action of JA and NO in inducing matrine production might be due to the mutually amplifying reaction between JA and NO in the cells.
Collapse
|
|
17 |
9 |
16
|
Song J, Clemens J, Jameson PE. Quantitative expression analysis of the ABC genes in Sophora tetraptera, a woody legume with an unusual sequence of floral organ development. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:247-259. [PMID: 18238803 DOI: 10.1093/jxb/erm305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sophora is a woody genus of the Leguminosae in which an unusual order and process of floral organ development is often observed. The SEM results for Sophora tetraptera revealed precocious initiation of the carpel, delayed development of petals, and floral organ development interrupted by an unusual prolonged summer-autumn dormant period which occurred between organ initiation and organ differentiation. These observations provided an opportunity to track key floral identity genes over an extended developmental period. Homologues of LEAFY, APETALA1, PISTILLATA, and AGAMOUS were isolated from S. tetraptera. Real-time PCR enabled a simultaneous and quantitative analysis of both the temporal and spatial expression patterns of these four genes. Expression differences in the range of three to five orders of magnitude were detected between different genes and between different stages of flower development for the same gene. Although not functionally tested, the spatial expression patterns of the genes were consistent with expectations based on the ABC model of floral development. Their temporal expression patterns were consistent with the timing of flower initiation and the unusual order of organ development. Quantitatively, while the expression levels of the LFY homologue and the A-class gene were high during the periods of organ initiation and organ differentiation and low during the summer-autumn dormant period, high expression levels of the B- and C-class genes were detected only during the rapid, albeit delayed, phase of organ differentiation. Additionally, the sustained expression of the floral organ identity genes after differentiation reflects on-going roles for these genes during subsequent organ development.
Collapse
|
|
17 |
9 |
17
|
Kim S, Jeong YJ, Park SH, Park SC, Lee SB, Lee J, Kim SW, Ha BK, Kim HS, Kim H, Ryu YB, Jeong JC, Kim CY. The Synergistic Effect of Co-Treatment of Methyl Jasmonate and Cyclodextrins on Pterocarpan Production in Sophora flavescens Cell Cultures. Int J Mol Sci 2020; 21:ijms21113944. [PMID: 32486319 PMCID: PMC7313034 DOI: 10.3390/ijms21113944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/02/2022] Open
Abstract
Pterocarpans are derivatives of isoflavonoids, found in many species of the family Fabaceae. Sophora flavescens Aiton is a promising traditional Asian medicinal plant. Plant cell suspension cultures represent an excellent source for the production of valuable secondary metabolites. Herein, we found that methyl jasmonate (MJ) elicited the activation of pterocarpan biosynthetic genes in cell suspension cultures of S. flavescens and enhanced the accumulation of pterocarpans, producing mainly trifolirhizin, trifolirhizin malonate, and maackiain. MJ application stimulated the expression of structural genes (PAL, C4H, 4CL, CHS, CHR, CHI, IFS, I3’H, and IFR) of the pterocarpan biosynthetic pathway. In addition, the co-treatment of MJ and methyl-β-cyclodextrin (MeβCD) as a solubilizer exhibited a synergistic effect on the activation of the pterocarpan biosynthetic genes. The maximum level of total pterocarpan production (37.2 mg/g dry weight (DW)) was obtained on day 17 after the application of 50 μM MJ on cells. We also found that the combined treatment of cells for seven days with MJ and MeβCD synergistically induced the pterocarpan production (trifolirhizin, trifolirhizin malonate, and maackiain) in the cells (58 mg/g DW) and culture medium (222.7 mg/L). Noteworthy, the co-treatment only stimulated the elevated extracellular production of maackiain in the culture medium, indicating its extracellular secretion; however, its glycosides (trifolirhizin and trifolirhizin malonate) were not detected in any significant amounts in the culture medium. This work provides new strategies for the pterocarpan production in plant cell suspension cultures, and shows MeβCD to be an effective solubilizer for the extracellular production of maackiain in the cell cultures of S. flavescens.
Collapse
|
Journal Article |
5 |
5 |
18
|
Yuan Y, Wu H, Shuai B, Liu C, Zhu F, Gao F, Wei C, Fan H. Mechanism of HSP90 Inhibitor in the Treatment of DSS-induced Colitis in Mice by Inhibiting MAPK Pathway and Synergistic Effect of Compound Sophorae Decoction. Curr Pharm Des 2022; 28:3456-3468. [PMID: 36415092 DOI: 10.2174/1381612829666221122113929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The mechanism of Heat Shock Protein 90 (HSP90) in Ulcerative Colitis (UC) has been studied, and mitogenic-activated protein kinases (MAPK) also contribute to the pathogenesis of UC. However, the effect of the HSP90/MAPK pathway in UC is still unclear. Therefore, the mainstay of this research is to explore the mechanism of action of this pathway in UC. Compound sophorae decoction (CSD), as a Chinese herbal decoction, can synergistically affect the above process. OBJECTIVE This study aimed to uncover the synergistic effects of HSP90 inhibitors regulating the MAPK pathway for treating DSS-induced colitis in mice and the synergistic effects of CSD. METHODS This experiment used oral administration of standard diets containing 3% dextran sodium sulfate (DSS) to establish an experimental colitis model in mice. The model was treated with HSP90 inhibitor, CSD, or dexamethasone. Mouse feces, mobility, body weight, colon length, and colon histopathology scores were recorded daily to assess the degree of colitis inflammation. Expression levels of HSP90 and MAPK pathway-related genes and proteins were evaluated by Western blot and qPCR. The evaluation of intestinal mucosal permeability was measured by enzyme-linked immunosorbent assay (ELISA), which could detect the protein level of D-Amino Acid Oxidase (DAO) and D-lactic acid (D-LA). The same went for downstream molecules AFT-2, p53, and apoptosis-related proteins BAX, BCL-2, Caspase3, and survivin in the MAPK pathway. Immunohistochemical measured p-38, p-JNK, and p-ERK expressions. JAM-A and claudin-1 connexin were tested by immunofluorescence staining. The TUNEL method was for measuring the apoptosis rate of colonic epithelial cells. CBA kit determined the level of inflammatory factors of colons. RESULTS HSP90 inhibitor can improve the degree of pathological damage in the colon of mice treated with DSS, increase the mice's weight and the length of the colon, and significantly reduce the disease activity index (DAI) score. Intraperitoneal injection of HSP90 inhibitor can reduce the expression of MAPK pathway markers P38, JNK, ERK, and their phosphorylation and decrease the content of AFT-2 and p53, which is downstream of the MAPK pathway. In addition, treatment of the HSP90 inhibitor up-regulated the expression of anti-apoptotic proteins BCL-2 and survivin, as well as down-regulated apoptotic protein caspase3, BAX in the colon of mice with colitis. Lower levels of inflammatory factors such as IL-6, MCP-1, IFN-γ, TNF, IL-12p70, and increased IL-10 were observed after HSP90 inhibitor therapy. Furthermore, the combination treatment of CSD can enhance the effect of the single HSP90 inhibitor treatment and play a synergistic effect. CONCLUSION These data suggest that an HSP90 inhibitor is available to treat UC by inhibiting the MAPK signaling pathway. This axis can restore the intestinal mucosa barrier's function by reducing intestinal mucosa's permeability and inhibiting apoptosis of intestinal epithelial cells. The specific mechanism is that HSP90 inhibitor can reduce the pathological damage and inflammation levels of colitis mice, and reduce the apoptosis rate of colonic epithelial cells and the mucosal permeability, thereby restoring the mucosal barrier function. During this process, CSD works synergistically to improve the therapeutic effect of the HSP90 inhibitor.
Collapse
|
|
3 |
5 |
19
|
Yamamoto H, Yatou A, Inoue K. 8-dimethylallylnaringenin 2'-hydroxylase, the crucial cytochrome P450 mono-oxygenase for lavandulylated flavanone formation in Sophora flavescens cultured cells. PHYTOCHEMISTRY 2001; 58:671-676. [PMID: 11672730 DOI: 10.1016/s0031-9422(01)00270-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
8-dimethylallylnaringenin (8-DMAN) 2'-hydroxylase, which is indispensable for the formation of a lavandulylated flavanone, sophoraflavanone G, was detected in cell suspension cultures of Sophora flavescens. The enzyme catalyzes the 2'-hydroxylation of 8-DMAN to leachianone G, and is tightly bound to the membrane. It required NADPH and molecular oxygen as cofactors, and was inhibited by several cytochrome P450 inhibitors such as carbon monoxide and cytochrome c, indicating that the reaction is mediated by a cytochrome P450 monooxygenase. The optimum pH of 8-DMAN 2'-hydroxylase was 8.5, and the enzyme hydroxylated only 8-DMAN. Apparent Km values for 8-DMAN and NADPH of the enzyme were 55 and 34 microM, respectively.
Collapse
|
|
24 |
4 |
20
|
Liang Y, Wei K, Wei F, Qin S, Deng C, Lin Y, Li M, Gu L, Wei G, Miao J, Zhang Z. Integrated transcriptome and small RNA sequencing analyses reveal a drought stress response network in Sophora tonkinensis. BMC PLANT BIOLOGY 2021; 21:566. [PMID: 34856930 PMCID: PMC8641164 DOI: 10.1186/s12870-021-03334-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Sophora tonkinensis Gagnep is a traditional Chinese medical plant that is mainly cultivated in southern China. Drought stress is one of the major abiotic stresses that negatively impacts S. tonkinensis growth. However, the molecular mechanisms governing the responses to drought stress in S. tonkinensis at the transcriptional and posttranscriptional levels are not well understood. RESULTS To identify genes and miRNAs involved in drought stress responses in S. tonkinensis, both mRNA and small RNA sequencing was performed in root samples under control, mild drought, and severe drought conditions. mRNA sequencing revealed 66,476 unigenes, and the differentially expressed unigenes (DEGs) were associated with several key pathways, including phenylpropanoid biosynthesis, sugar metabolism, and quinolizidine alkaloid biosynthesis pathways. A total of 10 and 30 transcription factors (TFs) were identified among the DEGs under mild and severe drought stress, respectively. Moreover, small RNA sequencing revealed a total of 368 miRNAs, including 255 known miRNAs and 113 novel miRNAs. The differentially expressed miRNAs and their target genes were involved in the regulation of plant hormone signal transduction, the spliceosome, and ribosomes. Analysis of the regulatory network involved in the response to drought stress revealed 37 differentially expressed miRNA-mRNA pairs. CONCLUSION This is the first study to simultaneously profile the expression patterns of mRNAs and miRNAs on a genome-wide scale to elucidate the molecular mechanisms of the drought stress responses of S. tonkinensis. Our results suggest that S. tonkinensis implements diverse mechanisms to modulate its responses to drought stress.
Collapse
|
research-article |
4 |
4 |
21
|
Cheraghi-Aliakbari S, Beheshti-Alagha A, Ranjbar F, Nosratti I. Comparison of Myagrum perfoliatum and Sophora alopecuroides in phytoremediation of Cd- and Pb-contaminated soils: A chemical and biological investigation. CHEMOSPHERE 2020; 259:127450. [PMID: 32593006 DOI: 10.1016/j.chemosphere.2020.127450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation is one of the most cost-effective and environmentally friendly ways to reduce adverse effects of cadmium (Cd) and lead (Pb) in the environment. The present study was conducted to investigate the bioaccumulation factor (BF) and translocation factor (TF) of Cd and Pb in muskweed (Myagrum perfoliatum) and foxtail sophora (Sophora alopecuroides). The impact of contamination on some growth responses of plants and soil biological indicators was also evaluated. A non-contaminated soil sample was divided into several subsamples: one subsample was left as control (without contamination) and the others were separately contaminated with three levels of Cd (3, 5, and 10 mg kg-1) and Pb (100, 300, and 600 mg kg-1). Pot experiments were performed under greenhouse conditions. The BF values of Cd were greater than 1 at all contamination levels indicating the potential of muskweed and foxtail sophora for the uptake and phytostabilization of Cd. The only TF > 1 was obtained for Cd in muskweed grown at the highest Cd contamination level. The TF values of Pb were much lower than those obtained for Cd indicating that Cd was more translocated from root to aerial parts of muskweed and foxtail sophora compared to Pb. The highest contamination levels of Cd and Pb did not significantly affect growth responses of muskweed and foxtail sophora. Furthermore, the cultivation of muskweed and foxtail sophora reduced the impact of Cd and Pb contamination on biological indicators including carbon mineralization ratio (CMR), substrate-induced respiration (SIR), microbial biomass carbon (MBC), and metabolic quotient (qCO2).
Collapse
|
|
5 |
4 |
22
|
Lin TC, Yeh MS, Cheng YM, Lin LC, Sung JM. Using ITS2 PCR-RFLP to generate molecular markers for authentication of Sophora flavescens Ait. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:892-8. [PMID: 22413146 DOI: 10.1002/jsfa.4667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Dried root of Sophora flavescens Ait. is a medicinal material occasionally misused or adulterated by other species similar in appearance. In this study the internal transcribed spacer (ITS) regions of DNA samples of S. flavescens Ait. collected from different areas of Taiwan were amplified by polymerase chain reaction (PCR) and compared. The effectiveness of using ITS2 PCR restriction fragment length polymorphism (RFLP)-generated markers to differentiate S. flavescens Ait. from possible adulterants was also evaluated. RESULTS The S. flavescens Ait. samples collected from different areas were extremely low in ITS sequence variability at species level. ITS2 PCR-RFLP coupled with restriction enzymes Sac I, Sac II, Xho I or Pvu I produced specific fragments for all tested variants. ITS2 PCR-RFLP coupled with Sac II was further performed to identify mixtures of DNA extracts of S. flavescens Ait. and Sophora tomentosa L. in various ratios. The developed ITS2 PCR-RFLP markers could detect mixed DNA samples of S. flavescens Ait./S. tomentosa L. up to a ratio of 10:1. CONCLUSION The present study demonstrates the usefulness of ITS2 PCR-RFLP coupled with pre-selected restriction enzymes for practical and accurate authentication of S. flavescens Ait. The technique is also suitable for analysing S. flavescens Ait. mixed with other adulterants.
Collapse
|
Comparative Study |
13 |
3 |
23
|
Yu J, Xu LR, Liu C, Li YT, Pang XB, Liu ZH, Yang MS, Li YH. Comparative analysis of the dust retention capacity and leaf microstructure of 11 Sophora japonica clones. PLoS One 2021; 16:e0254627. [PMID: 34492027 PMCID: PMC8423301 DOI: 10.1371/journal.pone.0254627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/01/2021] [Indexed: 11/18/2022] Open
Abstract
We used fresh leaves of Sophora japonica L. variety 'Qingyun 1' (A0) and 10 superior clones of the same species (A1-A10) to explore leaf morphological characteristics and total particle retention per unit leaf area under natural and artificial simulated dust deposition treatments. Our objectives were to explore the relationship between the two methods and to assess particle size distribution, X-ray fluorescence (XRF) heavy metal content, and scanning electron and atomic force microscopy (SEM and AFM) characteristics of leaf surface microstructure. Using the membership function method, we evaluated the dust retention capacity of each clone based on the mean degree of membership of its dust retention index. Using correlation analysis, we selected leaf morphological and SEM and AFM indices related significantly to dust retention capacity. Sophora japonica showed excellent overall dust retention capacity, although this capacity differed among clones. A5 had the strongest overall retention capacity, A2 had the strongest retention capacity for PM2.5, A9 had the strongest retention capacity for PM2.5-10, A0 had the strongest retention capacity for PM>10, and A2 had the strongest specific surface area (SSA) and heavy metal adsorption capacity. Overall, A1 had the strongest comprehensive dust retention ability, A5 was intermediate, and A7 had the weakest capacity. Certain leaf morphological and SEM and AFM characteristic indices correlated significantly with the dust retention capacity.
Collapse
|
Comparative Study |
4 |
1 |
24
|
Zhu Y, Wang Q, Guo W, Gao Z, Wang Y, Xu Y, Liu Y, Ma Z, Yan F, Li J. Screening and identification of salt-tolerance genes in Sophora alopecuroides and functional verification of SaAQP. PLANTA 2021; 254:77. [PMID: 34535825 DOI: 10.1007/s00425-021-03726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Overexpression of SaAQP can improve the salt tolerance of transgenic soybean hairy roots and A. thaliana. Salt stress severely affects crop yield and food security. There is a need to improve the salt tolerance of crops, but the discovery and utilization of salt-tolerance genes remains limited. Owing to its strong stress tolerance, Sophora alopecuroides is ideal for the identification of salt-tolerance genes. Therefore, we aimed to screen and identify the salt-tolerance genes in S. alopecuroides. With a yeast expression library of seedlings, salt-tolerant genes were screened using a salt-containing medium to simulate salt stress. By combining salt-treatment screening and transcriptome sequencing, 11 candidate genes related to salt tolerance were identified, including genes for peroxidase, inositol methyltransferase, aquaporin, cysteine synthase, pectinesterase, and WRKY. The expression dynamics of candidate genes were analyzed after salt treatment of S. alopecuroides, and salt tolerance was verified in yeast BY4743. The candidate genes participated in the salt-stress response in S. alopecuroides, and their overexpression significantly improved the salt tolerance of yeast. Salt tolerance mediated by SaAQP was further verified in soybean hairy roots and Arabidopsis thaliana, and it was found that SaAQP might enhance the salt tolerance of A. thaliana by participating in a reactive oxygen species scavenging mechanism. This result provides new genetic resources in plant breeding for salt resistance.
Collapse
|
|
4 |
|
25
|
Mo HB, Yin YL, Lu ZG, Wei XJ, Xu JH. [Effects of NaCl stress on the seedling growth and K(+)- and Na(+) -allocation of four leguminous tree species]. YING YONG SHENG TAI XUE BAO = THE JOURNAL OF APPLIED ECOLOGY 2011; 22:1155-1161. [PMID: 21812288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Taking the pot-cultured seedlings of four leguminous tree species (Albizia julibrissin, Robinia pseudoacacia, Sophora japonica, and Gleditsia sinensis) as test materials, this paper studied their growth indices, critical salt concentration (C50), and K+ and Na+ allocation under different levels of NaCl stress, aimed to understand the difference of test tree species in salt tolerance. NaCl stress inhibited the seedling growth of the tree species. Under NaCl stress, the dry matter accumulation decreased, while the root/shoot ratio increased, especially for A. julibrissin and G. sinensis. Quadratic regression analysis showed that the C50 of A. julibrissin, R. pseudoacacia, S. japonica, and G. sinensis was 3.0 per thousand, 5.0 per thousand, 4.5 per thousand, and 3.9 per thousand, respectively, i.e., the salt tolerance of the four tree species was in the order of R. pseudoacacia > S. japonica > G. sinensis > A. julibrissin. In the root, stem, and leaf of the four tree species seedlings, the Na+ content increased with the increase of NaCl stress, while the K+ content (except in the root of A. julibrissin) decreased after an initial increase, resulting in a larger difference in the K+/Na+ ratio in the organs. Under the same NaCl stress, the allocation of Na+ in different organs of the four tree species seedlings decreased in the order of root>stem>leaf, while that of K+ differed with tree species and NaCl stress, and leaf was the main storage organ for K+. The K+/Na+ ratio in different organs decreased in the sequence of leaf>stem>root. R. pseudoacacia under NaCl stress accumulated more K+ and less Na+ in stem and leaf, and had higher K+/Na+ ratio in all organs and higher dry mass, being assessed to be more salt-tolerant. In contrast, A. julibrissin under high NaCl stress accumulated more Na+ in stem and leaf, and had a lower K+/Na+ ratio in all organs and lower dry mass, being evaluated to be lesser salt-tolerant. The K+ accumulation in seedling stem and leaf and the Na+ retention in seedling root could be the main reasons for the salt tolerance of leguminous tree species under NaCl stress.
Collapse
|
|
14 |
|